
Efficient Sharing of Encrypted Data?

Krista Bennett Christian Grothoff Tzvetan Horozov Ioana Patrascu

S3 lab and CERIAS,
Department of Computer Sciences, Purdue University
{klb,grothoff,horozov,patrascu}@cs.purdue.edu

http://www.gnu.org/software/GNUnet/

Abstract. This paper describes the design of a censorship-resistant dis-
tributed file sharing protocol which has been implemented on top of
gnunet, an anonymous, reputation-based network. We focus on the en-
coding layer of the gnunet file-sharing protocol which supports efficient
dissemination of encrypted data as well as queries over encrypted data.
The main idea advocated in this paper is that simple cryptographic tech-
niques are sufficient to engineer an efficient data encoding that can make
it significantly harder to selectively censor information. Our encoding
allows users to share files encrypted under descriptive keys which are
the basis for querying the network for content. A key property of our
encoding is that intermediaries can filter invalid encrypted replies with-
out being able to decrypt the query or the reply. Files are stored in
small chunks which are distributed and replicated automatically by the
gnunet infrastructure. Additionally, data files may be stored in plain-
text or encrypted form or as a combination of both and encrypted on
demand.

1 Introduction

Internet censorship can appear in many forms. Whether it is government reg-
ulation aimed to stifle political dissent or a campaign orchestrated by pressure
groups against opponents, a common feature of all forms of censorship is that
each must identify objectionable information and prevent its sharing. The goal
of our research is to study requirements and design a censorship-resistant file-
sharing protocol. In this paper, we focus on the design of the encoding layer of
such a protocol and briefly describe a prototype implementation that we have
realized on top of the gnunet networking infrastructure [1].

Keeping published documents available in the face of powerful adversaries
requires an array of techniques. Censorship can be enacted in many ways, such
as sweeping through users hard drives to discover objectionable content, filtering
user queries to catch requests, and even denial of service attacks against servers
providing storage for the documents. Our goal is to design a file-sharing protocol
that protects against all of these attempts to limit the free flow of information.
? Portions of this work were supported by sponsors of CERIAS

2 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

In particular, both content and queries should always be encrypted; furthermore,
servers as well as all intermediate hosts should be oblivious of the data they are
actually storing such that they can neither be singled out for attack nor held
liable in a court of law.

To address this challenge, we have implemented a censorship-resistant file-
sharing protocol on top of the gnunet anonymous reputation-based network.
Our system protects servers and users through an original encryption scheme.
The design of the cipher was motivated by the idea of a wide area distributed
network where many parties want to share data. Identical data may be inserted
by many independent parties at any time. Some users may want to keep a copy
of their files in plaintext on their drive – and may not want to waste space
on a second, encrypted copy – while others must always keep all the data in
encrypted form. Files are identified by keywords and retrieved by issuing queries
for all documents matching a given keyword. Some complex queries, such as
boolean formulas over keywords, should also be supported.

This paper focuses on the content and query encryption techniques used
within gnunet. Other aspects such as host discovery, host authentication, and
the gnunet economic reputation-trading model (to prevent denial of service
attacks) will not be addressed here.

The gnunet encryption scheme is remarkable in that it allows identical files
encrypted under different keys to yield the same ciphertext, modulo a small
block of metadata. These files can then be split into small blocks and distributed
(and replicated if need be) across hosts in a gnunet system to balance load. The
network can thus automatically optimize the storage requirements of a document
even if multiple users insert the same files under different search keys at different
times. Another implication is that a document can be entered under many search
keys at little cost in space. The overhead in space of our scheme is less than
4% of the plaintext size, with one 1KB per additional copy of the file. The
scheme is based on hash trees [6] and allows swarm distribution [7]. Encryption
speed is about 3MB/sec and decryption is a bit slower, about 350KB/sec, as
our decryption code is multi-threaded and has to deal with file fragments being
returned by different hosts out-of-order.

The remainder of the paper is organized as follows. Section 2 begins by listing
the requirements of file-sharing protocols and motivating our choices. Then, in
Section 3, we contrast this work with other censorship-resistant systems having
similar goals. Section 4 describes the details of the gnunet encoding scheme.
Finally, Section 5 describes some possible attacks.

2 Requirements for censorship-resistant file-sharing

This section briefly describes the requirements for a censorship-resistant file-
sharing protocol. These requirements will then be used to drive our design and,
in section 3, to assess the appropriateness of related systems.

