
Assignment 5: Extended Interpreter

1 Implementation

You are to implement an interpreter for an extended version of the operator
language featuring local variables and scoping in Java. The language is again
a subset of the Java language. The interpreter is to evaluate the statements
in exactly the same way as Java would.

You will implement a Java class Interpreter with a main method that
reads a file in the given language from standard input (System.in) and
executes the statements until the program reaches the end of the state-
ment list or fails. The language contains a special PrintStatement which
should print the value of its expression argument to standard output using
System.out.println.

If the execution fails, the Interpreter should print the line and column
number of the failing operator (beginLine and beginColum fields of NodeToken)
with a descriptive error message to standard error. The format of the message
should be “LINE:COLUMN MESSAGE”.

If the file does not parse, the program should print “Parse error.” to
standard error (System.err).

2 Remarks

Java’s static checking will prevent a local variable from being declared twice
in any scope. Java also prevents local variables from being potentially ac-
cessed without being initialized first. However, since you are writing a simple
interpreter, you only need to check that on the execution path no local vari-
able is declared twice or used without being initialized. Hence the following
code should not cause an exception for your Interpreter:

{

int i = 42;

switch(2) {

case 1:

int i = 43; // dead!

break;

1

case 2:

int j = 44;

case 3:

print(j);

}

}

3 Submission

You must submit the implementations to your subversion repository to the
directory 3351/$USER/P5/. Include only the provided grammar, the Inter-
preter implementation and the provided build script. The files must be called

• statements.jj

• Makefile

• src/edu/du/cs/comp3351/p5/Interpreter.java

You must check that the submitted code compiles by invoking make. Ver-
ify that the output of your program matches the expected output using your
own testcases.

2

