
Christian Grothoff

FSEM 1111 Computer Security –
from a Free Software Perspective

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1



Christian Grothoff

Collaboration

• Essential: problems are often too hard for just one
person

• Different people contribute different skills

• Meeting in person is costly (time, travel, low
productivity)

⇒ Internet-supported collaboration

2



Christian Grothoff

Key Tools

• Communication: E-mail, IRC, VoIP, ...

• Data management: Version Control Systems

• Issue tracking: Forums, Bugtracking Systems

• Knowledge integration: WWW pages, Wikis, Forums

3



Christian Grothoff

Version Control Systems

Key Features of VCS include:

• Content Distribution

• Access Control Mechanisms

• Data Backup / Recovery / Rollback

• Branching and Merging

4



Christian Grothoff

Content Distribution

• “Latest” version is in the VCS repository

• Any authorized user can obtain this version – possibly
multiple times

• Before work starts, checkout latest version from
repository

• Periodically during the session (and at the end), commit
to repository

⇒ Easy way to keep data synchronized between multiple
machines!

5



Christian Grothoff

Access Control

• Anonymous read-access: anyone can read the data

• Individual read access: specific users can read

• Individual write access: specific users can update

• Group access: simplify management by creating groups

• Partition repository: different rules for different
directories

Authentication is usually done using username and

password.

6



Christian Grothoff

Example: Subversion Access Control

[/fsem1111/w2007]
grothoff = rw
* =
[/fsem1111/w2007/andrew]
andrew = rw
grothoff = rw
[/fsem1111/w2007/barney]
barney = rw
grothoff = rw
[/fsem1111/w2007/ateam]
andrew = rw
barney = rw

7



Christian Grothoff

Example: Subversion Access Control

The “passwd” file contains lines like this:

grothoff:N2FHEWsLcoPto

The SVN client transmits the password P . The server

then computes H(P + Salt) and compares with the hash

code in “passwd”.

8



Christian Grothoff

Versioning

• Each commit operation creates a new revision

• VCS enables accessing all past revisions

• Subversion gives each revision a unique number (per
repository)

• VCS attempts to minimize space overhead for storing
revisions

• VCS enables concurrent editing and attempts to merge
changes

9



Christian Grothoff

Example: Concurrent Editing

1. Alice creates an initial text TA and commits to the VCS
(R1)

2. Bob retrieves TA from the VCS and begins to edit

3. Carol retrieves TA from the VCS and also edits it

4. Bob commits his updated text TAB to VCS (R2)

5. Carol completes her edits (TAC), but her commit fails:
she edited R1, but the latest version is R2 (and she
edited R1)

10



Christian Grothoff

Example: Concurrent Editing

6. Carol retrieves Bob’s changes (TAB − TA) using VCS

7. The VCS automatically attempts to produce TABC =
TAC + (TAB − TA).

8. If the VCS is not certain that it succeeded, it may
require Carol to verify TABC manually.

9. Carol commits TABC as R3.

10. Alice requests the latest updates from the VCS,
obtaining TABC.

11



Christian Grothoff

Automatic Merging

• TAB − TA is computed line-by-line

• Each change is stored with some context (lines before,
lines after, offset in file, etc.)

• If changes apply to different lines and are at least a
line apart in the document, automatic patching should
succeed

• Otherwise, SVN produces a document with both
versions

12



Christian Grothoff

A Merge Conflict

Alices text.
<<<<<<<<<<
Bob inserted this text.
==========
Carol inserted this text.
>>>>>>>>>>
More text from Alice.

Edit the text to resolve the conflict, then use svn
resolved filename to tell Subversion that all conflicts

in the file have been addressed.

13



Christian Grothoff

Branching

• Branches enable parallel development of closely related
works

• Branches are created (forked) from a common starting
point

• The starting point is often the current version, but does
not have to be

• Each branch can make progress independently of the
others

• VCS can help with merging branches

14



Christian Grothoff

More on Branching

• Subversion suggests placing branches in
project/branches/ and the HEAD in project/trunk/

• Creating branches in svn is done by copying the entire
trunk to the branches/ directory

• Note that this does not create an actual copy in the
repository (for efficiency’s sake)

15



Christian Grothoff

Viewing Changes in the Branch

• svn diff -c NUMBER PATH lists the changes made in
the directory PATH since revision NUMBER

• If NUMBER is the revision of the branch creation and
PATH is the path of a branch, then this will show the
changes made in the branch

16



Christian Grothoff

Merging

• You can automatically merge (conflict-free) changes
using svn merge

• Enter the directory where you want to apply the changes
(this can be the branch directory to apply changes from
trunk or trunk to apply changes from a branch)

• Execute svn merge -c NUMBER https://svn/PATH/
to merge changes made to PATH since revision
NUMBER to the copy in the current directory

• Run svn commit afterwards to commit the merge (after
resolving conflicts)

17



Christian Grothoff

SVN Merge vs. applying patches

• The svn diff and diff commands can also show
differences between versions

• The patch command can be used to apply those
versions against an existing version

• These commands can not handle file additions and
renaming operations

• svn merge can handle these!

18



Christian Grothoff

A Warning

• svn does not record branching information

⇒ You must manually track what branches were created
from what version and merged into what other versions.

⇒ Keep a text file documenting branching operations – in
your repository!

Branches are important for larger projects with multiple

releases; however, many projects can do just fine without

them.

19



Christian Grothoff

Questions

?

20



Christian Grothoff

Group Projects

1. Orientation

2. Division of Labor

3. Assessment

4. Presentation

21



Christian Grothoff

Orientation

• You need to know the other members of your group

• Exchange and record contact information (phone, e-
mail, addresses, etc.)

• Be aware of abilities and limitations of group members
(skills, time constraints, motivation)

22



Christian Grothoff

Division of Labor

• Ensure that the entire group is clear about the project
requirements – do not assume that you all agree on
those to begin with!

• Break up the project into smaller tasks, establish
dependencies between tasks

• Agree on a timetable and individual responsibilities;
include contingency plan(s)

• Schedule group meetings

23



Christian Grothoff

Assessment

• Use meetings to review progress and revise plans

• Provide feedback to material produced by other
members

• Plan on doing most outside of meetings (except, possibly
for meetings in groups of two)

24



Christian Grothoff

Presentation

• Plan the presentation only after you have completed
your research

• Decide on who presents and how the presentation should
be done

• Use multimedia to support the presentation (for
example, to visualize data), but the talk itself must
stand on its own

• Practice the presentation with the group

25



Christian Grothoff

Presentation Tips

• never put long paragraphs on slides

• More pictures and figures is always better

• Do not use these lecture notes as a good example1

• Avoid reading verbatim from the slides

1These slides are mostly talking points for me and notes for you; they are
acceptable for a lecture – but would be terrible for a professional presentation.

26



Christian Grothoff

LATEX

• The presentation must be done in LATEX

• We will talk about presentations in LATEXin the next
lecture

• For now, form groups and study the topic!

27


