
Christian Grothoff

COMP 2400 UNIX Tools

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1

Christian Grothoff

Coding Standards

• Avoid bugs!

• Make your code easier to read/learn/understand

• Enable you to show/ship your code

• Reduce maintenance costs (curly wars!)

• Help broaden your customer base

• Avoid bugs!

2

Christian Grothoff

Document Contributors

• Helps to identify who can be asked about a particular
issue.

• Crucial for copyright reasons: who owns the code, legally
speaking?

• Applies to code, comments and documentation files.
For copyright law, comments and code are just text.

• Version control systems can help, but should not be
relied upon as the only way to track contributions!

• State the license for your code clearly

3

Christian Grothoff

Coding Style

• Avoid conditional compilation (#ifdef)

• Avoid system-specific extensions (MSC, gcc), stick to
the language standard!

• Avoid esoteric languages, unless there is a huge benefit

4

Christian Grothoff

Write Robust Programs

• Avoid arbitrary limits on the length or number of any
data structure

• Check every system call for an error return, and include
the system error message (strerror) in your program
error message

• Call abort() if and only if error checks detect impossible
conditions

• Write reentrant code wherever possible

5

Christian Grothoff

Equality testing

If you want to test if variable x has a particular constant

value, use

if (5 == x) { ... }

instead of

if (x == 5) { ... }

6

Christian Grothoff

Development Priorities

• First write a text-mode (shell) interface for your
program!

• Once that is working, you can consider a graphical
interface.

• This will facilitate testing, profiling and broaden your
userbase.

7

Christian Grothoff

Memory Usage

• A few megabytes are hardly ever an issue

• But avoid memory use equivalent to the size of
your inputs or outputs if your input/output sizes are
unbounded!

8

Christian Grothoff

Formatting

• Use a consistent way of formatting your code!

• Most editors provide formatting help.

• Do not have lines longer than 76 characters.

• Make meaningful use of whitespace to ease readability.

• Avoid too much whitespace to fit reasonable amounts
of code onto the screen.

9

Christian Grothoff

Commenting

• Good code needs few comments – good variable names,
function names, types and code structure document
most of it

• All names and comments should always be in English

• Brief comment at the start of each source file describes
its overall purpose

• Each non-trivial function should have comment
describing its purpose, including the meaning of the
arguments and return value

10

Christian Grothoff

Writing text

• No space before comma, dot, semicolon

• Two spaces after dot at the end of sentences

• Stick to the 76 character per-line limitation

• Good spelling and grammar are important, even for
comments!

11

Christian Grothoff

No warnings!

• Make sure that your code does not cause any warnings
(-Wall) from the compiler

• If the compiler is really, really wrong, learn the syntax
to disable the warning manually (@nowarn)

12

Christian Grothoff

Try SSA!

• Only declare one varible per line (no int a,b,c)

• If possible, declare and define the variable in one line

• If possible, only have a single assignment per variable

• Avoid declaring temporaries that are only defined and
used once, except if you need to break up long lines or
use the variable name to document what is going on

13

Christian Grothoff

Naming

• Look for names that give useful information

• The name should be longer if the symbol is visible to a
larger scope

• The name can be shorter if the symbol is used very
frequently

• Use i,j,k for local integer loop variables

• Use d,f for local floating point variables

• Use n,m for (array) sizes

14

Christian Grothoff

Internationalization

• Learn about how to use GNU gettext for your language

• Mark all messages given to the user early on, even if
you are not going to ship with translations initially.

• Stick to 7-bit ASCII text for your source code, even in
Java

15

Christian Grothoff

JavaDoc

• http://java.sun.com/j2se/javadoc/writingdoccomments/

• javadoc -d /home/html -sourcepath /home/src -subpackages
java

• -exclude java.net:java.lang

• -windowtitle $WINDOWTITLE

16

Christian Grothoff

Doxygen

• Documentation tool like JavaDoc, just better

• Supports C, C++, Java, Python and others

• Generates HTML or LaTeX

• For Java, use JavaDoc-compatible syntax

17

Christian Grothoff

Questions

?

18

