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tionIn [1℄, a general 
olle
tion theory (CT) that en
ompasses generational and 
on-servative 
olle
tion was introdu
ed. The authors then use this theory as the ba-sis for an entire 
lass of 
olle
tors, whi
h we will 
all CGCGC for ConservativeGenerational Conne
tivity-based Garbage Colle
tion, short CGCGC. While theimplementation only dis
ussed two and n-generational 
olle
tors, the theoreti-
al foundations presented were intended to be broader, though not explored inthe paper itself. Re
ently, [2℄ introdu
ed the idea of 
onne
tivity-based garbage
olle
tion (CBGC). In this paper, we show that the CT used for CGCGC ispowerful enough to fully model CBGC. Furthermore, we show that the CGCGC
olle
tors 
an also be viewed as variants of CBGC. The resulting 
onstru
tionsdemonstrate that the two di�erent 
olle
tor models are in fa
t equivalent mod-ulo the spe
i�
 style how the designed 
olle
tors model the points-to graph.The merrit of this approa
h is twofold. First, it gives a theoreti
al foundationto CBGC-based 
olle
tors. Se
ond, it yields a natural path towards 
ombining
onne
tivity-based and 
onservative 
olle
tion (in the same way that CGCGC
ombined generational and 
onservative 
olle
tion). This 
ombination 
an beuseful to apply CBGC to problems where a stati
 analysis of the 
ode is not ableto obtain a safe approximation of the points-to graph. The resulting 
onservativeCBGC would use sele
tive write-barriers at run-time to lift the optimisti
 resultfrom the stati
 analysis to a safe, 
onservative approximation whi
h would thenallow for in
remental 
olle
tion in the style of CBGC.2 Review of Colle
tor Theory (CT)This se
tion reviews and slightly reformulates the 
olle
tor theory presentedin se
tion II of [1℄. Note that portions are reprodu
ed almost verbatim. Thereformulations try to simplify the theory a bit and improve the presentation.A few restri
tions of the original formulation are lifted and proofs are detailed.The 
ore of the theory is not 
hanged. 1



2 REVIEW OF COLLECTOR THEORY (CT) 2Let O be a 
ountable set of obje
ts, r 2 O the root of the obje
t graph andP � O �O a re
exive binary points-to relation on O.2.1 Basi
 de�nitionsThe following basi
 de�nitions are used to model the heap and des
ribe what a
orre
t garbage 
olle
tor is allowed to do. They also 
hara
terize the behaviorof any 
orre
t 
onservative 
olle
tor.De�nition 1 (Valid allo
ation) An allo
ation AS � O is valid with respe
tto a root r and points-to relation P � O �O if and only if:r 2 AS (1)(a; b) 2 P ^ a 2 AS ) b 2 AS (2)Axiom 2 (Mutator) All 
hanges to the points-to relation P performed by themutator preserve validity.De�nition 3 (Garbage Colle
tion) A garbage 
olle
tion of a statehAS; P; ri is a state hAS0; P; ri with AS0 � AS. A garbage 
olle
tion is valid ifAS0 is valid with respe
t to r and P .Lemma 4 (Pre
ise 
olle
tion) For a given state hAS; P; ri there exists aminimal set AS�(P; r) su
h that AS�(P; r) � AS0 for any valid garbage 
ol-le
tion hAS0; P; ri of hAS; P; ri.Proof : Let Ti := Ti�1 [ fy 2 Ojx 2 Ti�1 ^ (x; y) 2 Pg with T0 = frg bemonotoni
ally in
reasing sequen
e of sets. Sin
e O is 
ountable, there exists aset T1 su
h that Tn � T1 for all n. We now show that AS�(P; r) = T1. Notethat hT1; P; ri is valid by de�nition. Let hS; P; ri be another valid state. IfT1 6� S there exists a z 2 T1 � S. Let n be the smallest n su
h that z 2 Tn.By 
onstru
tion of Tn, there must then exist a sequen
e (r = z0; : : : ; zn = z)su
h that (zi; zi+1) 2 P . If hS; P; ri is valid, S must 
ontain zi for i 2 [0; n℄ (byindu
tion on the de�nition). But z 2 S 
ontradi
ts z 2 T1 � S. �De�nition 5 (Pointer augmentation) Q is a pointer augmentation of P ifP � Q.Lemma 6 C � O is a valid allo
ation with respe
t to r and P if and only ifthere exists a pointer augmentation Q of P su
h that C = AS�(Q; r).Proof : If Q is a pointer augmentation of P , then AS�(Q; r) � AS�(P; r) sin
eQ � P . Sin
e r 2 AS�(P; r) this implies r 2 AS�(Q; r). Furthermore, (2) issatis�ed sin
e AS� is de�ned as the minimal set for whi
h (2) holds. Thus ifthere exists a pointer augmentation Q of P the subset C = AS�(Q; r) is a validallo
ation.



