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Unifiation Theory 4471. IntrodutionUni�ation is a fundamental proess upon whih many methods for automated de-dution are based. Uni�ation theory abstrats from the spei� appliations ofthis proess: it provides formal de�nitions for important notions like instantiation,most general uni�er, et., investigates properties of these notions, and provides andanalyzes uni�ation algorithms that an be used in di�erent ontexts. In this intro-dutory setion, we will �rst present the onept of uni�ation in an informal way,then make some historial remarks on where uni�ation was originally introdued,and �nally explain our approah to writing this hapter.1.1. What is uni�ation?Very generally speaking, uni�ation tries to identify two symboli expressions byreplaing ertain sub-expressions (variables) by other expressions. To be more on-rete, one usually onsiders terms that are built from funtion symbols (say f , a,and b, where f is binary and a; b are nullary) and variable symbols (say x andy). The uni�ation problem for the terms s = f(a; x) and t = f(y; b) is onernedwith the following question: is it possible to replae the variables x; y in s and t byterms suh that the two terms obtained this way are (syntatially) equal. In thisexample, if we substitute b for x and a for y, we obtain the uni�ed term f(a; b).This substitution is denoted as � := fx 7! b; y 7! ag, and its appliation to termsis written suÆx, i.e., s� = f(a; b) = t�. Note that di�erent ourrenes of the samevariable in a uni�ation problem must always be replaed by the same term. Forthis reason, the terms s0 = f(a; x) and t0 = f(x; b) annot be uni�ed sine thiswould require the ourrene of x in s0 to be replaed by b, and the ourrene ofx in t0 to be replaed by the di�erent onstant a.In most appliations of uni�ation, one is not just interested in the deisionproblem for uni�ation, whih simply asks for a \yes" or \no" answer to the questionof whether two terms s and t are uni�able. If they are uni�able, one would like toonstrut a solution, i.e., a substitution that identi�es s and t. Suh a substitutionis alled a uni�er of s and t. In general, a uni�ation problem may have in�nitelymany solutions; e.g., f(x; y) and f(y; x) an be uni�ed by replaing x and y bythe same term s (and there are in�nitely many terms available). Fortunately, theappliations of uni�ation in automated dedution do not require the omputationof all uni�ers. It is suÆient to onsider the so-alled most general uni�er , i.e., auni�er suh that every other uni�er an be obtained by instantiation. In the aboveexample, � := fx 7! yg is suh a most general uni�er sine for all terms s we havefx 7! s; y 7! sg = �fy 7! sg. A uni�ation algorithm should thus not only deidesolvability of a given uni�ation problem: if the problem is solvable, it should alsoompute a most general uni�er. As we will show, there exist very eÆient algorithmsfor this purpose.Uni�ation as desribed until now is alled syntati uni�ation of �rst-orderterms. \Syntati" means that the terms must be made syntatially equal, whereas



448 Franz Baader and Wayne Snyder\�rst-order" expresses the fat that we do not allow for higher-order variables, i.e.,variables for funtions. For example, the terms f(x; a) and g(a; x) obviously annotbe made syntatially equal by �rst-order uni�ation. However, f(x; a) and G(a; x)an be made equal by higher-order uni�ation if G is a (higher-order) variable,whih may be replaed by f . We will not onsider higher-order uni�ation in moredetail sine it is treated in [Dowek 2001℄ (Chapter 16 of this Handbook). However,equational uni�ation|as opposed to syntati uni�ation|of �rst-order terms willbe one of the most important topis of this hapter. Instead of requiring that theterms are made syntatially equal, equational uni�ation is onerned with mak-ing terms equivalent with respet to a ongruene indued by ertain equationalaxioms E. In this ase, one talks about E-uni�ation or uni�ation modulo E. Forexample, if E = ff(a; a) � g(a; a)g, then the terms f(x; a) and g(a; x), whih arenot (syntatially) uni�able, are E-uni�able: for the substitution � := fx 7! ag, wehave f(x; a)� = f(a; a) =E g(a; a) = g(a; x)�, where =E denotes the equationaltheory indued by E. For equational uni�ation, things are not as nie as for syn-tati uni�ation. In fat, depending on the theory E in question, E-uni�abilitymay be undeidable, and even if it is deidable, solvable uni�ation problems neednot have a most general E-uni�er. Researh on equational uni�ation is, on theone hand, interested in lassifying equational theories of interest aording to theirbehavior in this respet. On the other hand, it develops general approahes andalgorithms that apply to whole lasses of theories.1.2. History and appliationsThe name \uni�ation" and the �rst formal investigation of this notion is due toJ.A. Robinson [1965℄, who introdued uni�ation as the basi operation of his res-olution priniple, showed that uni�able terms have a most general uni�er, and de-sribed an algorithm for omputing this uni�er. In the propositional ase, the reso-lution priniple an be desribed as follows, see also [Bahmair and Ganzinger 2001℄(Chapter 2 of this Handbook). Assume that lauses C _p and C 0_:p have alreadybeen derived (where C;C 0 are sub-lauses and p is a propositional variable). Thenone an also dedue C _C 0. In the �rst-order ase, the lauses one starts with mayontain variables. Herbrand's famous theorem implies that �nitely many ground in-stanes (i.e., instanes obtained by substituting all variables by terms without vari-ables) are suÆient to show unsatis�ability of a given unsatis�able set of lauses bypropositional reasoning (e.g., propositional resolution). The problem is, however, to�nd the appropriate instantiations. Early theorem provers approahed this problemby a breadth-�rst enumeration of all possible ground instantiations, whih led to animmediate ombinatorial explosion [Robinson 1963℄. Theorem provers based on theresolution priniple need not searh blindly for the right instantiations: they anompute them via syntati uni�ation. For example, assume the lauses C _ P (s)and C 0_:P (t) are given. Obviously, the resolution rule applies to ground instanesof these lauses i� in these instanes the prediate P ontains the same term, i.e., i�the substitution used in the instantiation proess is a (syntati) uni�er of s and t.



Unifiation Theory 449Instead of using all ground uni�ers for instantiation, Robinson proposed to lift theresolution priniple to terms with variables, and apply only the most general uni�er� of s and t. In the example, this yields the resolvent (C _C 0)�. The ompletenessproof for propositional resolution an be lifted to non-ground resolution by usingthe fat that every ground uni�er of s; t is an instane of the most general uni�er.In fat, the notion \most general uni�er" was de�ned in this way just to make thislifting possible.Similar ideas for determining appropriate instantiations have been proposed priorto Robinson by Post, Herbrand [1930a, 1930b, 1967, 1971℄ (in the investigation ofhis property A), Prawitz [1960℄, and Guard [1964, 1969℄. However, in this previouswork, the notions \uni�ation" and \most general uni�er" are not singled out asinteresting onepts of their own (they don't even reeive a name). Prawitz onlyonsiders the funtion-free ase (in whih uni�ation is rather trivial), and Herbrandalso �rst presents his approah for this restrited ase. The desription by Herbrandof the uni�ation algorithm for the general ase (whih appears to be the �rstpublished aount of suh an algorithm, and whih is similar to the transformation-based algorithm by Martelli and Montanari [1982℄) is rather informal, and there isno proof of orretness.1The notions \uni�ation" and \most general uni�er" were independently re-invented by Knuth and Bendix [1970℄ as a tool for testing term rewriting systemsfor loal onuene by omputing ritial pairs. Again, the de�nition of the mostgeneral uni�er makes sure that every ritial situation is an instane of a ritialpair, and thus it is suÆient to test the ritial pairs for onuene, see [Dershowitzand Plaisted 2001℄ (Chapter 9 of this Handbook). Equational uni�ation was intro-dued both in resolution-based theorem proving and in term rewriting as a meansfor treating ertain troublesome equational axioms (like assoiativity and ommu-tativity) in a speial manner. In automated theorem proving, it quikly beameapparent that the equality relation requires a speial treatment (see [Degtyarev andVoronkov 2001a, Nieuwenhuis and Rubio 2001℄, Chapters 10 and 7 of this Hand-book), sine a simple integration of axioms that desribe the properties of equality(in priniple, being a ongruene relation) often leads to an unaeptable inrease inthe searh spae. Whereas the �rst approahes providing suh a speial treatmentof equality replaed only the axiomatization of equality by speial inferene rules,Plotkin [1972℄ proposed to go one step further. In his approah, also ertain axiomsthat use equality (like f(x; y) � f(y; x) and f(f(x; y); z) � f(x; f(y; z))) an bebuilt into the inferene rule (namely resolution). This is ahieved by replaing theuse of syntati uni�ation in the resolution step by equational uni�ation, i.e.,uni�ation modulo the equational theory indued by the axioms to be built in.In term rewriting, axioms like ommutativity (i.e., f(x; y) � f(y; x)) annot beoriented into terminating rewrite rules. One way of solving this problem is to takesuh non-orientable identities ompletely out of the rewrite proess, and perform1Stritly speaking, Herbrand's uni�ation algorithm is not an algorithm for simple syntatiuni�ation, but an algorithm for uni�ation with so-alled linear onstant restritions (see se-tion 3.3.2). This is due to the fat that he does not Skolemize his formulae, and thus he has bothuniversal and existential quanti�ers in the quanti�er pre�x.



