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Abstract—Making communication more resilient is a main
focus for modern decentralised networks. A current development
to increase connectivity between participants and to be resilient
against service degradation attempts is to support different
communication protocols, and to switch between these protocols
in case degradation or censorship are detected. Supporting
multiple protocols with different properties and having to share
resources for communication with multiple partners creates
new challenges with respect to protocol selection and resource
allocation to optimally satisfy the applications’ requirements for
communication.

This paper presents a novel approach for automatic transport
selection and resource allocation with a focus on decentralised
networks. Our goal is to evaluate the communication mechanisms
available for each communication partner and then allocate
resources in line with the requirements of the applications.

We begin by detailing the overall requirements for an algo-
rithm for transport selection and resource allocation, and then
compare three different solutions using (1) a heuristic, (2) linear
optimisation, and (3) machine learning. To show the suitability
and the specific benefits of each approach, we evaluate their
performance with respect to usability, scalability and quality of
the solution found in relation to application requirements.

I. INTRODUCTION

Reliable connectivity and reasonable goodput with low
latency are important for the success of peer-to-peer (P2P)
networks. However, the contemporary Internet rarely provides
unrestricted communication: various parties try to restrict or
shape traffic for political, economic or technical reasons [2].

Modern P2P networks focus on antagonising the restrictions
built into the Internet infrastructure by obfuscating information
flows and sending traffic via routes or mechanisms that are not
easily restricted. Leading P2P designs have started to support
multiple “pluggable” transport mechanisms, resulting in archi-
tectures that can leave a compromised or degraded medium
of communication and switch to a different communication
mechanism. Being able to choose between different commu-
nication mechanisms creates new challenges as peers typically
communicate with multiple other peers at the same time,
and allocating resources for one peer may impact the quality
of the connection to the others. Thus, transport selection
for pluggable transports in P2P networks must consider not
only performance and availability of the respective transport
mechanisms, but also resource constraints and application-
specific preferences.

This paper presents solutions to the challenge of transport
selection and resource allocation with a focus on the specific
requirements of censorship-resistant decentralised networks.
For security reasons, we require that peers do not make their
resource allocation decisions based on unreliable information
from other peers; to minimise information leakage, peers also
do not exchange information about their resource limitations,
neighbour set or even the results of the resource allocation
process.

We present a formalisation of the problem and three dif-
ferent approaches to solve the problem and evaluate these
approaches with respect to usability of the approach and
quality of the resulting solutions. We compare three solutions:
a greedy heuristic, an algorithm based on linear constraint
optimisation problem, and a method using reinforcement learn-
ing where agents learn to allocate resources while maximising
social welfare.

II. THE TRANSPORT SELECTION AND RESOURCE
ALLOCATION PROBLEM

Existing P2P networks like I2P [6], GNUnet [7],
SpovNet [3] and Tor [1] enable the use of multiple transport
mechanisms, but so far they use rather simplistic processes
like heuristics to decide which mechanism to use. This is
problematic, as this decision can clearly have a significant
impact on the quality of communication an application can
provide.

In a P2P network, each peer communicates with a set of
communication partners. The network defines a set of trans-
ports (e.g. TCP and UDP), peers can use to communicate with
each other, but not every peer must support every transport.
Transports provide addresses indicating how to connect to
a peer. When a peer supports multiple transports, multiple
addresses may be available to connect to this peer and even a
single transport can provide multiple addresses (e.g. IPv4 and
IPv6). Addresses can be located in different network scopes
(e.g. LAN and WAN) with different resource restrictions.
Resources available on a system have to be distributed among
communication partners. To not cannibalise other applications
running on the same system, quotas may restrict the amount of
resources available to the application. Different addresses may
have different properties (e.g. delay and loss rate) based on
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the transport and the network scope of the address. Therefore
metrics are required to compare and select the “best” address.
Applications using the transport underlay to communicate with
other peers have to specify preferences (e.g. low latency and
goodput) to express which properties are important for good
performance and which peers are important to communicate
with. Applications should also be enabled to provide positive
or negative feedback to indicate how satisfied they are with
regard to the current performance.

