The GNU Name System

Christian Grothoff

Technische Universität München

16.08.2014

"Never doubt your ability to change the world." -Glenn Greenwald

The Internet

Virtually all Internet protocols are broken: Ethernet MAC spoofing, cleartext IP IP spoofing, cleartext BGP AS hijacking, cleartext DNS cache poisoning, cleartext DNSSEC cleartext, often no end-to-end authentication TLS 100 CAs can certify anybody for anything HTTP too chatty, complex, slow

The Internet

Virtually all Internet protocols are broken: Ethernet MAC spoofing, cleartext IP IP spoofing, cleartext BGP AS hijacking, cleartext DNS cache poisoning, cleartext DNSSEC cleartext, often no end-to-end authentication TLS 100 CAs can certify anybody for anything HTTP too chatty, complex, slow

Rule 1 for the GNUnet: Encrypt everything.

- Existing Internet PKIs are easily controlled:
 - DNSSEC root certificate
 - X.509 CAs (HTTPS certificates)
 - Major browser vendors (CA root stores!)

- Existing Internet PKIs are easily controlled:
 - DNSSEC root certificate
 - X.509 CAs (HTTPS certificates)
 - Major browser vendors (CA root stores!)
- Encryption does not help if PKI is compromised!

- Existing Internet PKIs are easily controlled:
 - DNSSEC root certificate
 - X.509 CAs (HTTPS certificates)
 - Major browser vendors (CA root stores!)
- Encryption does not help if PKI is compromised!
- PGP Web-of-Trust leaks social graph

- Existing Internet PKIs are easily controlled:
 - DNSSEC root certificate
 - X.509 CAs (HTTPS certificates)
 - Major browser vendors (CA root stores!)
- Encryption does not help if PKI is compromised!
- PGP Web-of-Trust leaks social graph

The GNU Name System¹

Properties of GNS

- Decentralized name system with secure memorable names
- Delegation used to achieve transitivity
- Achieves query and response privacy
- Provides alternative public key infrastructure
- Interoperable with DNS

¹Joint work with Martin Schanzenbach and Matthias Wachs

What would a simple DNS lookup do? Say for taler.net?

NS of **net** is a.gtld-servers.net

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de
- NS of tum.de is dns1.lrz.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de
- NS of tum.de is dns1.lrz.de
- NS of lrz.de is dns1.lrz.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de
- NS of tum.de is dns1.lrz.de
- NS of lrz.de is dns1.lrz.de
- NS of in.tum.de is tuminfo1.informatik.tu-muenchen.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de
- NS of tum.de is dns1.lrz.de
- NS of lrz.de is dns1.lrz.de
- NS of in.tum.de is tuminfo1.informatik.tu-muenchen.de
- NS of tu-muenchen.de is ws-han1.wip-ip.dfn.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de
- NS of tum.de is dns1.lrz.de
- NS of lrz.de is dns1.lrz.de
- NS of in.tum.de is tuminfo1.informatik.tu-muenchen.de
- NS of tu-muenchen.de is ws-han1.wip-ip.dfn.de
- NS of dfn.de is ws-han1.wip-ip.dfn.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de
- NS of tum.de is dns1.lrz.de
- NS of lrz.de is dns1.lrz.de
- NS of in.tum.de is tuminfo1.informatik.tu-muenchen.de
- NS of tu-muenchen.de is ws-han1.wip-ip.dfn.de
- NS of dfn.de is ws-han1.wip-ip.dfn.de
- NS of net.in.tum.de is dns1.lrz.de

- NS of net is a.gtld-servers.net
- NS of taler.net is dns1.name-services.com
- NS of com is a.gtld-servers.net
- CNAME of taler.net is pixel.net.in.tum.de
- NS of de is n.de.net
- NS of net was a.gtld-servers.net
- NS of de.net is ns1.denic.de
- NS of tum.de is dns1.lrz.de
- NS of lrz.de is dns1.lrz.de
- NS of in.tum.de is tuminfo1.informatik.tu-muenchen.de
- NS of tu-muenchen.de is ws-han1.wip-ip.dfn.de
- NS of dfn.de is ws-han1.wip-ip.dfn.de
- NS of net.in.tum.de is dns1.lrz.de
- A of **pixel.net.in.tum.de** is 131.159.20.32