450 Franz Baader and Wayne Snyderrewriting with respet to the remaining (orientable) rules modulo the unorientedones. In this setting, ritial pairs must now be omputed by equational uni�ation,i.e., modulo the unoriented identities, see, e.g., [Peterson and Stikel 1981, Jouan-naud and Kirhner 1986℄ and [Dershowitz and Plaisted 2001℄ (Chapter 9 of thisHandbook).1.3. ApproahThis hapter is not intended to give a omplete overage of all the results obtained inuni�ation theory (see the overview artiles [Jouannaud and Kirhner 1991, Baaderand Siekmann 1994℄ for this purpose). Instead we try to over a number of signi�anttopis in more detail. This should give a feeling for uni�ation researh and itsmethodology, provide the most important referenes, and enable the reader to studyreent researh papers on the topi.Notational and typographi onventionsWe will try to keep as lose as possible to the typographi onventions introduedby Dershowitz and Jouannaud [1991℄, whih they also used in their survey artile onrewrite systems [Dershowitz and Jouannaud 1990℄. In partiular, substitutions arewritten in suÆx notation (i.e., s� instead of �(s)), and onsequently ompositionof substitution should be read from left to right (i.e., �� means: �rst apply � andthen �).Equational axioms (written s � t) that de�ne equational theories will be alled\identities," whereas uni�ation problems onsist of \equations" (written s=? t forsyntati uni�ation and s=?E t for uni�ation modulo E). Thus, identities musthold, whereas equations must be solved.2. Syntati uni�ationAs mentioned earlier, syntati uni�ation of �rst-order terms was introdued byPost and Herbrand in the early part of this entury. Various researhers have studiedthe problem further [Champeaux 1986, Corbin and Bidoit 1983, Huet 1976, Martelliand Montanari 1982, Paterson and Wegman 1978, Robinson 1971, Venturini-Zilli 1975℄ and, among other results, it was shown that linear time algorithmsfor uni�ation exist [Martelli and Montanari 1976, Paterson and Wegman 1978℄.The orresponding lower omplexity bound was shown by Dwork, Kanellakis andMithell [1984℄: the uni�ation problem is log-spae omplete for P , the lass ofpolynomial-time solvable problems. In partiular, this implies that it is very un-likely that an eÆient parallel uni�ation algorithm exists.In this setion we review the major approahes to syntati uni�ation.



Unifiation Theory 4512.1. De�nitionsA signature is a (�nite or ountably in�nite) set of funtion symbols F . We assumethe reader is familiar with the term algebra T (F ;V) generated by a signaturefuntion symbols F and a (ountably) in�nite set of variables V ; we shall all theseF-terms , or simply terms when F is unimportant, and denote them by the lettersl, r, s, t, u, and v. Variables will be denoted by w, x, y, and z. The set of variablesourring in a term t will be denoted by Vars(t), and this will be extended to setsof variables, equations, and sets of equations.A substitution is a mapping from variables to terms whih is almost everywhereequal to the identity, and will generally be represented by �, �, �, or �. The identitysubstitution is represented by Id . The appliation of a substitution � to a term t,denoted t�, is de�ned by indution on the struture of terms:t� := ( x� if t = x,f(t1�; : : : ; tn�) if t = f(t1; : : : ; tn).In the seond ase of this de�nition, n = 0 is allowed: in this ase, f is a onstantsymbol and f� = f . Substitutions an also be applied to sets of terms, equations,and sets of equations, in the obvious fashion.For a substitution �, the domain is the set of variablesDom(�) := fx jx� 6= x g;the range is the set of termsRan(�) := [x2Dom(�)fx�g;and the set of variables ourring in the range is VRan(�) := Vars(Ran(�)):A substitution an be represented expliitly as a funtion by a set of bindings ofvariables in its domain, e.g., fx1 7! s1; : : : ; xn 7! sn g:The restrition of a substitution � to a set of variables X , denoted by �jX , isthe substitution whih is equal to the identity everywhere exept over X \Dom(�),where it is equal to �. Composition of two substitutions is written ��, and is de�nedby t�� = (t�)�:An algorithm for onstruting the omposition �� of two substitutions representedas sets of bindings is as follows:1. Apply � to every term in Ran(�) to obtain �1;2. Remove from � any binding x 7! t, where x 2 Dom(�), to obtain �1;3. Remove from �1 any trivial binding x 7! x, to obtain �2; and



452 Franz Baader and Wayne Snyder4. Take the union of the two sets of bindings �2 and �1.It is also useful to be able to represent substitutions in their triangular form asa sequential list of bindings, e.g.,[x1 7! t1; x2 7! t2; : : : ; xn 7! tn ℄;whih represents the omposition of n substitutions eah onsisting of a singlebinding: fx1 7! t1 gfx2 7! t2 g : : : fxn 7! tn g:A substitution is idempotent if �� = �; it is easy to show that this is true i�Dom(�) \ VRan(�) = ;.A variable renaming substitution is de�ned as a substitution � suh thatDom(�) = Ran(�). (For example, fx 7! y; y 7! z; z 7! xg is a variable renam-ing, whereas fx 7! yg and fy 7! z; x 7! zg are not.) For any suh variable renaming� = fx1 7! y1; : : : ; xn 7! yng, we denote its inverse fy1 7! x1; : : : ; yn 7! xng by ��1.Two substitutions are equal, denoted � = �, if x� = x� for every variable x. Wesay that � is more general than �, denoted � �� �, if there exists an � suh that� = ��. The relation�� is alled the instantiation quasi-ordering. The orrespondingequivalene relation (i.e., �� \ ��) is denoted by �=; it an be shown [Lassez, Maherand Mariott 1987℄ that � �= � i� there exists some variable renaming � suh that� = ��.2.1. Definition. A substitution � is a uni�er of two terms s and t if s� = t�; itis a most general uni�er (or mgu for short), if for every uni�er � of s and t, � �� �.A uni�ation problem for two terms s and t is represented by s=? t.A multiset is an unordered olletion with possible dupliate elements. We denotethe number of ourrenes of an objet x in a multiset M by M(x), and de�ne themultiset union M [N as the multiset Q suh that Q(x) =M(x) +N(x) for everyx.2.2. Uni�ation of termsIn this setion and the next, we present a series of algorithms for uni�ation, eahof whih returns an mgu for two uni�able terms. Our approah will be two-sided:on the one hand we will present a series of pratial algorithms, from the \naive"to the more sophistiated (and faster), in pseudo-ode suitable for implementing ina programming language; and on the other we will present a \rule-based" approahwhih serves to larify the essential properties of the proess and also to prove theorretness of some of the pratial algorithms.2.2.1. A naive algorithmThe simplest algorithm for uni�ation is perhaps one that is taught in many intro-dutory ourses in AI:



Unifiation Theory 453Write down two terms and set markers (e.g., two index �ngers) at the begin-ning of the terms. Then:1. Move the markers together, one symbol at a time, until both move o� the endof the term (suess!), or until they point to two di�erent symbols;2. If the two symbols are both non-variables, then fail; otherwise, one is a variable(all it x) and the other is the �rst symbol of a subterm (all it t):(a) If x ours in t, then fail;(b) Otherwise, write down \x 7! t" as part of the solution, replae x everywhereby t (inluding in the solution), and return to (1).This simple algorithm methodially �nds disagreements in the two terms to beuni�ed, and attempts to repair them by binding variables to terms: it fails whenfuntion symbols lash, or when an attempt is made to unify a variable with aterm ontaining that variable (whih is impossible). Already present in this simplealgorithm are several interesting issues:Implementation: What data strutures should be used for terms and substitu-tions? How should appliation of a substitution be implemented? What ordershould the operations be performed in?Corretness: Does the algorithm always terminate? Does it always produe anmgu for two uni�able terms, and fail for non-uni�able terms? Do these answersdepend on the order of operations?Complexity: How muh spae does this take, and how muh time?In the remainder of this setion we will onsider these issues in detail while devel-oping our sequene of algorithms.2.2.2. Uni�ation by reursive desentIf we take our naive algorithm and implement it as simply as possible in a pro-gramming language, then we would represent terms using either expliit pointerstrutures (as in C or Pasal) or built-in reursive data types (as in ML and Lisp),and represent substitutions as lists of pairs of terms. Appliation of a substitutionwould involve onstruting a new term or replaing a variable with a new term.The left-to-right searh for disagreements would then be implemented by reursivedesent through the terms as shown in Figure 1.(In an atual implementation, the ase \Unify( t, s )" ould be moved up beforethe �rst \else if" and simply swap s and t if the former is not a variable.) Theonly detail that might ause some onfusion is the exat method for implementingthe omposition in the last line. This was desribed in setion 2.1; however, inour naive uni�ation algorithm, we omitted the seond and third steps from theinformal algorithm for omposition, and this may be done as well here, due to asimple but important fat about these algorithms: when a binding x 7! t is reatedand applied, x will never appear in another term onsidered by the algorithm|xhas been \eliminated" and ours only one, in the solution.This algorithm is essentially the one �rst desribed by Robinson [1965℄, and hasbeen almost universally used in symboli omputation systems.



