Recycling Garbage Theory

Christian Grothoff
Department of Computer Sciences, Purdue University
grothoff@cs.purdue.edu

March 18, 2004

1 Introduction

In [1], a general collection theory (CT) that encompasses generational and con-
servative collection was introduced. The authors then use this theory as the ba-
sis for an entire class of collectors, which we will call CGCGC for Conservative
Generational Connectivity-based Garbage Collection, short CGCGC. While the
implementation only discussed two and n-generational collectors, the theoreti-
cal foundations presented were intended to be broader, though not explored in
the paper itself. Recently, [2] introduced the idea of connectivity-based garbage
collection (CBGC). In this paper, we show that the CT used for CGCGC is
powerful enough to fully model CBGC. Furthermore, we show that the CGCGC
collectors can also be viewed as variants of CBGC. The resulting constructions
demonstrate that the two different collector models are in fact equivalent mod-
ulo the specific style how the designed collectors model the points-to graph.

The merrit of this approach is twofold. First, it gives a theoretical foundation
to CBGC-based collectors. Second, it yields a natural path towards combining
connectivity-based and conservative collection (in the same way that CGCGC
combined generational and conservative collection). This combination can be
useful to apply CBGC to problems where a static analysis of the code is not able
to obtain a safe approximation of the points-to graph. The resulting conservative
CBGC would use selective write-barriers at run-time to lift the optimistic result
from the static analysis to a safe, conservative approximation which would then
allow for incremental collection in the style of CBGC.

2 Review of Collector Theory (CT)

This section reviews and slightly reformulates the collector theory presented
in section II of [1]. Note that portions are reproduced almost verbatim. The
reformulations try to simplify the theory a bit and improve the presentation.
A few restrictions of the original formulation are lifted and proofs are detailed.
The core of the theory is not changed.

2 REVIEW OF COLLECTOR THEORY (CT) 2

Let O be a countable set of objects, r € O the root of the object graph and
P C O x O a reflexive binary points-to relation on O.

2.1 Basic definitions

The following basic definitions are used to model the heap and describe what a
correct garbage collector is allowed to do. They also characterize the behavior
of any correct conservative collector.

Definition 1 (Valid allocation) An allocation AS C O is valid with respect
to a root r and points-to relation P C O x O if and only if:

reAS (1)
(a,b)eP A acAS=be AS 2)

Axiom 2 (Mutator) All changes to the points-to relation P performed by the
mutator preserve validity.

Definition 3 (Garbage Collection) A garbage collection of a state
(AS, P,r) is a state (AS', P,r) with AS" C AS. A garbage collection is valid if
AS'" is valid with respect to r and P.

Lemma 4 (Precise collection) For a given state (AS,P,r) there exists a
minimal set AS*(P,r) such that AS*(P,r) C AS" for any wvalid garbage col-
lection (AS', P,r) of (AS, P,r).

Proof: Let T; := T;_1 U{y € Olz € Tj_1 A (z,y) € P} with Ty = {r} be
monotonically increasing sequence of sets. Since O is countable, there exists a
set T, such that T, C Tt for all n. We now show that AS*(P,r) = T. Note
that (T, P,r) is valid by definition. Let (S, P,r) be another valid state. If
Ts Z S there exists a z € Ty, — S. Let n be the smallest n such that z € Tj,.

By construction of T}, there must then exist a sequence (r = zq,...,2, = 2)
such that (z;, z;41) € P. If (S, P,r) is valid, S must contain z; for i € [0,n] (by
induction on the definition). But z € S contradicts z € Too — S. O

Definition 5 (Pointer augmentation) @ is a pointer augmentation of P if
PCQ.

Lemma 6 C' C O is a valid allocation with respect to r and P if and only if
there exists a pointer augmentation Q) of P such that C = AS*(Q,r).

Proof: If) is a pointer augmentation of P, then AS*(Q,r) D AS*(P,r) since
@ O P. Since r € AS*(P,r) this implies r € AS*(Q,r). Furthermore, (2) is
satisfied since AS* is defined as the minimal set for which (2) holds. Thus if
there exists a pointer augmentation @) of P the subset C' = AS*(Q,r) is a valid
allocation.

2 REVIEW OF COLLECTOR THEORY (CT) 3

Suppose C' C O is a valid allocation with respect to r and P. Define @) to be
Q := PU{(r,e)|le € C}. Then by construction C' C AS*(Q,r). Since AS*(Q,r)
is by construction the minimal set containing C which is a valid allocation
C = AS*(Q,r) follows. O

2.2 Posets and Embeddings

The following text gives the basic definitions for posets and embeddings. A
poset, short for partially-ordered set, is another term for a directed, acyclic
graph which abstracts points-to relationships. An embedding is a pair of func-
tions that map an object to two, not necessarily distinct elements in the poset.
The two functions can be thought of abstracting which other objects an ob-
ject can (transitively) point to (function F' for followers) and all objects that
an object can be reached from (function A for ancestors). In other words, the
embedding (F, A) describes that an object o can transitively refer to all objects
p for which F(o) > A(p).