We start with a scenario that tries to highlight a common use-case for such
a protocol:

Efficient Sharing of Encrypted Data 3

Suppose that Alice inserts a file F containing the text of Salman Rushdie’s
Satanic Verses in the network under the keyword "satanicverses", and
the same file is independently inserted by Bob under keyword "rushdie’s
verses". Furthermore, Alice decides to keep file F in plaintext on her
drive and is not willing to dedicate space for a second, encrypted copy
on the drive. Bob on the other hand, lives under an oppressive regime
and is afraid of being caught with the file, so he wants to make sure
that the file cannot be found on his drive. Thus he encrypts the file, and
his computer starts to distribute pieces of the file all over the network.
What we want to be able to do is to have a user Carol perform a query
"satanicverses" AND "rushie’s verses" and retrieve the file F , po-
tentially retrieving a few pieces from the copy that Bob inserted and
distributed as well as a few other pieces that Alice contributed. Alice
should not have to perform encryption on the pieces of F that Carol
obtained from other parts of network. In this case, the encryption of
F guarantees that participating servers can claim ignorance about the
contents of F .

We now turn to the requirement placed on a file-sharing protocol that could
support the above use case.

2.1 Plausible Deniability

In order to protect intermediaries, it is desirable that these hosts be unable
to discover what they are sending. Servers must be able to deny knowledge of
the content they store or transport. Intermediate and responding hosts should
neither be able to find out what the query is about nor what the contents of
the data returned are. Many modern systems [3] overcome this by hashing the
query and searching for the hash, which does not reveal the original keyword.

Additionally, content migration is used both to ensure that the original sender
cannot be located as well as to distribute the load. The host that initially inserted
the content can then forget the “key” and claim ignorance, even if the content
is still stored locally; as long as the adversary has not performed full traffic
analysis, it remains plausible that content could have come from another node.

In gnunet, users are anonymous. Thus, our encoding scheme is aimed at
protecting the servers, not the individuals requesting the data. Servers must be
able to deny knowledge of the content they index, store or transport.

If hosts are unable to see which content they are serving, they cannot exercise
editorial control by selectively deleting or modifying content. Exercising editorial
control implies liability for content. A lack of editorial control usually relieves
the provider from responsibility for the nature of the data served.1

1 In Stratton Oakmont v. Prodigy, an Internet provider was found liable for host-
ing a bulletin-board where offensive messages had been posted. This is because
the provider had hired individuals to exercise editorial control over content. If the
provider had merely published messages from users without interference, the provider
would probably not have been held accountable[10].

4 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

2.2 Content Retrieval

Searching for a file by a unique keyword creates a problem. The user needs
some means of actually obtaining the keyword in the first place. If no secrecy
is required, this problem is equivalent to using a search engine to obtain URLs
from keywords on the World Wide Web.

The problem we try to solve is that of allowing complex searches without ex-
posing the search-string to the network. If the query consists of several keywords,
an obvious approach is to search for each of the keywords, download and decrypt
all matching files, and then compare their contents. This is clearly impractical.
An ideal system would support regular expressions for queries and return only
all files that exactly match the regular expression.

2.3 File Distribution Mechanism

In order to be able to move content from host to host in the network, it is
desirable that large files can be split. Fine-grained pieces of data are quickly
moved from site to site. If it were necessary to transfer large files as a whole for
a valid transfer to occur, incomplete transfers would result in a huge waste of
resources.

Additionally, we want to be able to combine identical files from different
sources as illustrated in the motivating example and to allow each source to
specify its individual list of keywords for the file.

2.4 Scalability

Naturally, in order for a file-sharing system to scale, the overhead of the encoding
should be small. The size of an encoded file should not be significantly larger
than the original file. The memory requirements to encrypt or decrypt a file
should also be minimal.

Finally, users should be able to store a file in plaintext on their local drive
(perhaps because they are using it), without doubling space requirements; the
encoding should allow files to be served that are stored locally in plaintext with-
out requiring the storage of a second copy in encrypted form.2 In addition to
the fact that users may assemble the same file using parts from different servers,
this storage option requires the ability to encrypt small parts from the middle
of the file. For efficiency, this should of course not require reading (or even en-
crypting) any other part of the file. To the best of our knowledge, gnunet is the
first system that allows this kind of random access on-demand encryption for
arbitrary parts of a file.