454 Franz Baader and Wayne Snyderglobal � : substitution; f Initialized to Id gUnify( s : term; t : term )beginif s is a variable then f Instantiate variables gs := s�;if t is a variable thent := t�;if s is a variable and s = t thenf Do nothing gelse if s = f(s1; : : : ; sn) and t = g(t1; : : : ; tm) for n;m � 0 then beginif f = g thenfor i := 1 to n doUnify( si, ti );else Exit with failure f Symbol lash gendelse if s is not a variable thenUnify( t, s );else if s ours in t thenExit with failure; f Ours hek gelse � := �fs 7! tg;end; Figure 1: Uni�ation by reursive desent
2.2.3. A rule-based approah UIn order to explore some of the logial properties of this algorithm, we now presenta simple inferene system for deriving solutions for uni�ation problems.An idempotent substitution fx1 7! t1; : : : ; xn 7! tng may be represented by a setof equations fx1 � t1; : : : ; xn � tng in solved form, i.e., where eah xi has a singleourrene in the set. For any idempotent substitution �, the orresponding solvedform set will be denoted by [�℄, and for any set of equations S in solved form, theorresponding substitution will be denoted by �S.A system is either the symbol ? (representing failure) or a pair onsisting of amultiset P of uni�ation problems and a set S of equations in solved form. Wewill use � to denote an arbitrary system. A substitution is said to be a uni�er (orsolution) of a system P ;S if it uni�es eah of the equations in P and S; the system? has no uni�ers.The inferene system U onsists of the following transformations on systems:22The symbol [ below when applied to P is multiset union.



Unifiation Theory 455Trivial: fs ?= sg [ P 0;S =) P 0;SDeomposition:ff(s1; : : : ; sn) ?= f(t1; : : : ; tn)g [ P 0;S =) fs1 ?= t1; : : : ; sn ?= tng [ P 0;S(Note that possibly n = 0.)Symbol Clash: ff(s1; : : : ; sn) ?= g(t1; : : : ; tm)g [ P 0;S =) ?if f 6= g.Orient: ft ?=xg [ P 0;S =) fx ?= tg [ P 0;Sif t is not a variable.Ours Chek: fx ?= tg [ P 0;S =) ?if x 2 Vars(t) but x 6= t.Variable Elimination:fx ?= tg [ P 0;S =) P 0fx 7! tg;Sfx 7! tg [ fx � tgif x 62 Vars(t).In order to unify s and t, we reate an initial system fs=? tg; ; and apply sues-sively rules from U ; we show below that suh a proess must terminate, produinga terminal system (i.e., to whih no rule applies) in the form of ? or ;;S, where Sis a solved form system representing the mgu of s and t.The inferene system U is in essene the same algorithm for uni�ation presentedby Herbrand (see Appendix 3 in [Herbrand 1971℄); more reently, this formulationof the uni�ation proess was introdued by Martelli and Montanari [1982℄ and hasgained wide urreny as a formalism for representing uni�ation algorithms (see,for example, [Jouannaud and Kirhner 1991, Snyder 1991℄).Before onsidering U per se, let us onsider how this set of transformations mightsimulate the ations of the reursive desent algorithm. Suppose we were to printout a trae of the terms s and t, and the global substitution �, just before the thirdif-statement in Unify, e.g.,



456 Franz Baader and Wayne Snyders1 t1 Ids2 t2 �2s3 t3 �3: : :This sequene an be simulated by a sequene of transformationsfs1=? t1g; ;=) fs2=? t2g [ P2;S2=) fs3=? t3g [ P3;S3=) : : :where eah si=? ti is the equation ated on by the rule, and eah �i is identialto �Si . Furthermore, if the all to Unify ends in failure, then the transformationsequene ends in ?; and if the all to Unify terminates with suess, with a globalsubstitution �n, then the transformation sequene ends in a system ;;S where�S = �n. This simulation an be ahieved by treating the multiset P as a stak,always applying a rule to the top equation, and only using Trivial when s is avariable; there is only one possible rule to apply at eah step under this ontrolstrategy.Therefore, U an be viewed as an abstrat version of the reursive desent algo-rithm, and an be used to prove its orretness. In fat, U has many interestingfeatures in its own right, as we now proeed to show.2.2.4. Tehnial results about UIn this setion we present a number of results about U , adapted from Martelli andMontanari [1982℄. Perhaps the simplest property to show is termination.2.2. Lemma. For any �nite multiset of equations P , every sequene of transforma-tions in U P ; ; =) P1;S1 =) P2;S2 =) : : :terminates either with ? or with ;;S, with S in solved form.Proof. De�ne a omplexity measure hn1; n2; n3i on multisets of equations, orderedby the (well-founded) lexiographi ordering on triples of natural numbers, wheren1 = The number of distint variables in P ;n2 = The number of symbols in P ; andn3 = The number of equations in P of the form t=? x, with t not a variable.Eah rule in U redues the omplexity of the problem P . Furthermore, any equationmust �t into one of the ases mentioned on the left-hand sides of the rules, so thata rule an always be applied to a system with non-empty P . Thus, a system towhih no rule applies must be in the form ? or ;;S. Sine whenever an equation isadded to S, the variable on the left-side is eliminated from the rest of the system,eah of the systems S1; S2; : : : ; S must be in solved form.Another interesting fat is that a solution � produed by U is always idempotent.



Unifiation Theory 4572.3. Corollary. If P ; ; =)+ ;;S, then �S is idempotent.One of the most interesting features of U is that its rules do not hange the set ofuni�ers of a system. The main orretness results about U are essentially orollariesof this fat.2.4. Lemma. For any transformation P ;S =) �, a substitution � uni�es P ;S i�it uni�es �.Proof. The only non-trivial ases onern Ours Chek and Variable Elimination.If x ours in, but is not equal to, t, then learly x ontains fewer symbols than t;but then x� must also ontain fewer symbols than t�, so that x and t an have nouni�er.Regarding Variable Elimination, we know that x� = t�, from whih (by struturalindution) we an show that u� = (ufx 7! tg)�for any term u, or indeed for any equation or multiset of equations. But thenP 0� = P 0fx 7! tg� and S� = Sfx 7! tg�from whih the result follows.The �rst of our major results about U shows that it does indeed produe a uni�er.2.5. Theorem. (Soundness) If P ; ; =)+ ;;S, then �S uni�es every equation inP .Proof. Note that �S uni�es S, beause it is idempotent; a simple indution withlemma 2.4 shows that �S must unify the equations in P .Our seond major result shows that U is able to alulate anmgu for two uni�ableterms.2.6. Theorem. (Completeness) If � uni�es every equation in P , then any maximalsequene of transformations P ; ; =) : : :must end in some system ;;S suh that �S �� �.Proof. Lemmas 2.2 and 2.4 show that suh a sequene must end in some terminalsystem ;;S where � uni�es S. Now for every binding x 7! t in �S,x�S� = t� = x�;and for every x 62 Dom(�S), x�S� = x�, so that � = �S�.An immediate onsequene of these two results is the following.



458 Franz Baader and Wayne Snyder2.7. Corollary. If P has no uni�er, then any maximal transformation sequenefrom P ; ; must have the form P ; ; =) : : : =) ?:The most interesting feature of this proof (and the reason for the emphasis on theword \any") is that the hoie of a rule to apply at any stage of the omputation isdon't are non-deterministi, whih implies that any ontrol strategy will result inan mgu for two uni�able terms, and failure for two non-uni�able terms. Thus, anypratial uni�ation algorithm whih proeeds by performing the atomi ations ofU , in any order, is sound and omplete, and in partiular it generates idempotentmgus for uni�able terms. However, some sequenes of these basi operations maybe longer than others, or reate larger terms, and not all sequenes end in the sameexat mgu. Before onsidering the issue of omplexity in detail, we digress for amoment to onsider this last point.2.2.5. Some properties of MGU'sTheorem 2.6 shows that any substitution produed by U (or any algorithm that Uan simulate) is a ompat representation of the (in�nite) set of all uni�ers, whihould be generated by omposing all possible substitutions with the mgu. Thismeans that no information is lost in symboli omputation systems (suh as �rst-order theorem provers and logi-programming interpreters) in solving a uni�ationsubproblem and applying the solution to the rest of the omputation (this is whathappens, in fat, during the uni�ation proess itself).The inferene system U , starting from a single pair of terms s and t, ould produe(�nitely) many di�erent terminal forms, orresponding to distint mgus for s and t.What is the relationship of these distint mgus? Are there other mgus than these?Is there an in�nite number? The key to answering these questions lies in the oneptof a variable renaming, de�ned in setion 2.1: if � and � are both mgus of s andt, then � �= �, i.e., they are instanes of eah other, and hene � = �� for somevariable renaming � (for a proof, see [Lassez et al. 1987℄.)This means that the set of mgus of two terms an be generated from a single mgu,by omposition with variable renamings (whih is a speial ase of the fat that theset of all uni�ers an be generated by omposition with arbitrary substitutions). Bysuh an operation, it is possible to reate an in�nite number of idempotent mgusand an in�nite number of non-idempotent mgus; the �nite searh tree generated byU is not able to onstrut any arbitrary mgu, nor even every idempotent mgu.An oft-repeated phrase in the literature states that \mgus are unique up torenaming"; the reader should now understand that this vague statement shouldmore properly be: \mgus are unique up to omposition with a variable renaming."This brief exposition of some of the important properties of mgus should onvinethe reader that the olletion of all uni�ers of two terms has non-trivial properties;later on in this hapter we shall examine the even more omplex ase of sets ofuni�ers for E-uni�ation problems. For further haraterizations of the set of mgusprodued by U , and on uni�ers in general, see [Lassez et al. 1987, Eder 1985℄.



