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Coding Standards

• Avoid bugs!

• Make your code easier to read/learn/understand

• Enable you to show/ship your code

• Reduce maintenance costs (curly wars!)

• Help broaden your customer base

• Avoid bugs!
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Document Contributors

• Helps to identify who can be asked about a particular
issue.

• Crucial for copyright reasons: who owns the code, legally
speaking?

• Applies to code, comments and documentation files.
For copyright law, comments and code are just text.

• Version control systems can help, but should not be
relied upon as the only way to track contributions!

• State the license for your code clearly
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Coding Style

• Avoid conditional compilation (#ifdef)

• Avoid system-specific extensions (MSC, gcc), stick to
the language standard!

• Avoid esoteric languages, unless there is a huge benefit
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Write Robust Programs

• Avoid arbitrary limits on the length or number of any
data structure

• Check every system call for an error return, and include
the system error message (strerror) in your program
error message

• Call abort() if and only if error checks detect impossible
conditions

• Write reentrant code wherever possible
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Equality testing

If you want to test if variable x has a particular constant

value, use

if (5 == x) { ... }

instead of

if (x == 5) { ... }
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Development Priorities

• First write a text-mode (shell) interface for your
program!

• Once that is working, you can consider a graphical
interface.

• This will facilitate testing, profiling and broaden your
userbase.
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Memory Usage

• A few megabytes are hardly ever an issue

• But avoid memory use equivalent to the size of
your inputs or outputs if your input/output sizes are
unbounded!
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Formatting

• Use a consistent way of formatting your code!

• Most editors provide formatting help.

• Do not have lines longer than 76 characters.

• Make meaningful use of whitespace to ease readability.

• Avoid too much whitespace to fit reasonable amounts
of code onto the screen.

9



Christian Grothoff

Commenting

• Good code needs few comments – good variable names,
function names, types and code structure document
most of it

• All names and comments should always be in English

• Brief comment at the start of each source file describes
its overall purpose

• Each non-trivial function should have comment
describing its purpose, including the meaning of the
arguments and return value
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Writing text

• No space before comma, dot, semicolon

• Two spaces after dot at the end of sentences

• Stick to the 76 character per-line limitation

• Good spelling and grammar are important, even for
comments!
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No warnings!

• Make sure that your code does not cause any warnings
(-Wall) from the compiler

• If the compiler is really, really wrong, learn the syntax
to disable the warning manually (@nowarn)
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Try SSA!

• Only declare one varible per line (no int a,b,c)

• If possible, declare and define the variable in one line

• If possible, only have a single assignment per variable

• Avoid declaring temporaries that are only defined and
used once, except if you need to break up long lines or
use the variable name to document what is going on
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Naming

• Look for names that give useful information

• The name should be longer if the symbol is visible to a
larger scope

• The name can be shorter if the symbol is used very
frequently

• Use i,j,k for local integer loop variables

• Use d,f for local floating point variables

• Use n,m for (array) sizes
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Internationalization

• Learn about how to use GNU gettext for your language

• Mark all messages given to the user early on, even if
you are not going to ship with translations initially.

• Stick to 7-bit ASCII text for your source code, even in
Java
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JavaDoc

• http://java.sun.com/j2se/javadoc/writingdoccomments/

• javadoc -d /home/html -sourcepath /home/src -subpackages
java

• -exclude java.net:java.lang

• -windowtitle $WINDOWTITLE
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Doxygen

• Documentation tool like JavaDoc, just better

• Supports C, C++, Java, Python and others

• Generates HTML or LaTeX

• For Java, use JavaDoc-compatible syntax
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Questions

?
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