A P2P network using a multi-transport approach should
automatically select the “best” transport available for each
communication partner, and continuously evaluate the per-
formance of the chosen transport. The transport selection
operation performed by each participant in the network has
to (1) decide on a set of peers with which it will maintain
connectivity, (2) choose a single address for each peer from the
set of available addresses, and (3) allocate a certain amount of
the resources while satisfying the resource constraints. Due to
peers joining and leaving the network, inputs to the problem
may change frequently. We expect peers to join and leave
the network at frequencies in the range of seconds, whereas
address properties may change within milliseconds. Whenever
inputs change, the transport selection process may want to
adjust the solution. The output of the address selection and
resource allocation process is the set of addresses to use to
communicate with other peers, containing a single address for
each remote peer together with the resources assigned to each
address.

A. Objectives for transport selection

In addition to considering application preferences and ad-
dress properties, the selection algorithm should consider addi-
tional high-level objectives that transcend the preferences of
an individual application. To provide a useful communication
between participants, a minimum amount of resources is
required for each connection. Thus, if an address is selected
at all, at least a certain minimum amount of resources has to
be assigned (Usability). Communicating with a larger number
of participants increases the resilience of the P2P network.
Therefore, the result should distribute resources over a range of
peers instead of preferring communication with a tiny number
of peers (Diversity). Resources should be allocated to peers
according to their relative importance in the communication
as expressed by the applications’ preferences. So if a peer
is valuable, it should get more resources assigned than a
peer that does not contribute (Relativity). Available resources
should be fully allocated to allow participants to achieve maxi-
mum utilisation when communicating (Utilisation). Transports
with high overhead should be avoided to minimise useless
resource consumption and maximise application performance
(Austerity). Allocations should exhibit some stability to min-
imise transport initialisation overheads and provide predictable
performance to applications (Stability). We assume that the
P2P framework assigns specific weights for the sub-objectives
to evaluate the overall quality of the peer selection, address
selection and resource allocation.

B. Scope

For the approach presented in this paper, we assume that
only a single address per (selected) peer is to be determined,
based on the idea that each connection creates inherent
overheads (handshake, socket, buffers) and that establishing
multiple parallel connections is thus inherently wasteful. This
restriction is not a fundamental limitation since our solutions
can be easily extended to permit this behaviour. We further as-
sume that the process of deciding which peers to communicate
with is partially covered by the application, and the transport
selection algorithm then decides on the address to use; the
address must be initially provisioned with some minimum
amount of resources, but in later rounds the transport selection
algorithm may terminate the connection with the peer.

III. DESIGN

A component for automatic transport selection and resource
allocation has to interact with both the underlying transport
infrastructure and the applications using this transport infras-
tructure to communicate. We will now sketch three different
solutions to find an “optimal” set of addresses and resource
allocation with respect to the inputs provided by the transport
underlay and higher layer applications and the user defined
resource constraints. Each solver satisfies the requirements of
this problem and has distinct advantages and disadvantages. A
detailed analysis about the design and implementation of the
solvers can be found in our technical report [7].

A. The heuristic solver

The first approach is a fast heuristic based on the idea to
distribute resources roughly proportional to the importance a
communication partner has for the high layer applications.
The heuristic solver views the different network scopes as
buckets of bandwidth and distributes the bandwidth in each
bucket to peers in relation to how important this peer is for
the applications.

The heuristic selects the “best” address available for a peer
by comparing the performance properties; the focus here is on
latency, but the stability of the choice is also considered. To en-
sure usable connections, the heuristic activates an address only
if a minimum amount of bandwidth for all active addresses in
this scope can be provided. Resources in the respective scope
are distributed among the selected addresses by first assigning
every address a minimum amount of bandwidth to ensure
diversity of connections and then distributing the remaining
bandwidth among all addresses relative to the preferences
the higher layer applications have specified (with respect to
bandwidth) for peers. If not enough resources can be provided
to maintain a connection, the heuristic may tell the underlay
to disconnect from a peer.