Unifiation Theory 4592.2.6. Complexity of reursive desentThis setion will begin to onsider the omplexity of the uni�ation proess, a ques-tion whih will motivate the onsideration of further, more sophistiated algorithmsfor uni�ation.The approahes to uni�ation so far onsidered, unfortunately, an take expo-nential time and spae.2.8. Example. h(x1; x2; : : : ; xn; f(y0; y0); : : : ; f(yn�1; yn�1); yn)and h(f(x0; x0); f(x1; x1); : : : ; f(xn�1; xn�1); y1; : : : ; yn; xn)Unifying these two terms will reate an mgu where eah xi and eah yi is bound toa term with 2i+1�1 symbols. Clearly the problem is that the substitution ontainsmany dupliate opies of the same subterms. One idea that might help here wouldbe to represent substitutions as \triangular forms." Thus,[ y0 7! x0; yn 7! f(yn�1; yn�1); yn�1 7! f(yn�2; yn�2); : : :℄would be a triangular form uni�er of the two terms. Building up suh a substitutionduring uni�ation onsists of simply olleting a list of bindings; no dupliate termsare reated, and hene triangular form uni�ers an be no larger than the originalproblem.Unfortunately, this good idea is not suÆient to resue the algorithm, as it ap-pears that substitution, and hene the dupliation of subterms, is neessary in theterms themselves: in the example, the all to Unify on the last arguments, xn andyn, whih by then are bound to terms with 2n+1� 1 symbols, will lead to an expo-nential number of reursive alls. The solution to this problem is to develop a moresubtle data struture for terms, and a di�erent method for applying substitutions.2.3. Uni�ation of term dagsIn this setion, we onsider two approahes to speeding up the uni�ation proess.The �rst approah, whih we adapt from Corbin and Bidoit [1983℄, �xes the problemof dupliation of subterms reated by substitution by using a graph representation ofterms whih an share struture; this results in a quadrati algorithm. To develop anasymptotially faster algorithm, however, it is neessary to abandon the reursivedesent approah, and reast the problem of uni�ation as the onstrution of aertain kind of equivalene relation on graphs. This seond approah is due to Huet[1976℄.2.3.1. Term dags and substitutionConerning example 2.8, it should be remarked that the explosion in the size ofthe terms ourred preisely beause there were dupliate ourrenes of the same



460 Franz Baader and Wayne Snydervariables, whih ause a dupliation of ever larger and larger terms. In order to �xthis problem, it is neessary to onsider in detail how to represent terms as expliitgraphs whih share subterms.2.9. Definition. A term dag is a direted, ayli graph whose nodes are labeledwith funtion symbols, onstants, or variables, whose outgoing edges from any nodeare ordered, and where the outdegree of any node labelled with a symbol f is equalto the arity of f (variables have outdegree 0).In suh a graph, eah node has a natural interpretation as a term, and we shallspeak of nodes and terms as if they were one and the same (e.g., a \node" f(a; x)is one labeled with f and having ars to nodes a and x). The only di�erene be-tween various dags representing a partiular term is the amount of struture sharingamong the subterms. For example, we ould represent the term f(g(a; x); g(a; x))by any of the following dags:
a g ga xx f fg ga ax fga xAssuming that names of symbols are strings of haraters, it is possible to reate adag with unique, shared ourrenes of variables in O(n), where n is the number ofall haraters in the string representation of a uni�ation problem. For example, onean use a trie to store the variable names when parsing the terms, so that dupliateourrenes of variables an be pointed to a unique, shared representation of thevariable. In the normal ase, names have a onstant size, and n just represents thenumber of symbols in the term; we make this assumption in what follows.Therefore, we assume that the input to our algorithm is a term dag representingthe two terms to be uni�ed, with unique, shared ourrenes of all variables. Wealso assume that eah node t has an attribute parents(t) whih is a list of all parentsof t in the graph (i.e., all nodes p whih point to t), but do not show these in thediagrams below for simpliity. Parent pointers are neessary when sharing nodes inthe dag.A substitution involving only the subterms of a term dag an be representeddiretly by a relation on the nodes of the dag , either stored expliitly as a listof pairs of pointers to nodes, or by storing a link (we will all these substitutionars) in the graph itself, and maintaining a list of variables (nodes) bound by thesubstitution. Appliation of suh a substitution an be impliit or expliit, the latterinvolving atual moving of subterm links. For example, two terms f(x; g(a)) andf(g(y); g(y)), and their mgu fx 7! g(a); y 7! a g an be represented by the dag :
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x g g gf f

a yThe impliit appliation of a substitution identi�es two nodes onneted with asubstitution ar, without atually moving any of the subterm links; the binding fora variable an be determined by traversing the graph depth �rst, left to right. Thisessentially represents the triangular form (e.g., [x 7! g(y); y 7! a ℄) in the dag . Weuse this form of substitution in the algorithm of setion 2.3.3.The expliit appliation of a substitution expresses the substitution of bindingfor variable by moving any ar (subterm or substitution) pointing to a variable topoint to the binding. For example,x g g gf f
a yThis represents the \funtional" form fx 7! g(a); y 7! a g of the substitution in adiret way. We shall use this expliit form of appliation in the next algorithm.2.3.2. Reursive desent on term dagsIn this setion we present the �rst algorithm whih uses term dags. If we think abouttraing the operation of the reursive desent algorithm on this new data struture,it might appear that the soure of exponential blowup has been removed, sinesubstitution does not dupliate terms. However, it still may be possible to havedupliate alls to the same term; in example 2.8, for instane, the terms bound toxn and yn (see �g. 2) will be uni�ed when x0 is bound to y0; however, the reursivedesent algorithm will then blithely explore every other path through the pair ofterms, resulting in an exponential number of reursive alls.Clearly, we need to keep from revisiting already-solved problems in the graph.The best solution is simply to do struture sharing \on the y" by merging uni�edterms (whih are, after all, now idential), and then heking for identity of nodesin the �rst step. Merging two nodes s and t in a graph � an be implemented bymoving ars. Let parents(s) = fp1; : : : ; png; then1. For eah pi, replae the subterm ar pi �! s by pi �! t;2. Let parents(t) := parents(s) [ parents(t); and3. Let parents(s) := ;.This shares the struture of t and isolates the node s. In the algorithm below, wewill denote by Replae(�, s, t) the new graph reated from a graph � by merging



462 Franz Baader and Wayne Snyderff...fx0 f
ff...
y0

xn ynxn�1x1 yn�1y1
Figure 2: A dag representation of the terms bound to xn and yn in example 2.8.s and t in this fashion.The algorithm takes as input a term dag in whih all ourrenes of variablesare shared (i.e., eah variable ours exatly one). Even with these additions, ourreursive desent algorithm is mostly unhanged:global � : termDag; f Term dag for s and t with shared variables gglobal � : list of pairs of nodes; f Initialized to empty gUnifyDag( s : node; t : node )beginif s and t are the same node thenf Do nothing gelse if s = f(s1; : : : ; sn) and t = g(t1; : : : ; tm) then beginif f = g thenfor i := 1 to n doUnifyDag( si, ti );else Exit with failure f Symbol lash gendelse if s is not a variable thenUnify( t, s );else if s ours in t thenExit with failure; f Ours hek gelseAdd (s; t) to the end of the list �;� := Replae(�, s, t); f Sine they are now uni�ed gend;The ours hek is implemented as a standard graph traversal to searh for thegiven node s below t by following subterm ars.