2 This would of course reduce deniability; however, we value giving users the choice
between efficiency and security.

Efficient Sharing of Encrypted Data 5

3 Related Work

Censorship-resistant publishing systems are commonly based on three tech-
niques:

1. replication, to ensure that a document is not lost if a single copy is destroyed;
2. distribution, to keep content available if a site goes down;
3. encryption, to prevent servers from exercising editorial control over the con-

tent they store.

All systems differ widely in their specific implementations of these three building
blocks. While gnunet also chooses a unique approach to replication and distri-
bution, we do not discuss these aspects in this paper, including the description
of related work. Instead, we focus solely on encryption.

3.1 Freenet

The main content encoding scheme used in Freenet [2,4] uses the hash of the
content as the key (CHK). Other key types indirect to content-hash keys. Freenet
has several different types of keys. The different key types are used to allow
additional features such as content signing, personal namespaces or splitting
of content. While this encryption scheme yields the same encrypted data for
independent encryptions, it has some disadvantages.

One disadvantage of Freenet is that it does not allow direct sharing of files
from the local drive without encrypting and inserting them first. Thus, to keep
content easily accessible on the host, a node operator must keep a local copy of
the unencrypted file in addition to the encrypted content in the Freenet database.

Freenet also requires unique keys which may be non-trivial to guess. As colli-
sions for keys are not allowed, multiple results can never be found. If an attacker
inserts meaningless data under common keywords, Freenet will preserve this
content because it is frequently requested and make it impossible to use that
keyword for useful data. A solution to the problem of finding keywords is ap-
proached by the use of keyservers which provide indices to all known keys. The
disadvantage of these keyservers is that they must be maintained; in reality, they
often index content which is no longer available.

The CHK encoding does not allow for file completion with content from
truncated files. In distributed systems, aborted downloads for large files are
fairly frequent. Because the hash of the file is different if even one single bit was
not transferred, the entire transfer becomes useless if not completed.

3.2 Mojo Nation

Mojo Nation is a distributed file-sharing system based on micropayments. This
system first breaks the original file into several pieces (the larger the file, the
greater the number of pieces). Each piece is then broken into eight blocks, any
four of which are sufficient to reconstruct the original piece. These data blocks

6 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

are hashed to generate a unique identity tag. This tag is then later used to
retrieve the blocks. A sharemap or Dinode is used to reconstruct the file.

This protocol distinguishes strictly between searching and downloading. This
makes it easy for the system to censor certain queries. While this is an intended
feature of the Mojo Nation system, it is unacceptable for gnunet.

3.3 Free Haven

In Free Haven, documents are split into n shares which are distributed over a
number of servers. Any k out of n shares are sufficient to reconstruct the entire
document [8]. To retrieve a document, the user must obtain the key that was
used to sign the document from some source outside the Free Haven network.
The user then forwards the key to the server which encrypts and sends its share
of the document.

Because shares are stored in plaintext (only the transfer is encrypted), hosts
can exercise editorial control over content. Also, the k out of n share recon-
struction scheme does not allow reconstruction of a file by mixing shares from
independent insertions (see section 4.2).

The requirement that the users obtain Free Haven keys from other sources
makes it impossible to search the network. Furthermore, these keys consist of
random bits instead of guessable keywords. While this is desirable if content in
the network is meant to be accessed only by authorized parties, it is a drawback
in a system where files are intended to be publicly available.

3.4 Tangler

The Tangler network [6] is a system where new content is entangled with old
content. This entanglement introduces a dependency that makes it impossible to
retrieve the new content if the other content that it was entangled with is lost.
While this makes it impossible to censor specific content without losing unrelated
content (since the entanglement pairs are chosen randomly), this process at least
doubles the amount of data that must be transported by the network.

Furthermore, outdated or unpopular content cannot be removed because of
the entanglement scheme. Tangler’s approach is quite radical as it not only dis-
allows selective removal of content (censorship), but any removal. The Tangler
protocol also makes unreasonable assumptions, such as extremely high availabil-
ity of servers and synchronous decisions in a distributed network. The paper
notes that the network will probably not scale.

3.5 Publius

Publius [5] is a static network that uses Rabin’s file splitting algorithm [8] to
distribute an encrypted file to n servers. The key used to encrypt the file can
be used to retrieve the shares. The servers can not decrypt the file as the key is
never entirely revealed to them.