B. The linear optimisation solver

To combine address selection and resources allocation in
an integrated approach, the linear optimisation solver views
the problem as a mathematical optimisation problem. In linear
optimisation, problems are defined using a (linear) objective
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function to be maximised under a set of objectives, formulated
as linear (in)equations [5]. The address selection and resource
allocation problem becomes a mixed integer linear problem
(MILP) because a binary output is required to indicate if an
address was selected (1) or not (0).

To formulate the problem as a MILP, one has to carefully
formulate a set of linear constraints which ensure that the
solution satisfies resource constraints. In our formulation,
we distinguish between feasibility constraints ensuring that
the solution is valid in the given domain and optimality
constraints driving the solution towards the system objectives.
As feasibility constraints we define constraints enforcing di-
versity (maintain a minimum number of connections), usability
(minimum resources for active addresses), scope (one address
per peer), finite solution (prevent unbounded solutions, quotas
must be finite). To obtain a solution optimal with respect to
the objectives defined in II-A, we add optimality constraints
optimising for utilisation (use resources available in network
scopes), austerity (prefer transports with smaller overhead),
diversity (establish connections with a larger number of peers),
and relativity (distribute according to application preferences).
The solver’s running time can be reduced by exploiting the fact
that the Simplex algorithm used to solve the problem can re-
use an existing solution if only the coefficients in the problem
changed. As an output, the optimisation algorithm provides
for each address a binary variable that models the selection
of the address, and another with the amount of inbound and
outbound bandwidth that was assigned.

C. The machine learning solver

The machine learning solver uses reinforcement learning [4]
to learn good address selection and bandwidth allocation
strategies. The reinforcement learning (RIL) solver uses an
autonomous agent per requested peer performing actions to
learn or exploit the allocation strategy. To perform actions,
the agent can increase and decrease bandwidth assigned to an
address, switch to a different address or decide to do nothing.
Based on the impact actions have with respect to the objectives
defined in II-A and feedback received from applications,
the agent receives a reward indicating if previously taken
actions have improved the allocation or not. Based on this
reward, the agent updates his allocation strategy. To achieve
a global optimal solution for all peers, the solver uses a
social welfare algorithm to achieve good allocations for all
peers. Contrary to previous solvers, this approach also supports
over-allocation of the available resources. However, allocated
resources might then ultimately not be used as applications
may not generate enough traffic to fully utilise the allocations.
Thus, over-allocation can be useful even if over-utilisation
creates significant penalties.

IV. IMPLEMENTATION

To ensure the applicability of our proposed design for
transport selection and resource allocation in practice, and
to validate the design, scalability and performance of all

proposed solution approaches, we implemented and experi-
mentally compared the three solvers. The source code and the
evaluation tools are available on our website1.

We implemented the algorithms to execute independently
from the transport underlay and the higher-layer applications.
Specifically, the solvers run as separate (operating system)
process and both the transport underlay as well as the applica-
tions can interact with the solver component in a non-blocking
way. This ensures that the rest of the P2P framework can
operate independently from our component without having to
worry about blocking operations or shared resources. This also
facilitates the integration of the implementations into different
P2P applications. The MILP solver relies on the GNU Linear
Programming Kit (GLPK)2, a free software package intended
for solving linear optimisation problems.

V. EVALUATION

To evaluate the proposed solvers, we used the production
code in a simulation environment to evaluate our proposed
design under controlled circumstances.

To evaluate the scalability of the solvers, we measured the
running time and memory consumption of each respective
solver by incrementally adding peers and addresses to the
problem. Each time a new peer and addresses are added, our
benchmarking tool requests the solver to find an allocation. In
addition to changing the problem size by adding new peers
and addresses, the tool requests incremental solutions after
updating properties and preferences for peers and addresses
already existing in the problem. Incremental solutions are
particularly interesting for the linear optimisation solver since
the solver can re-use an existing solution of the problem
whenever the problem size does not change. The results of
the solver scalability evaluation are presented in Section V-A.