Zone Management: like in DNS

		gnunet-setup	
General Net	twork Transports	File Sharing Namestore GNS	
Editing	zone API5QDP7A	126P06VV60535PDT50B9L12NK6QP64IE8KNC6E807G0	
Preferred zor	State Dr. Save As		
	Ma	ster Zone i Private Zone i Shorten Zone	
Name	Type	Value	Expiration Public
<new name<="" td=""><td></td><td></td><td></td></new>			
• +	<new record=""></new>		
	MX	5,mail.+	end of time 🥃
• priv	<new record=""></new>		
	PKEY	3IQT1G601GUBVOS5C0J0870EFB8N3DBJQ4L9SBI8PFLR8UKCVGHG	end of time 🗌
• heise	<new record=""></new>		
	LEHO	heise.de	end of time 🛛 🗹
	AAAA	2a02:2e0:3fe:100::8	end of time 🥳
	A	193.99.144.80	end of time 🥃
 home 	<new record=""></new>		
▶大学	<new record=""></new>		
 short 	<new record=""></new>		
• mail	<new record=""></new>		
 homepage 	<new record=""></new>		
 fcfs 	<new record=""></new>		
• www	<new record=""></new>		
		Welcome to gnunet-setup.	

Name resolution in GNS

Bob can locally reach his webserver via www.gnu

Secure introduction

Bob gives his public key to his friends, possibly via QR code

Delegation

- Alice learns Bob's public key
- Alice creates delegation to zone K^{Bob}_{pub} under label **bob**
- Alice can reach Bob's webserver via www.bob.gnu

GNS as PKI (via DANE/TLSA)

The <u>GNU Project</u> was launched in 1984 to develop the GNU system. The name "GNU" is a recursive acronym for "GNU's Not Unix!". "<u>GNU' is pronounced g'noo</u>, as one syllable, like saying "grew" but replacing the *r* with *n*.

A Unix-like operating system is a <u>software collection</u> of applications, libraries, and developer tools, plus a program to allocate resources and talk to the hardware, known as a kernel.

The Hurd, GNU's own kernel, is some way from being ready for daily use. Thus, GNU is typically used today with a kernel called Linux. This combination is the <u>GNULLinux</u> operating system. GNULLinux is used by millions, though many <u>call it 'Linux' by</u> mistake.

Privacy Issue: DHT

Query Privacy: Terminology

G generator in ECC curve, a point

- *n* size of ECC group, n := |G|, *n* prime
- x private ECC key of zone ($x \in \mathbb{Z}_n$)
- *P* public key of zone, a point P := xG

I label for record in a zone $(I \in \mathbb{Z}_n)$

- $R_{P,I}$ set of records for label I in zone P $q_{P,I}$ query hash (hash code for DHT lookup)
- $B_{P,I}$ block with encrypted information for label *I* in zone *P* published in the DHT under $q_{P,I}$

Query Privacy: Cryptography

Publishing records $R_{P,I}$ as $B_{P,I}$ under key $q_{P,I}$

$$h:=H(I,P) \tag{1}$$

$$d:=h\cdot x \mod n \tag{2}$$

$$B_{P,I} := S_d(E_{HKDF(I,P)}(R_{P,I})), dG$$
(3)

$$q_{P,I} := H(dG)$$
(4)

Query Privacy: Cryptography

Publishing records $R_{P,I}$ as $B_{P,I}$ under key $q_{P,I}$

$$h:=H(I,P) \tag{1}$$

$$d:=h\cdot x \mod n \tag{2}$$

$$B_{P,I} := S_d(E_{HKDF(I,P)}(R_{P,I})), dG$$
(3)

$$q_{P,I} := H(dG)$$
(4)