Publius keys are random strings. The system does not provide any search
mechanism and expects the users to obtain the keys from an alternate source.

Efficient Sharing of Encrypted Data 7

3.6 Summary

Figure 1 compares the different systems discussed in this section. The most
important questions are:

– Are servers prevented from decrypting the content?
– Can content inserted by independent sources be joined?
– Can content be encrypted on-demand?
– Is content split into smaller pieces?
– Is the method of encrypting the content reasonable for the goal of being

censorship-resistant?
– Is a boolean search possible? (AND, OR, XOR, NOT, etc.)
– Is a search with regular expressions possible?
– Can there be different files matching the same keyword?
– How much data must be transferred per file as a multiple of the actual file

size (not counting indirections due to anonymity provisions)?

System Freenet Mojo Nation Free Haven Tangler Publius GNUnet

server can decrypt no yes no yes no no

joins content yes yes no no no yes

on-demand encryption no no no no no yes

content splitting yes yes yes yes yes yes

censorship-resistant yes no yes yes yes yes

boolean search no yes no no no yes

regex no no no no no no

key collisions no yes no no no yes

network overhead ≈ 1 ≈ 1 ≈ 1 ≈ 2 ≈ 1 ≈ 1

Fig. 1. Quick Comparison.

4 GNUnet Content representation

The design of gnunet storage and content distribution attempts to achieve sev-
eral goals:

1. Deniability for all participants;
2. Distribution of content and load;
3. Efficiency in terms of space and bandwidth.

In this section, we describe an encoding scheme for content that achieves all
three goals. While the receiver can decrypt the file, none of the intermediaries
can discern its contents. Additionally, the query is sent encrypted; thus, the
other hosts on the network cannot compute what the user is looking for. Some
minor goals have also influenced our design. First of all, we wanted to be able to
perform boolean queries of the form aAND b, without revealing a or b. Secondly,

8 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

we require content migration to be simple and fast, making it easier for gnunet
to migrate (or copy) files, thus achieving distribution and redundancy.

The remainder of this section describes how these goals are achieved by our
approach. In part 4.1 we describe how files are split into GBlocks, which are
easier to migrate. Part 4.2 describes how the GBlocks are encrypted in order to
make it impossible for the intermediaries to determine what they are storing or
serving. Part 4.3 describes how the user can query for content without exposing
the (plaintext) query or the corresponding content. The following description
summarizes the full scheme that we develop in this section:

1. The user gives the local gnunet node the content C, a list of keywords K
and a description D (and optionally the pseudonym P) to use.

2. gnunet breaks C into blocks Bi, each of size 1k, and computes the hash
values Hi = H(Bi) and H2

i = H(H(Bi)). Random padding is added if
needed.

3. Each block is then encrypted, yielding Ei = EHi
(Bi).

4. gnunet stores Ei under the name H2
i .

5. If C was larger than 1k (and thus there is more than one Hi), gnunet groups
up to 51 Hi values together with a CRC32 of the original data to form a
new block of size 1k. Random padding is added if needed. Each new 1k block
obtained in this manner is then processed as in step 2.

6. If the size of C was smaller than 1k (and thus there is only one hashcode
H1), gnunet builds a root-node containing H1, the description D, the orig-
inal length of C, a CRC checksum, and optionally the pseudonym P and
a signature. The total size of the root node must be less than 1k in size
(the length of the description may be shortened as needed). The resulting
root-node R is then padded and encrypted once for each keyword K yielding
RK = EH(K)(R).

7. Finally, for each K, the result RK is stored under H(H(K)).

The space m required for a file of size n is

m ≤ n + 1k ·
blog51d n

1k ec∑
i=0

51i

≈ 1.02 · n.

4.1 GBlocks

In order to be able to migrate large files and to distribute load on the network,
gnunet splits large files into many small files called GBlocks. There are 3 types
of GBlocks: IBlocks, DBlocks and RBlocks. Similar to UNIX INodes, IBlocks are
special indirection-blocks which encode how the leaf-nodes of the file tree (the
DBlocks) can be reassembled into the original file (see figure 2).

Splitting large files makes content migration inexpensive. Without splitting
these files, it is unlikely that a node would be able to find another host that

Efficient Sharing of Encrypted Data 9

IBlock: indirection node
 containing hashes of
 child node data

H(H(Keyword))

Filenames
RBlock: Contains file information,
 description, and hashcode
 root indirection node.