To evaluate the quality of the solutions provided by the
solvers, we analysed the quality of the solutions provided by
the three different solver approaches. We designed multiple
scenarios that peers might experience including fluctuating
address properties and application preferences and evaluated
the quality of the address selection and resource allocations
produced by the solvers. To ensure that the heuristics were
not somehow tuned specifically to the evaluation scenarios,
we did not perform performance tuning of the solvers on the
scenarios used for the evaluation. The results of the solver
quality evaluation are presented in Section V-B.

We used a desktop PC with an Intel Xeon W3520 quad core
CPU with at 2.67Ghz and 24 GiB of memory running Ubuntu
14.04-AMD64 for all of the measurements. GLPK version
4.54 was used to solve the linear optimisation problems.

A. Solver scalability evaluation

The scalability of the different solvers largely depends on
the number of peers, addresses and network scopes. Asking the
MILP solver to produce optimal solutions for larger problems
can be problematic — even for problems with just a few

1https://gnunet.org/svn/gnunet/src/ats/
2https://www.gnu.org/software/glpk/
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Fig. 1. Execution time for the heuristic solver in relation to the number of
peers.
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Fig. 2. Execution time for the MILP solver to solve the problem from scratch
in relation to the number of peers.

dozen peers and addresses the solver can take gigabytes of
memory and hours of running time to prove the optimality of
the solution. We thus allowed the MILP solver to terminate
with an approximate solution of guaranteed quality (within
2.5% of the optimal solution). We also used a 10 s timeout;
however, that timeout was then never reached in practice. With
these restrictions, memory consumption for all approaches was
relatively small (at the order of a few megabytes).

Figures 1, 2, 3 and 4 show the execution time in relation to
the number of peers in the problem. Each peer always provides
ten different addresses, equally distributed over five different
network scopes. Properties of new addresses are initialised
with random values. To evaluate the performance to solve
an updated problem, the properties of 10% of all addresses
currently in the problem are updated.

B. Solver quality evaluation

To evaluate quality of the solvers we used three different
scenarios, modelled to represent the behaviour of a file sharing
application, a telephony application, and the case where both
file-sharing and telephony execute together. To evaluate the
quality of the solutions provided by the different solvers the
simulator collects information about the selected addresses and
allocated bandwidth as well as the current properties and pref-
erences as specified by the scenario generator. These inputs are
then used to evaluate the quality of the allocation using a goal
function similar to the objective function of the MILP solver.
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Fig. 3. Execution time for the MILP solver to incrementally solve problem
in relation to the number of peers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  10  20  30  40  50  60  70  80  90  100

T
im

e
 i
n
 s

e
c

Peers

Execution time for an full execution of the reinforcement learning solver

Execution time (mean)

Fig. 4. Execution time for the reinforcement learning solver in relation to
the number of peers.

This goal function includes the utility of the current allocation,
if bandwidth is assigned according to preferences specified by
the applications (relativity), if connections to a larger number
of peers is established (diversity) and if the addresses were
selected according to the properties and preferences for these
properties. In addition, the goal function includes a penalty if
resource constraints are violated to penalise the reinforcement
learning (RIL) solver for over-allocation.

To evaluate quality of the solvers we used three different
scenarios, with two different durations (to observe the effect
of learning). We run the simulations for 10 seconds in the
short variant and 20 seconds in the long variant. We use two
network scopes: scope n0 with a large amount of bandwidth
available, and scope n1 providing only half the bandwidth. We
have two neighbours p0 and p1, each with one address in each
of the network scopes.