2 REVIEW OF COLLECTOR THEORY (CT) 3Suppose C � O is a valid allo
ation with respe
t to r and P . De�ne Q to beQ := P [f(r; e)je 2 Cg. Then by 
onstru
tion C � AS�(Q; r). Sin
e AS�(Q; r)is by 
onstru
tion the minimal set 
ontaining C whi
h is a valid allo
ationC = AS�(Q; r) follows. �2.2 Posets and EmbeddingsThe following text gives the basi
 de�nitions for posets and embeddings. Aposet, short for partially-ordered set, is another term for a dire
ted, a
y
li
graph whi
h abstra
ts points-to relationships. An embedding is a pair of fun
-tions that map an obje
t to two, not ne
essarily distin
t elements in the poset.The two fun
tions 
an be thought of abstra
ting whi
h other obje
ts an ob-je
t 
an (transitively) point to (fun
tion F for followers) and all obje
ts thatan obje
t 
an be rea
hed from (fun
tion A for an
estors). In other words, theembedding (F;A) des
ribes that an obje
t o 
an transitively refer to all obje
tsp for whi
h F (o) � A(p).De�nition 7 (Poset) A pointed partially ordered set (poset) is a triple hD;�;?i where D is a set, � is a re
exive, transitive and antisymmetri
 relation onD and ? 2 D su
h that 8x 2 D x � ?.De�nition 8 (Embedding) Let D = hD;�;?i be a poset and AS � O a validallo
ation with respe
t to r and P . An embedding of S into D is a pair (F;A)of fun
tions from O to D su
h that:8(a; b) 2 P ) F (a) � A(b): (3)An embedding (F;A) determines an indu
ed points-to relation PF;A on Oby: (a; b) 2 PF;A , F (a) � A(b): (4)De�nition 9 (Lossless Embedding) An embedding (F;A) of P is said to belossless if and only if PF;A = P .Lemma 10 Let AS � O be a valid allo
ation with respe
t to r and P and let(F;A) be an embedding of AS in the poset D = hD;�;?i. Then the indu
edpoints-to relation Q := PF;A is a pointer augmentation of P .Note that (F;A) is a lossless embedding of Q in D by de�nition.Proof : If (F;A) is an embedding of AS in D then for ea
h element (a; b) 2 Pthe relation F (a) � A(b) must hold. But then (a; b) 2 Q by de�nition of PF;Aand thus Q � P (Q is a pointer augmentation of P ). �Lemma 11 Let AS � O be a valid allo
ation with respe
t to r and P and let Qbe a pointer augmentation of P . Then there exists a poset D = hD;�;?i andan embedding (F;A) of AS in D su
h that PF;A = Q.