Definition 7 (Poset) A pointed partially ordered set (poset) is a triple (D, >
, LY where D is a set, > is a reflexive, transitive and antisymmetric relation on
D and L € D such thatVx € D x> L.

Definition 8 (Embedding) Let D = (D,>, 1) be a poset and AS C O a valid
allocation with respect to r and P. An embedding of S into D is a pair (F, A)
of functions from O to D such that:

V(a,b) € P = F(a) > A(b). 3)

An embedding (F, A) determines an induced points-to relation Pp 4 on O
by:
(a,b) € Ppa < F(a) > A(D). (4)

Definition 9 (Lossless Embedding) An embedding (F, A) of P is said to be
lossless if and only if Pra = P.

Lemma 10 Let AS C O be a valid allocation with respect to v and P and let
(F,A) be an embedding of AS in the poset D = (D,>,1). Then the induced
points-to relation @) := P 4 is a pointer augmentation of P.

Note that (F, A) is a lossless embedding of @) in D by definition.

Proof: If (F, A) is an embedding of AS in D then for each element (a,b) € P
the relation F'(a) > A(b) must hold. But then (a,b) € @ by definition of Pp 4
and thus Q D P (Q is a pointer augmentation of P). O

Lemma 11 Let AS C O be a valid allocation with respect to r and P and let @
be a pointer augmentation of P. Then there exists a poset D = (D, >, 1) and
an embedding (F, A) of AS in D such that Pr.a = Q.

2 REVIEW OF COLLECTOR THEORY (CT) 4

Proof: Let D = {1} U(({L}UO) x ({L}U0)) with L = (L, L). Define the
poset operation > to be

(a,b) > (¢,d) & (a,d)€qQ (5)
and V(e,f)GD (67 f) Z L. (6)

Define F(0) = (0, L) and A(0o) = (L, 0). Then (F, A) is a lossless embedding of
AS in D = (D, >, 1) by construction. O

Definition 12 (Poset-homomorphism) Let D = (D,>p,Llp) and & =
(E,>g, Lr) be posets. A function h from D to £ is a homomorphism from
D to & if it is strict and monotonic, i.e.for all a,b € D with a >p b the appli-
cation of h must result in h(a) >g h(b) with h(a) = h(b) only if a = b.

Lemma 13 Let D = (D,>p,Llp) and € = (E,>g, Lr) be posets and let h be
a homomorphism from D to £. Let AS C O be a valid allocation with respect
tor and P and (F,A) an embedding of AS in D. Then (ho F,ho A) is an
embedding of AS in € with Prop hoa 2 Prpoa 2 P.

Proof: For all (a,b) € P we have F(a) > A(b) since (F, A) is an embedding of
AS in D. Since h is a poset-homomorphism s > ¢ implies that h(s) > h(t) and
thus h(F(a)) > h(A(D)). Thus (ho F,ho A) is an embedding of AS in &.

Since for all (a,b) € P the fact that (F,A) is an embedding guarantees that
F(a) > A(b) it must hold that (a,b) € Pr,a by definition of Pr 4, showing that
Pp o O P. Similarly, if (a,b) € Pp 4 then F(a) > A(b) and again h(F(a)) >
h(A(b)) and thereby (a,b) € Prop hoA- O

Lemma 14 (Canonical posets and embeddings) Let AS C O be a valid
allocation with respect to r and P. There exists a poset D = (D, >p, Lp) called
a canonical poset for AS and a lossless embedding (F, A) of AS in D called a
canonical embedding for AS with the property that for any pointer augmentation
Q of P there exists a poset £ = (E,>pg, Lg) and a homomorphism h from D to
E such that (ho F,ho A) is a lossless embedding of AS in &.

Proof: According to lemma 11 it is possible to construct a poset D and lossless
embedding (F, A) for any pointer augmentation of P. Use P for the pointer
augmentation to construct the canonical poset and embedding according to
lemma 11.