IBlock (Root): Like other indirection
 blocks, this contains the
 hashes of its child nodes.

DBlock

H(H(Root IBlock))

H(H(IBlock))

H(H(DBlock))

Fig. 2. Encoding of the entire file

f
1

f f
50

...
2

H(f), ..., H(f)
501

hashcodes, + 4−byte CRC

Space for 51 20−byte

(= 1024 bytes)

IBlock

...

1024 bytes

C
R

C

DBlocks

Fig. 3. Encoding of the 1k blocks

is willing (or able) to provide enough space. The traffic burst that this transfer
would impose on the network is impractical, as both nodes would become very
busy for a long time. Storing a large file on a single host also fails to facilitate
distribution of load when a user requests this large file.

The size of all types of GBlocks in gnunet is normalized to 1k. Thus, a 50k
file will be split into 50 DBlocks fi of length 1k each. Then, 50 RIPE-MD-160
hashcodes of the DBlocks are composed to form an IBlock H(f1), . . . ,H(f50),
which is stored with all the other GBlocks (see figure 3). GBlocks that are less
than 1k in length are padded with random information. IBlocks can store up to
51 hashcodes (51 ∗ 20 bytes = 1020 bytes) and one CRC32 checksum.

Larger files require multiple levels of indirection. A special RBlock on top
of the file tree contains the length of the file, a description and the hashcode
of the topmost IBlock. In this way, the user can download a single 1k GBlock

10 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

and obtain information about the contents of the full-length corresponding file
before choosing to download the rest of the file tree.

Obviously, this fine-grained splitting of the files increases the number of
queries that must be made in order to obtain a file. Because the file is dis-
tributed in parts, it is entirely possible that a file will not be able to be fully
reconstructed, even if some parts of the file are still available on the network.
While this problem cannot be solved entirely, duplication of files in the network
will make this situation less likely.

One could argue that a size of 1k is far too small. The rationale behind this
file size is that UDP, the transport mechanism used by gnunet has (on Ethernet)
an optimal packet size that is slightly above 1k. As gnunet must add headers to
the packets, the size approximates this number. Furthermore, many file systems
can be formatted with a block-size of 1k.

4.2 Encryption of the Content

The previous section described the splitting of files into GBlocks. However, this
technique is not sufficient to ensure that intermediaries are unable to ascertain
which content they are transmitting. That said, hiding content from intermedi-
aries can be achieved by encrypting the GBlocks in a way such that their hosts
cannot decrypt them. This will require some kind of secret key that the recipient
must know. The method by which the receiver obtains the secret key is discussed
in the next section.

In general, simple encryption of content with a secret key gives rise to another
challenge. Suppose two parties insert the same file into the network, but under
different keys. If one part of each version of the file is lost, neither of the files
can be recovered with just one of the keys. This is true even if the parts lost in
both files do not overlap and the file could otherwise have been reconstructed
using both keys.

gnunet encodes GBlocks in a special way that makes it possible to reassemble
parts of two identical files that were inserted under different secret keys without
anyone but the recipient even knowing that the GBlocks were related.

The key idea here is to use the hash of each GBlock as its key. More precisely,
gnunet encodes a 1k block B with the hash of B, H(B). A RIPE-MD-160 hash
provides 128 bits for a symmetric cipher, and another 32 bits for the initializa-
tion vector. Because the hashcode cannot be retrieved from the encrypted file
EH(B)(B), intermediaries cannot decrypt the content. However, even with this
scheme in place, two identical plaintexts that were inserted independently will
have the same keys (except for the root node) and thus yield the same encrypted
ciphertexts.

For the RBlock, a slightly different scheme is used to allow queries. Here, the
user specifies the secret keys. These differing secret keys are used only to encrypt
the RBlocks. Any of these keys can then be used to decrypt the entire file. A
small problem arises from GBlocks that need to be padded to achieve the size of
1k. In order to avoid identical content being hashed to different values, only the
actual data is hashed, not the random padding.

Efficient Sharing of Encrypted Data 11

The encryption scheme for the RBlock is similar to the scheme used in
Freenet; both use the hash of the keyword. However, our keywords are free-form
and we only use them to encrypt the RBlock. The rest of the file is encrypted
differently.

4.3 Queries

The scheme described so far leaves one question open: how to query for data.
If the files were stored under the hash-codes of the original data, intermediaries
could decrypt them. However, storing more than a single value per DBlock in
the IBlocks would be inefficient.