2 REVIEW OF COLLECTOR THEORY (CT) 4Proof : Let D = f?g [ ((f?g [ O)� (f?g [ O)) with ? = (?;?). De�ne theposet operation � to be (a; b) � (
; d) , (a; d) 2 Q (5)and 8(e;f)2D (e; f) � ?: (6)De�ne F (o) = (o;?) and A(o) = (?; o). Then (F;A) is a lossless embedding ofAS in D = hD;�;?i by 
onstru
tion. �De�nition 12 (Poset-homomorphism) Let D = hD;�D;?Di and E =hE;�E ;?Ei be posets. A fun
tion h from D to E is a homomorphism fromD to E if it is stri
t and monotoni
, i.e.~for all a; b 2 D with a �D b the appli-
ation of h must result in h(a) �E h(b) with h(a) = h(b) only if a = b.Lemma 13 Let D = hD;�D;?Di and E = hE;�E ;?Ei be posets and let h bea homomorphism from D to E. Let AS � O be a valid allo
ation with respe
tto r and P and (F;A) an embedding of AS in D. Then (h Æ F; h Æ A) is anembedding of AS in E with PhÆF;hÆA � PF;A � P .Proof : For all (a; b) 2 P we have F (a) � A(b) sin
e (F;A) is an embedding ofAS in D. Sin
e h is a poset-homomorphism s � t implies that h(s) � h(t) andthus h(F (a)) � h(A(b)). Thus (h Æ F; h ÆA) is an embedding of AS in E .Sin
e for all (a; b) 2 P the fa
t that (F;A) is an embedding guarantees thatF (a) � A(b) it must hold that (a; b) 2 PF;A by de�nition of PF;A, showing thatPF;A � P . Similarly, if (a; b) 2 PF;A then F (a) � A(b) and again h(F (a)) �h(A(b)) and thereby (a; b) 2 PhÆF;hÆA. �Lemma 14 (Canoni
al posets and embeddings) Let AS � O be a validallo
ation with respe
t to r and P . There exists a poset D = hD;�D;?Di 
alleda 
anoni
al poset for AS and a lossless embedding (F;A) of AS in D 
alled a
anoni
al embedding for AS with the property that for any pointer augmentationQ of P there exists a poset E = hE;�E ;?Ei and a homomorphism h from D toE su
h that (h Æ F; h ÆA) is a lossless embedding of AS in E.Proof : A

ording to lemma 11 it is possible to 
onstru
t a poset D and losslessembedding (F;A) for any pointer augmentation of P . Use P for the pointeraugmentation to 
onstru
t the 
anoni
al poset and embedding a

ording tolemma 11.Given any pointer augmentation Q of P , 
onstru
t the poset E for AS againa

ording to lemma 11. The homomorphism h between D and E is the pairwiseidentity fun
tion. This de�nition of h results in an homomorphism sin
e Q � Pguarantees that for all pairs (a; b) �D (
; d) also (a; b) �E (
; d) holds. �The theory developed so far 
an help building eÆ
ient 
olle
tors. Suppose(F;A) is a lossless embedding in some poset for a valid allo
ation AS with



2 REVIEW OF COLLECTOR THEORY (CT) 5respe
t to r and P . Consider the set A�1(?). All obje
ts o 2 A�1(?) will neverbe 
olle
ted sin
e r is life and F (r) � A(o) = ?. In other words, the obje
tsA�1(?) are not threatened by the 
olle
tor. Now 
onsider the set F�1(?).Any obje
t a 2 F�1(?) 
an only have pointers into A�1(?) sin
e the existen
eof a referen
e from a to b in P requires that (a; b) 2 P whi
h implies that? = F (a) � A(b) � ? and thereby A(b) = ?. Thus a 
olle
tor does not haveto tra
e the bystander set F�1(?) or sweep A�1(?).2.3 Combining 
olle
tors: IdealsThe general theory des
ribed so far 
an be used to 
ombine di�erent 
olle
torsthat 
an be expressed with the de�nitions given above. For 
ombining di�er-ent 
olle
tors, we �rst de�ne a produ
t 
ombinator on posets and then derivefun
tions that 
an be used to spe
ify the 
olle
tor.De�nition 15 (Poset-ideal) An ideal in a poset D = hD;�;?i is a nonemptysubset I of D su
h that: 8i2I i � j ) j 2 I: (7)De�nition 16 (Cartesian produ
t of posets) Let D1 = hD1;�1;?1i andD2 = hD2;�2;?2i be posets. The Cartesian produ
t D1 �D2 is the poset D =hD;�;?i where:D = f?g [ f(x1; x2)jx1 2 D1 � f?1g ^ x2 2 D2 � f?2gg (8)? � ? (9)(x1; x2) � ? (10)(x1; x2) � (y1; y2) , x1 �1 y1 ^ x2 �2 y2 (11)Lemma 17 The fun
tion Ma(b) := (a; b) de�nes a poset-homomorphism fromD2 to D. The fun
tion Nb(a) := (a; b) de�nes a poset-homomorphism from D1to D.Proof : Suppose x �2 y. Then Ma(x) � Ma(y) sin
e a �1 a for all a 2 D1and thus Ma is de�nes a poset-homomorphism from D2 to D. Suppose x �1 y.Then Nb(x) � Nb(y) sin
e b �2 b for all b 2 D2 and thus Nb is de�nes a poset-homomorphism from D2 to D. �De�nition 18 (
 operator) Let f : S ! D and g : S ! E be fun
tions.De�ne f 
 g : S ! D �E by:(f 
 g)(x) := (f(x); g(x)) for x 2 S with f(x) 6= ? ^ g(x) 6= ?: (12)If f(x) = ? or g(x) = ? then (f 
 g)(x) := ?.