Unifiation Theory 463The orretness of the data struture for this algorithm is dependent on thefollowing result from Corbin and Bidoit [1983℄, whih an be proved by indutionon the dag .2.10. Lemma. Let � be a term dag with nodes x and t suh that there is no pathfrom t to x.� Replae(�, x, t) is an ayli graph ontaining the same nodes (with the samelabels) as �.� Consider a distinguished node in � orresponding to the term s, and let s0 bethe term orresponding to the same node in Replae(�, x, t); then:{ if s = x, then s0 = x;{ otherwise, s0 = sfx 7! tg.In order to prove soundness and ompleteness, we may again show that U an\trae" the terms in eah all to UnifyDags, the only di�erene being that whenTrivial is used, s may not neessarily be a variable (i.e., when UnifyDag is alled ontwo terms previously uni�ed, and hene shared as one node). From a logial pointof view (thinking in term of the symboli expressions being manipulated), nothinghas hanged|only the underlying data struture for terms and substitutions.Thus, the only thing that remains to be onsidered is the omplexity of UnifyDag.Sine eah all to this funtion isolates a node, there an not be more than n allsin toto (where n is the number of symbols ourring in the original terms). Eahall does a onstant amount of work exept for the ours hek (whih traverses nomore than n nodes) and the moving of no more than n pointers. Maintaining thelists of parents osts O(n) at eah all. The original onstrution of the dag takesO(n). This results in a time omplexity of O(n2); learly the spae used is O(n).2.3.3. An almost-linear algorithmIt would be possible to speed up this algorithm by making hanges to the waysubstitutions are represented (see [Baader and Siekmann 1994℄), however, we willnow onsider an alternate approah whih gives more insight into the nature of uni-�ation. This approah makes the following fundamental hanges to the approahonsidered so far:� instead of reursive alls to pairs of subterms whih must be uni�ed, we willreast the problem as that of onstruting an equivalene relation whose lassesare terms that must be uni�ed;� substitution will (in some sense) be replaed by the union of equivalene lasses;and� the repeated alls to the ours hek will be replaed by a single pass throughthe graph to hek for ayliity.The term dag data struture will be used for these algorithms as well, however, wewill not move pointers as in the last setion. Instead, we onsider the uni�ationproblem as one involving the following relation on terms.



464 Franz Baader and Wayne Snyder2.11. Definition. A term relation is an equivalene relation on terms, and is ho-mogeneous if no equivalene lass ontains f(: : :) and g(: : :) with f 6= g; it is ayliif no term is equivalent to a proper subterm of itself.A uni�ation relation is a homogeneous, ayli term relation satisfying the uni-�ation axiom: For any f and terms si and ti,f(s1; : : : ; sn) �= f(t1; : : : ; tn) �! s1 �= t1 ^ : : : ^ sn �= tn:The uni�ation losure of s and t, when it exists, is the least uni�ation relationwhih makes s and t equivalent.The algorithm presented in this setion takes its starting point from the followingfat.2.12. Lemma. If s and t are uni�able, then there exists a uni�ation losure for sand t.Proof. For any uni�er � of s and t, de�ne the relationu �=� v i� u� = v�:Clearly this is a uni�ation relation. Sine the intersetion of two uni�ation rela-tions relating s and t is again a uni�ation relation relating s and t, whenever sand t are uni�able there is a least suh relation �= whih joins lasses only whenfored to apply the uni�ation axiom to subterms of s and t.The uni�ation-losure approah to uni�ation, �rst presented in [Huet 1976℄,attempts to onstrut this relation on two terms, whih, as we shall show, orre-sponds to �nding an mgu. However, before presenting the algorithm, we need anumber of anillary notions.2.13. Definition. For any term relation �=, let a shema funtion be a funtion &from equivalene lasses to terms suh that for any lass C,1. &(C) 2 C; and2. &(C) is a variable only if C onsists entirely of variables.The term &(C) will be alled the shema term for C.The point here is that the shema term is a funtional form whenever suh exists,and will be used to propagate information downward using the uni�ation axiom; itis also used to de�ne substitutions. Note that shema funtions are not unique, butthere always exists at least one for any term relation; we assume in the followingthat suh a funtion has been hosen for any given uni�ation losure.Note that for any ayli term relation there exists a partial ordering � suh thatfor any term f(: : : s : : :), we have [f(: : : s : : :)℄ � [s℄.2.14. Definition. For any uni�ation losure �=, de�ne ��= by:x��= = ( y if &([x℄) = yf(s1��=; : : : ; sn��=) if &([x℄) = f(s1; : : : ; sn)



Unifiation Theory 465(This notion is well-de�ned by reursion on the partial order �; Dom(��=) is �nitebeause �= has only a �nite number of non-trivial equivalene lasses.)2.15. Theorem. Terms s and t are uni�able i� there is a uni�ation losure for sand t. In the aÆrmative ase, ��= is an mgu for s and t.Proof. The only if diretion has been proved in our previous lemma. For the otherdiretion, let �= be a uni�ation losure for s and t. We laim that for every term u,u��= = &([u℄)��= (thus, ��= uni�es eah pair of equivalent terms, in partiular s andt), and proeed by indution on the size of u. For the base ase, if u is a onstantor variable, then the result is trivial by the de�nition of ��=. Now suppose thatu = f(s1; : : : ; sn) and &([u℄) = f(t1; : : : ; tn); sine �= is losed under the uni�ationaxiom, then for eah i, si �= ti, and thus by the indution hypothesis, si��= = ti��=.To prove that ��= is an mgu in the aÆrmative ase, we show that for any uni�er�, we have u��=� = u� for any term u, and proeed by indution on �. Assumethat �=� is as de�ned in the previous lemma. (In the following, & refers to some�xed shema funtion for ��=.) First, note that if u �= v, then u� = v�, sine �= isontained in �=�. Now, for the base ase, if [u℄ ontains only onstants and variables,then u��= = &([u℄) �= u, from whih it follows that u��=� = u�. For the indutionstep, it must be the ase that &([u℄) equals some f(s1; : : : ; sn), and u is either a termof the form f(t1; : : : ; tn), or is a variable x. In the �rst ase, u��=� = u� by a diretuse of the indution hypothesis. In the seond ase, x��= = f(s1��=; : : : ; sn��=), andx� = f(s1; : : : ; sn)� (sine �= is ontained in �=�), so thatx� = f(s1�; : : : ; sn�) = f(s1��=�; : : : ; sn��=�) = f(s1��=; : : : ; sn��=)� = x��=�;the seond step involving the indution hypothesis.This result motivates the design of an eÆient uni�ation algorithm whih at-tempts to build a uni�ation losure for two terms, and then extrats the mgu.To do this, it is neessary to have some means for maintaining equivalene lassesand for applying the uni�ation axiom to lasses; the most eÆient data struturerepresents lasses as trees of lass pointers (whih we represent by dashed lines)with a lass representative at the root:t1 t4s2 u2t2 u3s1u1t3To determine whether two terms are equivalent, it is only neessary to �nd theroots of the trees and hek for identity; and to join two lasses, one lass is made



466 Franz Baader and Wayne Snydera subtree of the other's root. To redue the height of the trees as muh as possible,two subtle re�nements are made: (i) maintain a ount of the size of eah lass inthe representative, and when joining lasses, make the smaller one a subtree of thelarger; and (ii) when following paths to the root to determine equivalene, ompressthe paths by pointing all nodes enountered diretly at the root. For example, ifwe wished to take the union of the two lasses [t3℄ and [u3℄, we would �nd therepresentatives for the two lasses, ompressing the path from t3, and then add alass link from the representative of the smaller lass to the larger:t1 t4s2 s1 t2 u2 u3u1 t3Suh a data struture an proess a series of O(n) Unions and Finds in O(n�(n)),where � is the funtional inverse of Akermann's funtion, and whih, for all pra-tial purposes, may be onsidered as a small onstant fator.The term dag for this approah needs no parent pointers, as in the previousalgorithm, but does need� lass pointers;� a ounter of the size of the lass stored in the representative;� a pointer from eah representative to the shema term for the lass;� boolean ags visited and ayli in eah node used in yle heking (bothinitialized to false);� a pointer vars from eah representative to a list of all variables in the lass(used when generating solutions).Note that maintaining lists of parents of eah node is not neessary in this algorithm.A representative is simply a node whose lass pointer points to itself. The algorithmbased on this approah may now be given. It is shown in Figures 3 and 4. The termdag � for s and t is initialized to the identity relation, where eah lass ontainsa single term; thus for eah node the lass and shema pointers are initialized topoint to the same node, and the size is initialized to 1. The vars list is initializedto empty for non-variable nodes, and to a singleton list for variable nodes.If Unify(s, t) does not fail, then � ontains a triangular form solution. Find-Solution attempts to �nd suh a solution, and fails i� there exists a yle in thegraph. (We are essentially traversing the ommon term s� by replaing s by itsshema term in the �rst line.) The �elds visited and ayli are both neessary, the�rst to �nd a yle in the urrent exploration path, and the seond to keep fromreexamining nodes whih have already been exluded from any possible yles.The orretness of this method depends on verifying that it implements orretlythe onstrution of an ayli uni�ation losure. The essential points are that� the equivalene is learly homogeneous;� equivalene lasses are joined i� required by the uni�ation axiom, hene therelation is least ;