In gnunet, a block B is stored as EH(B)(B) under the name H(H(B)).
Because H is a one-way function, the intermediaries cannot obtain the original
hashcode from the filename. However, other nodes can compute H(H(B)) given
H(B).

The RBlock R of a file stores the hashcode H(B) of the root IBlock B, which
is then encrypted with H(K) (where K is a user-supplied keyword). EH(K)(R)
(the encrypted root node) is then stored under H(H(K)). When a user searches
for K, his client will send a request for H(H(K)) and decrypt the returned result
with H(K). No other node in the network can obtain any information about the
data transferred except by guessing the keyword K (or by knowing the exact file
that is returned, which usually implies that this node originally inserted the file).
Although a dictionary attack is thus possible, such an attack can be avoided by
carefully choosing K.

This scheme has another advantage. It allows users to specify boolean queries
of the form aAND b. gnunet will then search for a and for b and return only
those files that match both queries. Content providers can insert content under
many keywords without using significantly more storage space, as only one extra
RBlock per keyword is required. This allows users to search for content efficiently.

4.4 On-demand encoding

If the user intends to keep the file in plaintext on the local drive, the file can
be indexed and encrypted on-demand. In that case, the insertion process will
compute the hashes of each GBlock and store the hash together with the address
of the GBlock in gnunets database. The IBlocks and the RBlock are processed
as usual. The size of the IBlocks and the hashes in the database is about 5% of
the total filesize.

If gnunet is searched for any of the GBlocks, it can locate the corresponding
1k block of the original file, compute its hash, encrypt it and send it out. gnunet
is not required to read any other GBlock from the original file.

4.5 Avoiding Content from Malicious Hosts

As mentioned before, the actual query for a datum matching Q is hidden by
hashing Q first. As H(Q) is used as the key for the decryption, H(H(Q)) is

12 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

the obvious choice for the published query. However, this approach has a small
problem.

If N matches the query Q, the encoded node EH(Q)(N) no longer has H(Q).
Thus, intermediaries that do not know H(Q) cannot verify that this node matches
the query at all. A malicious node could return random data to any query
H(H(Q)), claiming that the extraneous data matches the query. The receiver
would then have to propagate a message back through the query chain that the
original sender was malicious. As intermediaries cannot keep track of earlier con-
nections for a long time, this feedback may not reach the malicious node. Thus, a
malicious node could actually improve its reputation by sending out meaningless
data to the network. This would be unfortunate for reputation-based systems
like gnunet or Mojo Nation [7].

This problem is prevented in gnunet by using H(H(H(Q))) for the query.
The sender must then provide H(H(Q)) to demonstrate that the sender actually
has matching data. Because the sender cannot guess H(H(Q)), it can be assumed
that the sender had matching content at some point. Of course, this cannot
prevent malicious hosts from inserting bad data in general. Malicious nodes
could guess that the keyword K is frequently used and just compute H(H(K))
and H(H(H(K))), returning their useless data once a matching query comes
by. However, this is similar to inserting extraneous data under that keyword
into the network. Because no software can distinguish valuable content from
worthless content in general, this is not a design flaw. Still, it demonstrates that
the problem of content moderation is not entirely solved with this approach.
The triple-hash scheme simply makes it harder to reply to arbitrary queries with
random data; it cannot prevent users from inserting such data under popular
keys.

5 Discussion

Splitting files into many small pieces might be perceived as having a negative
effect on the preservation of data. If only one of the small pieces is lost, the
larger file can no longer be reconstructed. Thus, many other systems strive to
keep files intact. gnunet guards against the loss of files by replicating the data.
Small files (GBlocks) are quickly migrated from host to host; thus, they are
cheaply replicated and thereby kept available.

The real issue with small blocks is the high number of queries that are re-
quired to find all the pieces in a distributed network. However, smaller blocks
improve the load-balancing capabilities of the network [8,7].

For gnunet, we chose a very small granularity of 1k. While the encoding
scheme described basically allows any granularity, this size is admittedly quite
small. While this is an implementation detail, this allows gnunet to duplicate
blocks at a negligible cost per block. Duplicating a file with several megabytes
of data in a single transaction, on the other hand, is both much more costly and
more likely to fail.

Efficient Sharing of Encrypted Data 13

Small blocks also allow gnunet to operate with very limited memory, which
may be of note for embedded devices. Additionally, any request in gnunet can
be answered using a single ethernet frame.