3 CBGC AND CGCGC 6Remark 19 Note that(f 
 g)�1(?) = f�1(?) [ g�1(?): (13)Lemma 20 Let AS � O be a valid allo
ation with respe
t to r and P . Let(F1; A1) and (F2; A2) be embeddings of AS into D1 and D2 respe
tively. Then(F1 
 F2; A1 
A2) is an embedding of AS into D1 �D2 withPF1
F2;A1
A2 = (PF1;A1 \ PF2;A2) [ f(a; b) 2 AS �ASj(A1 
A2)(b) = ?g:Proof : In order to show that (F1 
 F2; A1 
 A2) is an embedding of AS weneed to show that equation (3) holds for all (a; b) 2 P .If (a; b) 2 P then F1(a) �1 A1(b) and F2(a) �2 A2(b) sin
e (F1; A1) and(F2; A2) are embeddings. But (F1
F2)(a) = (F1(a); F2(a)) and (A1
A2)(b) =(A1(a); A2(a)) and sin
e F1(a) �1 A1(a) and F2(a) �2 A2(a) equation (11)yields as desired (F1 
 F2)(a) � (A1 
 A2)(b). Thus (F1 
 F2; A1 
 A2) is anembedding of AS into D1 �D2.Now suppose (a; b) 2 PF1
F2;A1
A2 . Then (F1(a); F2(a)) � (A1(b); A2(b)) byequation (4) and the de�nition of the 
 operator. De�nition 16 lists three
onditions under whi
h the � operator holds.(11) This 
ase implies that F1(a) � A1(b) and F2(a) � A2(b), whi
h is equiva-lent to (a; b) 2 (PF1;A1 \ PF2;A2), yielding the �rst part of the equation.(10) In order for equation (10) to be appli
able, ? = (A1(b); A2(b)) = (A1 
A2)(b) must hold, whi
h is the se
ond part of the equation.(9) Equation (9) only pla
es additional 
onstraints on (a; b) over (10) and thusdoes not 
ontribute further elements to PF1
F2;A1
A2 . �3 CBGC and CGCGCThis se
tion brie
y introdu
es the ideas behind CBGC and then shows theequivalen
e between CBGC and CGCGC. Finally, it dis
usses how CBGC andCGCGC 
ould be 
ombined to a 
onservative, 
onne
tivity-based garbage 
ol-le
tor.3.1 Conne
tivity-based Garbage Colle
tion (CBGC)CBGC divides the set of heap obje
ts into disjoint partitions. The partitions arenodes in the partition graph. A possible referen
e between two obje
ts on theheap results in a dire
ted edge between the 
orresponding partitions. Partitionsthat are part of a 
y
le in the graph are joined su
h that the graph forms adire
ted, a
y
li
 graph (DAG).