In the throughout scenario, we emulate an application
trying to achieve a high throughput to a one peer, and not
caring about other peers. The application wants to maximise
throughput to peer p0, and has no concern for latency at all.
We generate delay values for the addresses in n1 to provide
better latency properties than for the addresses in scope n0,
which provides more bandwidth but worse delay properties.
After this setup we than begin to issue preferences in regular
intervals of 500 ms with respect to bandwidth for p0 with
linearly increasing values and for p1 with a constant low value
to indicate our disinterest in this peer.
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In the latency scenarios, we emulate an application requiring
low latency values to communicate with both p0 and p1. We
generate delay values for the addresses of neighbour p0 and
p1 located in n0 with random values between 20 and 25 ms
and better delay values for addresses in scope n1 with delay
values between 10 and 15 ms for p0 and 1 and 30 ms for p1.
We then begin to issue preferences for both peers with respect
to latency, linear increasing values for p0 and sinusoidal for
p1.

In the mixed scenario, we simulate two applications issuing
conflicting preferences. For the addresses located in n0, we
create delay properties for both addresses with values between
20 and 25 ms, whereas for addresses in scope n1, we create
delay values between 10 and 15 ms for p0 and values linear
increasing between 1 and 30 ms for p1. The values for p1’s
address in n1 were particularly chosen to make the solver
switch to p1’s address in scope n0. The application begins to
generate preferences for p0 to prefer maximise throughput and
for peer p1 to maximise delay.

Table I gives the results for the goal function for the
different scenarios. The values are normalised in relation to
the quality of the solutions produced by the MILP solver.
The results show that learning is effective as the RIL solver’s
solution improves for longer runs, and it outperforms the
heuristic for most scenarios.

VI. DISCUSSION

Our heuristic can compute the address selection and the
resource allocation very fast, which is beneficial given frequent
changes in the problem due to peers joining and leaving
and updated address properties and application preferences;
however, the greedy nature limits the quality of the solution
and the heuristic does not benefit from the requirement to solve
the problem repeatedly.

Treating the address selection and resource allocation pro-
cess as an optimisation problem and using optimisation tech-
niques has the advantage that the solution found is always
an optimal solution and objectives can be weighted according
to the application’s needs by adapting coefficients within the
objective function. However, having to formulate the problem
as MILP requires a careful design to formulate all constraints
and the object function as linear equations. Requiring the
output to contain binary variables makes solving the problem
significantly more expensive since solving a mixed integer
problem is NP-hard, while for linear programming polynomial

TABLE I
NORMALISED QUALITY OF THE SOLUTIONS PRODUCED BY THE SOLVERS.

Scenario Heuristic MILP RIL
throughput short 0.905 1.00 0.513
throughput long 0.949 1.00 0.690
latency short 0.510 1.00 0.692
latency long 0.506 1.00 0.803
mixed short 0.547 1.00 0.367
mixed long 0.552 1.00 0.969

time algorithms exist. MILP solver running time can be re-
duced by exploiting the fact that the Simplex algorithm can re-
use an existing solution if only the coefficients in the problem
changed but not the size of the problem itself (peers joining
and leaving, addresses being added or removed). Furthermore,
Simplex typically produces feasible but suboptimal solutions
quickly; thus it is important to bound CPU time with timeouts
or reduce CPU consumption by allowing the MILP solver to
terminate with an approximate solution of guaranteed quality.

An a-priori definition of the objectives for address selection
and resource allocation is a difficult task, especially as the
requirements of applications may change over time. Further-
more, some of the constraints that were formulated are rarely
“hard” constraints — an application that sometimes slightly
overshoots bandwidth targets might be more desirable than
an application that sticks to constraints and fails to deliver
performance when it is critical. These challenges can be
addressed using reinforcement learning which may predict
future developments. In particular, a learning algorithm has the
chance to adapt to the current observed utilisation behaviour of
the application and can adjust its allocations accordingly. This
can then reduce the amount of allocated but unused resources.
However, reinforcement learning takes time for the adaptation,
and thus naturally performs worse if evaluated under the same
goal function as the MILP.

VII. CONCLUSION

Based on an analysis of the challenges arising from the
support of multiple transports under resource constraints, this
paper presented three methods for transport selection and
resource allocation for decentralised P2P networks supporting
multiple transport protocols. We demonstrate that both rein-
forcement learning and constraint solving methods can deliver
significant performance benefits over ad hoc heuristics.
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