The encoding described above is open to two kinds of attacks. The most
obvious attack is that of an adversary guessing the keyword and thus being able
to decrypt the file. As users must have a way to decrypt the file solely by means
of the keyword (which is also a guess), this cannot be avoided.

Another attack occurs when the attacker guesses the exact contents of the
file (or at least the exact contents of an incriminating part). The attacker can
then encode the file to see if the encrypted file matches the encoding that he
is trying to break. This is possible because we wanted different keys to result
in the same ciphertext. The attack requires a fair amount of knowledge on the
part of the attacker. In fact, the attack is equivalent to one where an attacker
inserts content into the network and waits for a another user to try retrieve it.
This kind of attack is extremely hard to avoid, since gnunet depends upon users
providing content.

Both attacks fail to thwart the stated goal of the gnunet encoding scheme,
which is to prevent intermediaries from being able to exercise editorial control
over content. While hosts can theoretically be forced to censor well-known key-
words and files, they are unable to censor new keywords or unknown content.
As small changes to the content or keyword are sufficient to make a detection
impossible, censorship should be impractical.

The guessing attack described does provide the opportunity for limited forms
of censorship. A server can create a “blacklist” of keywords or files and from these
keywords (or the blocks of the files) compute the names of the corresponding
blocks. Matching blocks could then be filtered out. It should be noted, however,
that guessing the keyword or the exact contents of the file are the only way to
distinguish blocks. In encrypted form, all types of blocks are indistinguishable.

6 Conclusion

We have described an encoding scheme that is able to produce the same cipher-
text (with the exception of a 1k RBlock) for the encryption of a file X with
two different keys Ka and Kb. We illustrated that this scheme allows boolean
searches without exposing the keys. We have shown that the ciphertext is not
significantly larger than the plaintext. Arbitrary pieces of the ciphertext can
be generated from plaintext without reading unrelated parts of the plaintext.
While dictionary attacks on the password and known plaintext attacks on the
ciphertext are possible, they are harmless with respect to the goal of deniability.

In the future, remote searches in encrypted data deserve further attention. An
interesting technique that allows word-based searching in a document without
ever exposing the contents or the keyword is described in [9]. The technique is
not vulnerable to guessing attacks but requires the data to be split at (key)word
boundaries at encryption time. Like the approach described in this paper, [9]
requires exact matches. Keyword extraction and approximate keyword matching

14 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

are performed by modern search engines and should be a goal for secure searches
in the future.

gnunet is free software and part of the GNU project. The gnunet code
is approximately 19.000 lines of C code and is available on our webpage. The
gnunet server uses about about 2 MB of memory under GNU/Linux.

Acknowledgments The authors wish to thank the members of the Secure
Software Systems Lab for helpful discussions, Jan Vitek for support and editing,
Jens Palsberg for encouragement and Mikhail Atallah for supporting unusual
ideas for class projects.

References

1. K. Bennett, C. Grothoff, T. Horozov, I. Patrascu, and T. Stef. Gnet whitepaper.
Technical report, Purdue University, 2001.

2. I. Clarke. A distributed decentralised information storage and retrieval system,
1999.

3. I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In Proc. of the ICSI Workshop on
Design Issues in Anonymity and Unobservability. International Computer Science
Institute, 2000.

4. Steven Hazel. Libfreenet, a case study in horrors incomprehensible to the mind of
man, and other secure protocol design mistakes., Feb. 2002.

5. Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor. Publius: A robust,
tamper-evident, censorship-resistant, web publishing system. In Proc. 9th USENIX
Security Symposium, pages 59–72, August 2000.

6. David Mazieres Marc Waldman. Tangler: A censorhip-resistant publishing system
based on document entanglements. 2001.

7. Mojo Nation. Technology overview, Feb. 2000.
8. Michael O. Rabin. Efficient dispersal of information for security, load balancing,

and fault tolerance. Journal of the ACM, 36(2):335–348, 1989.
9. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In IEEE Symposium on Security and Privacy, pages
44–55, 2000.

10. Stratton Oakmont vs Prodigy Services Company, 1995 N.Y. Misc. Lexis 229, (N.Y.
Sup. Ct. Nassau Co., 1995).

	Efficient Sharing of Encrypted Data
	Krista Bennett Christian Grothoff Tzvetan Horozov Ioana Patrascu