Searching for records under label I in zone P

$$h := H(I, P)$$

$$q_{P,I} := H(hP) = H(hxG) = H(dG) \Rightarrow \text{obtain } B_{P,I}$$

$$R_{P,I} = D_{HKDF(I,P)}(B_{P,I})$$
(5)
(7)

Revocation

Revocation Basics

- ▶ Revocation certificate (RC): message signed with private key
- ▶ Peer receives new valid RC, floods to all neighbours
- All peers store all valid RCs forever
- \Rightarrow Expensive operation \Rightarrow proof-of-work

Revocation

Revocation Basics

- ▶ Revocation certificate (RC): message signed with private key
- ▶ Peer receives new valid RC, floods to all neighbours
- All peers store all valid RCs forever
- \Rightarrow Expensive operation \Rightarrow proof-of-work

Revocation Magic

- Peers maybe offline during initial flood
- Network might be temporarily partitioned
- \Rightarrow Need to reconsile revocation sets on connect

Whenever two peers establish a P2P connection, they must compute the set union of their RC sets!

The ".zkey" pTLD

- "LABELS. PKEY.zkey" format
- PKEY is the public key of the zone
- Works a bit like ".onion"
- \Rightarrow Globally unique identifiers!

NICKnames

- "alice.bob.carol.dave.gnu" is a bit long for Edward (".gnu")
- Also, we need to trust Bob, Carol and Dave (for each lookup)
- Finally, Alice would have liked to be called Krista (just Bob calls her Alice)

NICKnames

- "alice.bob.carol.dave.gnu" is a bit long for Edward (".gnu")
- ► Also, we need to trust Bob, Carol and Dave (for each lookup)
- Finally, Alice would have liked to be called Krista (just Bob calls her Alice)
- "NICK" records allow Krista to specify her preferred NICKname
- GNS adds a "NICK" record to each record set automatically
- ► Eve learns the "NICK", and GNS creates "krista.short.gnu"

NICKnames

- "alice.bob.carol.dave.gnu" is a bit long for Edward (".gnu")
- Also, we need to trust Bob, Carol and Dave (for each lookup)
- Finally, Alice would have liked to be called Krista (just Bob calls her Alice)
- "NICK" records allow Krista to specify her preferred NICKname
- GNS adds a "NICK" record to each record set automatically
- Eve learns the "NICK", and GNS creates "krista.short.gnu"
- Memorable, short trust path in the future! TOFU!
- Krista better pick a reasonably unique NICK.

Shadow Records

- Records change
- Expiration time controls validity, like in DNS
- DHT propagation has higher delays, compared to DNS

Shadow Records

- Records change
- Expiration time controls validity, like in DNS
- DHT propagation has higher delays, compared to DNS
- SHADOW is a flag in a record
- Shadow records are only valid if no other, non-expired record of the same type exists

Practical Concerns

- Name registration
- Support for browsing
- New record types
- Integration with applications
- State of the implementation

Registering a name in GNS

- Bob gives his PKEY to his friends via QR code
- or registers it at the GNUnet fcfs authority pin.gnu as "bob"
- \blacktriangleright \rightarrow Bob's friends can resolve his records via *.*petname*.gnu
- \blacktriangleright \rightarrow or *.bob.pin.gnu

From DNS to GNS

Names are not globally unique, but we need support for Virtual Hosting! ... we need support for SSL!

From DNS to GNS

Names are not globally unique, but we need support for Virtual Hosting! ... we need support for SSL!

Solution: Client Side SOCKS Proxy

Legacy Hostname (LEHO) Records

LEHO records give a hint about the DNS name the server expects.

Legacy Hostname (LEHO) Records

LEHO records give a hint about the DNS name the server expects.

Long-Term Vision

- Integration with browser and HTTP server
- HTTP server receives "GNS-Zone: PKEY" instead of "Hostname"
- HTTP client uses "TLSA" record of GNS, instead of "LEHO"

Relative Names

- ▶ GNS records can contain ".+"
- CNAME: "server1.+"
- ► MX: "mail.+"
- ".+" stands for "relative to current zone"

Supporting this for links in browsers would be nice, too.