Unifiation Theory 467global � : termDag; f Term dag for s and t with shared variables gglobal � : list of bindings := nil; f Triangular form solution gUnify( s : node; t : node )beginUnifClosure(s, t);FindSolution(s);end;UnifClosure( s : node; t : node )begins := Find(s); f Find representatives gt := Find(t);if s and t are the same node thenf Do nothing gelse beginif &([s℄) = f(s1; : : : ; sn) and &([t℄) = g(t1; : : : ; tm) for n;m � 0then beginif f = g then beginUnion(s, t);for i := 1 to n doUnifClosure( si, ti );endelse Exit with failure f Symbol lash gendelse Union(s, t);end;end;Union( s : node; t : node ) f s and t are representatives gbeginif size(s) � size(t) then beginsize(s) := size(s) + size(t);vars(s) := onatenation of lists vars(s) and vars(t);if &([s℄) is a variable then&([s℄) := &([t℄);lass(t) := s;endelse beginsize(t) := size(t) + size(s);vars(t) := onatenation of lists vars(t) and vars(s);if &([t℄) is a variable then&([t℄) := &([s℄);lass(s) := t;end;end; Figure 3: Uni�ation algorithm



468 Franz Baader and Wayne SnyderFind( s : node ) f Returns representative for [s℄ and ompresses paths gt : node;beginif lass(s) = s f s is a representative g thenReturn s;else begint := Find(lass(s));lass(s) := t;return t;end;end;FindSolution(s : node); f Fails if exists a yle below s gbegin;s := &(Find(s));if ayli(s) thenReturn; f s is not part of a yle gif visited(s) thenFail; f Exists a yle gif s = f(s1; : : : ; sn) for some n > 0 then beginvisited(s) := true;for i := 1 to n doFindSolution(si);visited(s) := false;end;ayli(s) := true;foreah x 2 vars(Find(s)) doif x 6= s thenAdd [x 7! s℄ to front of �;end; Figure 4: Uni�ation algorithm, ontinued� FindSolution fails i� there is a yle in the graph; and� whenever a binding [x 7! s℄ is added to �, all relevant bindings for variables ins already our in �.The omplexity of the algorithm is O(n�(n)), as, with the exeption of Find,eah funtion an be alled at most n times for terms with n symbols, and eah allperforms a onstant amount of work (note that the work of onatenating the varslists an be aomplished in O(n) if pointers to the last ell in the list are kept,and onatenation is performed by moving pointers rather than by the standardappend operation). The dominating ost is therefore the alls to Find, whih, asmentioned above, an ost O(n�(n)).Linear-time algorithms for uni�ation have been presented by Paterson and Weg-man [1978℄ (f. [Champeaux 1986℄) and Martelli and Montanari [1982℄, to whih



Unifiation Theory 469we refer the reader for further study.3. Equational uni�ationLike syntati uni�ation, equational uni�ation is onerned with the problem ofmaking terms equal by applying a suitable substitution. The only di�erene is thatsyntati equality is replaed by equality modulo an equational theory E. At �rstsight, one might think that this is minor hange, and that the notions and ap-proahes from syntati uni�ation an easily be adapted to this new situation.It turns out, however, that equational uni�ation requires some non-trivial adjust-ments of the basi notation. In partiular, the notion of a most general uni�er isno longer suÆient for the purpose of representing all uni�ers sine there may existE-uni�able terms that do not have a most general E-uni�er. In the �rst subsetion,we introdue the basi notions as they are urrently used in uni�ation theory, andin the subsequent subsetion, we point out some di�erenes to the ase of syntatiuni�ation, and explain the reason for introduing the notions in this modi�ed way.The third subsetion introdues order-theoreti, logial, algebrai, and ategory-theoreti reformulations of some of these notions. We onlude the setion with ashort survey of results in uni�ation theory. Some of these results will be treatedin more detail in subsequent setions.3.1. Basi notionsAn equational theory is de�ned by a set of identities E, i.e., a subset ofT (F ;V)� T (F ;V) for a signature F and a (ountably in�nite) set of variablesV . It is the least ongruene relation on the term algebra T (F ;V) that is losed un-der substitution and ontains E, and it will be denoted by =E (see [Dershowitz andPlaisted 2001, page 575℄ (Chapter 9 of this Handbook) for a more detailed de�ni-tion of the relation =E). Identities are written in the form s � t. If s =E t, then wesay that the term s is equal modulo E to the term t. For example, let f be a binaryfuntion symbol. The identity C := ff(x; y) � f(y; x)g says that f is ommuta-tive, and the identity A := ff(f(x; y); z) � f(x; f(y; z))g expresses assoiativityof f . We have f(f(a; b); ) =C f(; f(b; a)), and f(a; f(x; b)) =A f(f(a; x); b). Inthe following, we will often slightly abuse the notion of an equational theory byalso alling a set of de�ning identities E an equational theory. For a given set ofidentities E, we denote by Sig(E) the set of all funtion symbols ourring in E.3.1. Definition. Let E be an equational theory and F a signature ontainingSig(E). An E-uni�ation problem over F is a �nite set of equations� = fs1 ?=E t1; : : : ; sn ?=E tngbetween F-terms with variables in a (ountably in�nite) set of variables V . An E-uni�er of � is a substitution � suh that s1� =E t1�; : : : ; sn� =E tn�. The set of



470 Franz Baader and Wayne Snyderall E-uni�ers of � is denoted by UE(�), and � is E-uni�able i� UE(�) 6= ;.Obviously, syntati uni�ation is the speial ase of this de�nition where E = ;.Any syntati uni�er of an E-uni�ation problem � is also an E-uni�er, but forE 6= ;, the set UE(�) may have additional elements. For example, if a and b aredistint onstant symbols, then the C-uni�ation problem ff(a; x)=?C f(b; y)g hasfx 7! b; y 7! ag as C-uni�er, whereas the terms f(a; x) and f(b; y) do not have asyntati uni�er. For the A-uni�ation problem � := ff(a; x)=?A f(y; b)g, the setUA(�) ontains the syntati uni�er fx 7! b; y 7! ag of f(a; x) and f(y; b), but alsoadditional A-uni�ers suh as fx 7! f(z; b); y 7! f(a; z)g.The instantiation quasi-ordering �� on substitutions is adapted to the ase ofequational uni�ation as follows:3.2. Definition. Let E be an equational theory and X a set of variables. Thesubstitution � is more general modulo E on X than the substitution � i� thereexists a substitution � suh that x� =E x�� for all x 2 X . In this ase we write� ��XE � and say that � is an E-instane of � on X .It is easy to see that ��XE is a quasi-ordering, i.e., a reexive and transitive binaryrelation. The assoiated equivalene is denoted by �=XE , i.e., � �=XE � i� � ��XE � and� ��XE �.When omparing E-uni�ers of a problem �, the set X is the set of all vari-ables ourring in �. Unlike the ase of syntati uni�ation, uni�able E-uni�ationproblems need not have a most general E-uni�er. For example, the C-uni�ationproblem ff(x; y)=?C f(a; b)g has the two C-uni�ers �1 := fx 7! a; y 7! bg and�2 := fx 7! b; y 7! ag. On Var(�) = fx; yg, any C-uni�er of � is equal to either�1 or �2, and �1 and �2 are not omparable w.r.t the instantiation quasi-ordering��fx;ygC . Consequently, there annot be a most general C-uni�er of �. Thus, the rôleof the most general uni�er must in general be taken on by a omplete set of uni�ers.3.3. Definition. Let � be an E-uni�ation problem over F and let X := Var(�)be the set of all variables ourring in �. A omplete set of E-uni�ers of � is a setC of substitutions suh that1. C � UE(�), i.e., eah element of C is an E-uni�er of �,2. for eah � 2 UE(�) there exists � 2 C suh that � ��XE �.The set C is a minimal omplete set of E-uni�ers of � i� it is a omplete set thatsatis�es3. two distint elements of C are inomparable w.r.t. ��XE , i.e., for all �; �0 2 C,� ��XE �0 implies � = �0.The substitution � is a most general E-uni�er of � i� f�g is a (minimal) ompleteset of E-uni�ers of �.If the uni�ation problem � is not E-uni�able, then the empty set is a minimalomplete set of E-uni�ers of �. Depending on the equational theory E, minimalomplete sets of E-uni�ers need not always exist, and even if they do, they may be