Given any pointer augmentation) of P, construct the poset £ for AS again
according to lemma 11. The homomorphism h between D and & is the pairwise
identity function. This definition of h results in an homomorphism since) O P
guarantees that for all pairs (a,b) >p (¢, d) also (a,b) >g (¢, d) holds. O

The theory developed so far can help building efficient collectors. Suppose
(F,A) is a lossless embedding in some poset for a valid allocation AS with

2 REVIEW OF COLLECTOR THEORY (CT) 5

respect to r and P. Consider the set A~!(L). All objects 0 € A7!(L) will never
be collected since r is life and F'(r) > A(o) = L. In other words, the objects
A~1(L) are not threatened by the collector. Now consider the set F~!(L).
Any object a € F~1(L) can only have pointers into A~(_L) since the existence
of a reference from a to b in P requires that (a,b) € P which implies that
1 = F(a) > A(b) > L and thereby A(b) = L. Thus a collector does not have
to trace the bystander set F~1(L) or sweep A~1(L).

2.3 Combining collectors: Ideals

The general theory described so far can be used to combine different collectors
that can be expressed with the definitions given above. For combining differ-
ent collectors, we first define a product combinator on posets and then derive
functions that can be used to specify the collector.

Definition 15 (Poset-ideal) Anideal in a poset D = (D,>, 1) is a nonempty
subset I of D such that:

Vieri>j = jel (7)
Definition 16 (Cartesian product of posets) Let D; = (Dq,>1,11) and

Dy = (D3, >3, L) be posets. The Cartesian product Dy x Dy is the poset D =
(D, >, L) where:

D:{J_}U{(xl,ﬂfz)|ﬂ?1 EDl—{Ll}/\CUQ GDQ—{LQ}} (8)
1>1 (9)
(iUl,ZIIQ) Z 1 (10)
(z1,22) > (y1,92) & 212141 A22 222 (11)

Lemma 17 The function M,(b) := (a,b) defines a poset-homomorphism from
Dy to D. The function Ny(a) := (a,b) defines a poset-homomorphism from D
to D.

Proof: Suppose >» y. Then M,(z) > M,(y) since a >; a for all a € D,
and thus M, is defines a poset-homomorphism from D, to D. Suppose z > y.
Then Ny(z) > Ny(y) since b >5 b for all b € D- and thus N, is defines a poset-
homomorphism from D- to D. |

Definition 18 (® operator) Let f : S — D and g : S — E be functions.
Define f@g:S = D x E by:

(f@g)(@) = (f(x),g(z)) for €S with f(x)# LAg(x)# L. (12)

If f(x) = L or g(x) = L then (f ® g)(x) := L.

3 CBGC AND CGCGC 6

Remark 19 Note that

(fog (L) = (Lug (L) (13)

Lemma 20 Let AS C O be a wvalid allocation with respect to r and P. Let
(F1, A1) and (Fy, As) be embeddings of AS into Dy and Do respectively. Then
(F1 ® Fy, A1 ® As) is an embedding of AS into Dy x Dy with

PF1®F2,A1®A2 = (PF1,A1 n PFz,Az) U {(aab) € AS x AS|(A1 ® AZ)(b) = J—}'

Proof: In order to show that (F} ® F», A1 ® A,) is an embedding of AS we
need to show that equation (3) holds for all (a,b) € P.

If (a,b) € P then Fl(a) > Al(b) and FQ((I) >9 Ag(b) since (Fl,Al) and
(F», As) are embeddings. But (F; ® Fy)(a) = (Fi(a), Fa(a)) and (A; ® As)(b) =
(A1(a), A2(a)) and since Fi(a) >1 Ai(a) and Fr(a) >2 As(a) equation (11)
yields as desired (F} ® F»)(a) > (A1 ® A2)(b). Thus (F} ® F», A; ® A,) is an
embedding of AS into D; x Ds.

Now suppose (a7b) € PF1®F2,A1®A2' Then (Fl (a)7F2(a)) Z (Al (b)aAQ(b)) by
equation (4) and the definition of the ® operator. Definition 16 lists three
conditions under which the > operator holds.

(11) This case implies that Fj(a) > A1 (b) and Fs(a) > A2(b), which is equiva-
lent to (a,b) € (Pr, 4, N Pr,,4,), yielding the first part of the equation.

(10) In order for equation (10) to be applicable, L = (A;(b), A2(b)) = (41 ®
A5)(b) must hold, which is the second part of the equation.

(9) Equation (9) only places additional constraints on (a, b) over (10) and thus
does not contribute further elements to Pp, gr,,4,0A45-

O

3 CBGC and CGCGC

This section briefly introduces the ideas behind CBGC and then shows the
equivalence between CBGC and CGCGC. Finally, it discusses how CBGC and
CGCGC could be combined to a conservative, connectivity-based garbage col-
lector.