New Record Types

- PKEY: delegate to another GNS zone
- NICK: preferred names for shortening
- LEHO: legacy hostname

New Record Types

- PKEY: delegate to another GNS zone
- NICK: preferred names for shortening
- LEHO: legacy hostname
- GNS2DNS: delegate to DNS
- VPN: peers hosting TCP/IP services
- PHONE: call users using gnunet-conversation
- BOX: proper support for TLSA (and SRV)

DNS Delegation

- Delegate to DNS using GNS2DNS records
- GNS2DNS record specifies:
 - Name of DNS resolver (i.e. "ns1.example.com" or "piratedns.+")
 - DNS domain to continue resolution in (i.e. "example.com" or "piratebay.org")
- ► GNS will first resolve DNS resolver name to A/AAAA record
- GNS will then resolve "*left.of.gns2dns.*example.com" using DNS

VPN Delegation

- Delegates to GNUnet VPN
- VPN record specifies:
 - Identity of hosting peer (no anonymity!)
 - Service identifier (hash code)
- GNS can map VPN record to A/AAAA record of gnunet-vpn tunnel

PHONE service

- PHONE record specifies:
 - Identity of hosting peer (no anonymity yet!)
 - Line number (to support multiple phones per peer)
- gnunet-conversation uses reverse lookup for caller ID

BOX records

- TLSA records in DNS are under a special name
- Performing a second lookup is bad

BOX records

- TLSA records in DNS are under a special name
- Performing a second lookup is bad
- \Rightarrow GNS BOX records include TLSA information under primary label!

Application Integration

- SOCKS proxy (gnunet-gns-proxy)
- NSS plugin
- DNS packet interception (gnunet-dns-service)
- GNS (C) API
- GNS (IPC) protocol
- GNS command-line tool

Current State

- GNS part of GNUnet since 0.9.3
- Crypto changed to Curve25519 in 0.10.0
- Internationalized Domain Names are supported

Current State

- GNS part of GNUnet since 0.9.3
- Crypto changed to Curve25519 in 0.10.0
- Internationalized Domain Names are supported
- Installation is "non-trivial" (for your parents)
- SOCKS proxy is known to be problematic

Conclusion

- Decentralization is necessary
- Encryption requires a PKI
- GNS is a modern PKI designed for privacy
- Please consider adding GNS support to your code!

Conclusion

- Decentralization is necessary
- Encryption requires a PKI
- GNS is a modern PKI designed for privacy
- Please consider adding GNS support to your code!

Do you have any questions?

References:

- Nathan Evans and Christian Grothoff. R5N. Randomized Recursive Routing for Restricted-Route Networks. 5th International Conference on Network and System Security, 2011.
- Matthias Wachs, Martin Schanzenbach and Christian Grothoff. On the Feasibility of a Censorship Resistant Decentralized Name System. 6th International Symposium on Foundations & Practice of Security, 2013.
- M. Schanzenbach Design and Implementation of a Censorship Resistant and Fully Decentralized Name System. Master's Thesis (TUM), 2012.

Zooko's Triangle

A name system can only fulfill two!

Zooko's Triangle

DNS, ".onion" IDs and /etc/hosts/ are representative designs.

Zooko's Triangle

DNSSEC security is broken by design (adversary model!)

Memorable:

- Memorable: Check
- Global:

- Memorable: Check
- Global: Check
- Secure:

- Memorable: Check
- Global: Check
- Secure: different adversary model!

- Memorable: Check
- Global: Check
- Secure: different adversary model!
- \Rightarrow Availability of names (registration rate) is restricted

- Memorable: Check
- Global: Check
- Secure: different adversary model!
- \Rightarrow Availability of names (registration rate) is restricted
- $\Rightarrow\,$ Adversary must not have 51% compute power