Unifiation Theory 471in�nite (see below). It is, however, easy to show that they are unique up to instan-tiation equivalene �=XE (see subsetion 3.3.1). This makes sure that the followingde�nition of the uni�ation type of an E-uni�ation problem and of an equationaltheory E is unambiguous.3.4. Definition. Let E be an equational theory, and let � be an E-uni�ationproblem over F . The problem � has type unitary (�nitary , in�nitary) i� it hasa minimal omplete set of E-uni�ers of ardinality 1 (�nite ardinality, in�niteardinality). If � does not have a minimal omplete set of E-uni�ers, then it is oftype zero. We abbreviate type unitary by 1, type �nitary by !, type in�nitary by1, and type zero by 0, and order these types as follows: 1 < ! <1 < 0.The uni�ation type of E w.r.t. the signature F is the maximal type of an E-uni�ation problem over F .Aording to this de�nition, an equational theory that is unitary is not �nitary,and a theory of type zero is not in�nitary. In the literature, these notion havesometimes been de�ned suh that unitary implies �nitary (i.e., unitary theories are aspeial ase of �nitary theories) and type zero implies in�nitary. We prefer a striterseparation between the types. In order to express that a theory is unitary or �nitary(in the sense of de�nition 3.4) we say that it is at most �nitary . Analogously, toexpress that a theory is in�nitary or of type zero we say that it is at least in�nitary .It should also be noted that the uni�ation type of an equational theory dependsnot only on E, but also on the set of funtion symbols F that are allowed to ourin the uni�ation problems (see subsetion 3.2.2 for more details). We provide anexample for eah of the four types.3.5. Example (unitary). Sine any uni�able uni�ation problem has a most gen-eral syntati uni�er, the empty theory ; (whih obviously de�nes syntati equal-ity) has uni�ation type unitary w.r.t. any signature F .3.6. Example (�nitary). Above, we have seen that ommutativity C is not unitarysine the C-uni�ation problem ff(x; y)=?C f(a; b)g does not have a most generalC-uni�er. It is not hard to show that C is �nitary w.r.t. any signature F . In fat,the C-equivalene lass [t℄C := ft0 j t=C t0g of a given term t is easily shown to be�nite. For a given C-uni�ation problem � = fs1=?C t1; : : : ; sn=?C tng, we onsiderall possible syntati uni�ation problems of the form �0 = fs01=? t01; : : : ; s0n=? t0ngwhere si =C s0i and ti =C t0i for all i; 1 � i � n. There are only �nitely manysuh sets �0, and it an be shown that the olletion of all the syntati mostgeneral uni�ers of these sets is a omplete set of C-uni�ers of � [Siekmann 1979℄.In most ases, this set is not minimal, but obviously a minimal omplete set an beobtained by eliminating redundant elements, i.e., elements that are C-instanes ofother elements of the set.3.7. Example (in�nitary). Even though assoiativity A is similar to C in that A-equivalene lasses are �nite, the uni�ation method outlined for C does not work



472 Franz Baader and Wayne Snyderfor A. It is easy to see that the A-uni�ation problem ff(a; x)=?A f(x; a)g has anin�nite minimal omplete set of A-uni�ers, namely f�n j n � 1g, where for eahn the substitution �n := fx 7! f(a; f(a; � � � ; f(a; a) � � �))g replaes x by a termontaining n ourrenes of the onstant a. Consequently, A annot be unitary or�nitary. Plotkin [1972℄ desribes a proedure that generates a minimal ompleteset of A-uni�ers of a given A-uni�ation problem over an arbitrary set of funtionsymbols F , whih shows that A is in fat in�nitary and not of type zero.3.8. Example (zero). The �rst example of an equational theory of uni�ationtype zero was desribed by Fages and Huet [1983℄ and [1986℄. In [Baader1986℄ it is shown that the theory of idempotent semigroups, i.e., AI := A [ff(x; x) � xg is of uni�ation type zero sine the AI-uni�ation problemff(x; f(y; x))=?AI f(x; f(z; x))g does not have a minimal omplete set of AI-uni�ers.This result was also shown by Shmidt-Shau� [1986b℄, but his example problemff(z; f(a; f(x; f(a; z))))=?AI f(z; f(a; z))g ontains an additional onstant a.For syntati uni�ation, a \uni�ation algorithm" is an algorithm that om-putes a most general (syntati) uni�er of a given uni�ation problem if it exists,and determines non-uni�ability otherwise. For equational uni�ation, this notionmust be adapted. More preisely, we are interested in di�erent types of algorithms,depending on what the equational theory allows and what is needed in appliations.An E-uni�ation algorithm (w.r.t. F) is an algorithm that omputes a �nite om-plete set of E-uni�ers for all E-uni�ation problems over F . Ideally, the omputedsets should also be minimal. There are, however, theories for whih it is easier toompute a not neessarily minimal set (ommutativity C is an example). We allan E-uni�ation algorithm minimal i� it omputes a �nite minimal omplete setof E-uni�ers. As mentioned in example 3.6, an E-uni�ation algorithm an alwaysbe turned into a minimal one by eliminating redundant uni�ers, provided that theE-instantiation quasi-ordering is deidable.In appliations suh as onstraint-based approahes to automated dedutionand rewriting (see [B�urkert 1991, Nieuwenhuis and Rubio 1994, Kirhner andKirhner 1989℄ and [Nieuwenhuis and Rubio 2001℄, Chapter 7 of this Handbook), itis not neessary to ompute omplete sets of uni�ers. Instead, it is suÆient to testuni�ation problems for uni�ability. An algorithm that is able to deide uni�abilityof E-uni�ation problems (over F) is alled a deision proedure for E-uni�ation(w.r.t. F). Obviously, any E-uni�ation algorithm yields a deision proedure forE-uni�ation sine a given E-uni�ation problem � is uni�able i� the omputed�nite omplete set is nonempty.For theories that are not unitary or �nitary, the notion of an E-uni�ation al-gorithm, as introdued above, is not appropriate. A (minimal) E-uni�ation pro-edure is a proedure that enumerates a possibly in�nite (minimal) omplete setof E-uni�ers. The proedure by Plotkin [1972℄ mentioned in example 3.7 is a mini-mal A-uni�ation proedure. An E-uni�ation proedure need not yield a deisionproedure for E-uni�ation sine it need not terminate even if the input prob-lem does not have E-uni�ers. This is, e.g., the ase for Plotkin's proedure. A-



Unifiation Theory 473uni�ation (more preisely, the question whether there exists an A-uni�er for agiven A-uni�ation problem) is nevertheless deidable, but this is a lot harder toshow [Makanin 1977℄ than designing a minimal A-uni�ation proedure.3.2. New issuesThe notions introdued above deviate in several respets from the notions intro-dued for syntati uni�ation. In this subsetion, we point out the reasons whythis was neessary.3.2.1. The instantiation quasi-orderingFor syntati uni�ation, the instantiation quasi-ordering�� was de�ned by � �� � i�there exists � suh that � = ��. In the de�nition of the instantiation quasi-orderingfor E-uni�ation, syntati equality is (quite naturally) replaed by equality mod-ulo E. What may seem less lear is why we have restrited this equality (moduloE) to the variables ourring in the uni�ation problem. Obviously, the orderingobtained this way is stronger than the one that requires equality on all variables(i.e., more substitutions are omparable). In appliations in automated dedution,where substitutions generally have meaning only in the ontext of the expressions(i.e., uni�ation problems) that produed them, it is admissible to use an orderingthat ompares alternate solutions only with respet to this small set of variables.It is also advisable, as this stronger ordering allows for smaller minimal ompletesets. For example, the theory ACU := AC [ ff(x; e) = xg is known to be uni-tary w.r.t. F := ff; eg. If the weaker instantiation quasi-ordering (i.e., the oneomparing substitutions on all variables) were used, this would no longer be true[Baader 1991℄.Another di�erene between the equational ase and the syntati ase onernsthe haraterization of the instantiation equivalene �=. For E = ;, two substitutionsare instantiation equivalent i� they are equal up to omposition with a variablerenaming. It should be noted that this need no longer be the ase for E 6= ;,even if one replaes \equal up to omposition with a variable renaming" by \equalmodulo E up to omposition with a variable renaming." For example, onsider theequational theory I := ff(x; x) � xg, and the substitutions � := fx 7! yg and� := fx 7! f(y; z)g. Using the substitutions �1 := fy 7! f(y; z)g and �2 := fy 7!y; z 7! yg, it is easy to show that � �=fxgE �. However, a variable renaming annotidentify y and z, and thus f(y; z)� 6=I y for every suh renaming �.3.2.2. The signature mattersIn the de�nitions of E-uni�ation problems, uni�ation type, et., we have alwaysexpliitly stated whih funtion symbols may our in the uni�ation problems. Thereason is that the uni�ation properties of an equational theory (like deidability,uni�ation type, et.) may depend on this set of funtion symbols. In most ases,however, a less �ne-grained distintion is suÆient. Reall that Sig(E) denotes the