3.1 Connectivity-based Garbage Collection (CBGC)

CBGC divides the set of heap objects into disjoint partitions. The partitions are
nodes in the partition graph. A possible reference between two objects on the
heap results in a directed edge between the corresponding partitions. Partitions
that are part of a cycle in the graph are joined such that the graph forms a
directed, acyclic graph (DAG).

3 CBGC AND CGCGC 7

In this DAG, the GC selects a subset of the partitions that is closed under
the predecessor relation and collects the corresponding subset of the heap. Since
the objects in each closed subset of the partitions in the DAG can be collected
independently of the rest of the heap, CBGC allows GC to happen in smaller
increments that are more tailored to the run-time behavior of the program than
traditional generational collections. In some sense, where generational collectors
exploit the dynamic, temporal property that objects that have not been modified
after the last collection cycle can not point to new objects, CBGC uses static
analysis to derive a static approximation of a superset of the points-to graph.

3.2 CGCGC can be expressed using CBGC

The proposed CBGC collector uses static analysis of the mutator to determine
a partitioning of the heap. The theoretic model presented in [1] assumes the ex-
istance of some conservative approximation of the points-to graph of all objects
in the heap. The implementation of the combined conservative and generational
collector uses time (or pre-existence) as their primary way of approximating the
points-to graph. They build their system on the fundamental property that an
object that has been modified no later than time ¢, can not directly point-to
objects that have been allocated at time t 4 where t); < t4. While this approach
towards building the points-to graph is not a static analysis, it still induces a
partitioning of the heap into Posets which could the consequently be considered
a DAG for collection with CBGC. The only major difference between the two
designs is thus that CBGC uses a static partitioning of the heap derived from
static analysis whereas CGCGC allows a dynamically changing set of partitions
based on run-time observations made with the help of write-barriers. Note that
this introduces a write-barrier into the CBGC collector. The original CBGC
model replaced the write-barrier with static analysis. Given a static analysis
that yields an approximation of the relative creation and modification times of
objects, the write-barrier would again not be required. Except for differences
in the partitioning induced by the different style of how the points-to graph is
approximated, the collectors are identical.

In other words, the DAG used by CBGC is equivalent to a Poset in CT. The
partitions are the set elements and the links induce a partial ordering. Similarly,
any partially ordered set can be seen as a DAG.

3.3 CBGC can be described using CT

An optimistic! static analysis that approximates the dynamic points-to graph,
results in an embedding (Fsa, As4) that maps each allocation site (or whatever
the granularity of the static analysis may be) to a node in the DAG. Note that
Fsa(o) = Asa(o) and that F and A are constant over time.

IThe static analysis is optimistic since conservative collection allows for an uncooperative
setting where complete points-to information is unavailable.

4 CONCLUSION 8

3.4 Combining CBGC and CGCGC

Note that since the static analysis is optimistic, the embedding must be lifted
using a second embedding (Fro, Aco) that dynamically changes depending
on run-time behavior collected by write-barriers in the style of the CGCGC
collector. The resulting embedding induced by the product of the posets corre-
sponding to the SA and CO embeddings can then be savely used to collect the
heap.

One primary question is if this combined collector would do any better than
just a conservative CGCGC collector. The question needs to be raised in par-
ticular since the optimistic static analysis can only yield less precise points-to
information compared to only using the conservative CGCGC. The answer lies
in the inherent complexity of building partitions (to use the CBGC terminol-
ogy) that go beyond the generations used in the age-DAGs used in the original
CGCGC implementation. Using general DAGs would drive up the cost of the
write-barrier in CGCGC since it would now have to frequently join arbitrary
partitions. A good pre-partitioning of the heap with the help of static analysis
could make changes to the DAG by the write-barrier infrequent to the point
where they do not happen in practice.

4 Conclusion

The next step towards putting this theoretical result into practice would be to
implement a variant of CBGC that relies on static analysis to obtain a first
approximation of the points-to graph of the heap and then combines this with
write-barriers for changes to the heap by code that fall out of the scope of the
analysis. This type of analysis would make CBGC useful for mixed-language
applications where only a subset of the code can be effectively subjected to static
analysis. An example would be any application written in Java that makes use
of reflection and native calls?.

Acknowledgements

I thank Martin Hirzel for comments on an earlier draft of this paper.

References

[1] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and Scott
Shenker. Combining generational and conservative garbage collection: framework
and implementations. In Proceedings of the 17th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 261-269. ACM Press, 1990.

[2] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-Based Garbage
Collection. In Proceedings of the 18th Annual ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’2008), Anaheim, California, USA, October 2003.

2 Assuming the native calls are not guarded with a JNI-like APT for efficiency.