3 CBGC AND CGCGC 7In this DAG, the GC sele
ts a subset of the partitions that is 
losed underthe prede
essor relation and 
olle
ts the 
orresponding subset of the heap. Sin
ethe obje
ts in ea
h 
losed subset of the partitions in the DAG 
an be 
olle
tedindependently of the rest of the heap, CBGC allows GC to happen in smallerin
rements that are more tailored to the run-time behavior of the program thantraditional generational 
olle
tions. In some sense, where generational 
olle
torsexploit the dynami
, temporal property that obje
ts that have not been modi�edafter the last 
olle
tion 
y
le 
an not point to new obje
ts, CBGC uses stati
analysis to derive a stati
 approximation of a superset of the points-to graph.3.2 CGCGC 
an be expressed using CBGCThe proposed CBGC 
olle
tor uses stati
 analysis of the mutator to determinea partitioning of the heap. The theoreti
 model presented in [1℄ assumes the ex-istan
e of some 
onservative approximation of the points-to graph of all obje
tsin the heap. The implementation of the 
ombined 
onservative and generational
olle
tor uses time (or pre-existen
e) as their primary way of approximating thepoints-to graph. They build their system on the fundamental property that anobje
t that has been modi�ed no later than time tM 
an not dire
tly point-toobje
ts that have been allo
ated at time tA where tM < tA. While this approa
htowards building the points-to graph is not a stati
 analysis, it still indu
es apartitioning of the heap into Posets whi
h 
ould the 
onsequently be 
onsidereda DAG for 
olle
tion with CBGC. The only major di�eren
e between the twodesigns is thus that CBGC uses a stati
 partitioning of the heap derived fromstati
 analysis whereas CGCGC allows a dynami
ally 
hanging set of partitionsbased on run-time observations made with the help of write-barriers. Note thatthis introdu
es a write-barrier into the CBGC 
olle
tor. The original CBGCmodel repla
ed the write-barrier with stati
 analysis. Given a stati
 analysisthat yields an approximation of the relative 
reation and modi�
ation times ofobje
ts, the write-barrier would again not be required. Ex
ept for di�eren
esin the partitioning indu
ed by the di�erent style of how the points-to graph isapproximated, the 
olle
tors are identi
al.In other words, the DAG used by CBGC is equivalent to a Poset in CT. Thepartitions are the set elements and the links indu
e a partial ordering. Similarly,any partially ordered set 
an be seen as a DAG.3.3 CBGC 
an be des
ribed using CTAn optimisti
1 stati
 analysis that approximates the dynami
 points-to graph,results in an embedding (FSA; ASA) that maps ea
h allo
ation site (or whateverthe granularity of the stati
 analysis may be) to a node in the DAG. Note thatFSA(o) = ASA(o) and that F and A are 
onstant over time.1The stati
 analysis is optimisti
 sin
e 
onservative 
olle
tion allows for an un
ooperativesetting where 
omplete points-to information is unavailable.



4 CONCLUSION 83.4 Combining CBGC and CGCGCNote that sin
e the stati
 analysis is optimisti
, the embedding must be liftedusing a se
ond embedding (FCO ; ACO) that dynami
ally 
hanges dependingon run-time behavior 
olle
ted by write-barriers in the style of the CGCGC
olle
tor. The resulting embedding indu
ed by the produ
t of the posets 
orre-sponding to the SA and CO embeddings 
an then be savely used to 
olle
t theheap.One primary question is if this 
ombined 
olle
tor would do any better thanjust a 
onservative CGCGC 
olle
tor. The question needs to be raised in par-ti
ular sin
e the optimisti
 stati
 analysis 
an only yield less pre
ise points-toinformation 
ompared to only using the 
onservative CGCGC. The answer liesin the inherent 
omplexity of building partitions (to use the CBGC terminol-ogy) that go beyond the generations used in the age-DAGs used in the originalCGCGC implementation. Using general DAGs would drive up the 
ost of thewrite-barrier in CGCGC sin
e it would now have to frequently join arbitrarypartitions. A good pre-partitioning of the heap with the help of stati
 analysis
ould make 
hanges to the DAG by the write-barrier infrequent to the pointwhere they do not happen in pra
ti
e.4 Con
lusionThe next step towards putting this theoreti
al result into pra
ti
e would be toimplement a variant of CBGC that relies on stati
 analysis to obtain a �rstapproximation of the points-to graph of the heap and then 
ombines this withwrite-barriers for 
hanges to the heap by 
ode that fall out of the s
ope of theanalysis. This type of analysis would make CBGC useful for mixed-languageappli
ations where only a subset of the 
ode 
an be e�e
tively subje
ted to stati
analysis. An example would be any appli
ation written in Java that makes useof re
e
tion and native 
alls2.A
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