474 Franz Baader and Wayne Snyderset of all funtion symbols ourring in the equational theory E.3.9. Definition. Let E be an equational theory and � an E-uni�ation problemover F .� � is an elementary E-uni�ation problem i� F = Sig(E).� � is an E-uni�ation problem with onstants i� F nSig(E) is a set of onstantsymbols.� In a general E-uni�ation problem, F nSig(E) may ontain arbitrary funtionsymbols.Following this distintion, we an introdue three di�erent uni�ation types foran equational theory. The uni�ation type of E w.r.t. elementary uni�ation isthe maximal uni�ation type of E w.r.t. all sets of funtion symbols F satisfyingF = Sig(E). Aordingly, the uni�ation type of E w.r.t. uni�ation with onstantsis the maximal uni�ation type of E w.r.t. all sets of funtion symbols F suh thatF nSig(E) is a set of onstant symbols, and the uni�ation type of E w.r.t. generaluni�ation3 is the maximal uni�ation type of E w.r.t. all signatures F . Obviously,the same distintion an be made for deidability of E-uni�ation, and for otherinteresting properties of E-uni�ation problems. Constant (funtion) symbols thatdo not our in E are alled free onstant (funtion) symbols w.r.t. E.The theory ACU introdued above is an example of a theory that is unitaryfor elementary uni�ation, but only �nitary for uni�ation with onstants (see,e.g., [Herold and Siekmann 1987℄). B�urkert [1989℄ has shown that there exists anequational theory for whih elementary uni�ation is deidable, but uni�ation withonstants is undeidable.Appliations of equational uni�ation in automated dedution usually yield gen-eral uni�ation problems. For example, in resolution-based theorem proving, theadditional free funtion symbols are often generated by Skolemization.From a stritly formal point of view, the de�nition of an E-uni�er (see de�ni-tion 3.1) is ambiguous sine it does not speify over whih signature the terms thatare substituted for the variables may be built. By default, we have assumed thatthis set is the set F , whih ontains all funtion symbols ourring in E or �. Onemight ask whether there would be a signi�ant di�erene if we allowed the substi-tutions to introdue additional free funtion symbols. It is easy to show, however,that there is no suh di�erene sine any E-uni�er of � that introdues additionalfree funtion symbols is an instane of an E-uni�er that uses only symbols from F :this more general uni�er an, in priniple, be obtained by replaing subterms start-ing with suh additional funtion symbols by new variables, while taking are that=E-equal subterms are replaed by the same variable. Thus, if we restrit the setof E-uni�ers to substitutions over F , we obtain a omplete set of E-uni�ers evenw.r.t. substitutions over larger signatures. This justi�es the (formally somewhatsloppy) de�nition of the set of E-uni�ers given above.3It should be noted that this use of the term \general uni�ation" is distint from the onein [Gallier and Snyder 1989, Snyder 1991℄, where it refers to methods that provide uni�ationproedures for arbitrary equational theories (see setion 4.1).



Unifiation Theory 4753.2.3. Single equations versus systems of equationsFor syntati uni�ation, solving a system of term equations an be redued tosolving a single equation s=? t. For this reason, syntati uni�ation is sometimesonly onsidered for single equations. For equational uni�ation, the same holds ifone onsiders general uni�ation. In fat, if f 2 F is an n-ary funtion symbol notontained in Sig(E), then the E-uni�ation problem fs1=?E t1; : : : ; sn=?E tng overF has the same set of uni�ers as ff(s1; : : : ; sn)=?E f(t1; : : : ; tn)g.For elementary uni�ation and for uni�ation with onstants, however, there maybe signi�ant di�erenes. For example, there exists an equational theory E suhthat all elementary E-uni�ation problems of ardinality 1 (i.e., single equations)have minimal omplete sets of E-uni�ers, but E is of type zero w.r.t. elementaryuni�ation sine there exists an elementary E-uni�ation problem of ardinality2 that does not have a minimal omplete set of E-uni�ers [B�urkert, Herold andShmidt-Shau� 1989℄. Narendran and Otto [1990℄ give an example of a theory suhthat uni�ability of elementary uni�ation problems of ardinality 1 is deidable, butuni�ability is undeidable for elementary uni�ation problems of larger ardinality.3.3. ReformulationsIn this subsetion, we onsider reformulations of (some of) the notions introduedabove from an order-theoreti, logial, algebrai, and ategory-theoreti point ofview. This will shed a new light on the notions, and it allows us to utilize approahesand results from the respetive areas in uni�ation theory.3.3.1. The order-theoreti point of viewLet E be an equational theory and � an E-uni�ation problem with variablesX := Var(�). We know that the relation ��XE is a quasi-ordering on UE(�) withassoiated equivalene relation �=XE . Thus, ��XE indues a partial ordering � on theset U := f[�℄ j � 2 UE(�)g of all �=XE -lasses [�℄ := f� j � �=XE �g:[�℄ � [�℄ i� � ��XE �:This allows us to investigate notions like omplete and minimal omplete sets ofE-uni�ers on the abstrat order-theoreti level.Thus, let (U;�) be an arbitrary partially ordered set. A subset C of U is alledomplete i� for all u 2 U there exists  2 C suh that suh that  � u. A ompleteset C is alled minimal i� it is minimal with respet to set inlusion.3.10. Lemma. The omplete set C � U is minimal i� for all x; y 2 C, x � yimplies x = y.Proof. If the elements x; y of the omplete set C satisfy x < y, then C nfyg is alsoomplete, whih shows that C is not minimal. Conversely, if C1; C2 are ompletesets suh that C1 � C2, then there exists y 2 C2 n C1. Sine C1 is omplete, thereexists x 2 C1 suh that x � y, and sine y 62 C1, we have x 6= y.



476 Franz Baader and Wayne SnyderThe following lemma desribes the onnetion between minimal omplete setsand minimal elements in partially ordered sets.3.11. Lemma. Let M be the set of �-minimal elements of U .1. If C � U is a minimal omplete set, then C =M .2. If M is omplete, then it is minimal omplete.Proof. The seond statement is obvious, sine di�erent �-minimal elements of Uannot be omparable w.r.t. �. To show the �rst statement, let C � U be a minimalomplete set. Obviously, M � C sine any �-minimal element must be ontainedin a omplete set. To see the other inlusion, assume that y 2 C is not minimal.Thus, there exists an element y0 2 U suh that y0 < y. Sine C is omplete, thereexists x 2 C suh that x � y0. Thus, we have x; y 2 C with x < y, whih showsthat C annot be minimal.Figure 5 shows (the Hasse diagrams of) two partially ordered sets. The left oneonsists of an in�nitely desending hain x1 > x2 > x3 > � � �. Consequently, theset of �-minimal elements is empty, and thus not omplete. The right one alsoontains an in�nitely desending hain (onsisting of the elements y1; y2; : : :), butthe set of �-minimal elements (the elements z1; z2; : : :) is obviously omplete. Ifx1x2x3x5...x4
y1y2y3y5...y4

z1z2z3z5z4...Figure 5: Two partially ordered sets.U = f[�℄ j � 2 UE(�)g is the set of �=XE -lasses of E-uni�ers of �, and � is thepartial ordering on U indued by��XE , then lemma 3.11 yields a nie haraterizationof all minimal omplete sets of E-uni�ers. If M is a subset of U , then a set ofrepresentatives of M is any subset of UE(�) that ontains for eah lass m 2 Mexatly one representative, i.e., a uni�er �m suh that [�m℄ = m.3.12. Theorem. LetM be the set of all �-minimal elements of U . If C is a minimalomplete set of E-uni�ers of �, then M = f[�℄ j � 2 Cg. Conversely, if M isomplete, then any set of representatives of M is a minimal omplete set of E-uni�ers of �.



Unifiation Theory 477As an immediate onsequene of this theorem we an dedue3.13. Corollary. Let M be the set of all �-minimal elements of U .1. A minimal omplete set of E-uni�ers of � exists i� M is omplete.2. If a minimal omplete set of E-uni�ers of � exists, then it is unique up to theequivalene �=XE .In [Baader 1989a℄, this order-theoreti point of view was used to derive di�erentharaterizations of uni�ation type zero.3.3.2. The algebrai and logial point of viewIt is well known that the deision problems for elementary uni�ation and for uni-�ation with onstants orrespond to natural lasses of logial deision problems[Bokmayr 1992℄, and it turns out that the same is true for general uni�ation.Before stating these logial haraterizations of E-uni�ation, we reall someresults from universal algebra about equationally de�ned lasses (see, e.g., [Cohn1965, Mal'ev 1971, Gr�atzer 1979℄ for more details). An equational theory E de�nesa variety (or equational lass) V (E), i.e., the lass of all models of E. The theoryE is alled non-trivial if V (E) ontains algebras of ardinality > 1, and trivialotherwise. Obviously, E is trivial i� x =E y for distint variables x; y. If E isa non-trivial equational theory, then V (E) ontains free algebras over any set ofgenerators. In fat, let F0 := Sig(E), and let X be a set of variables of ardinality�. Then the quotient term algebra T (F0;X )==E is a free algebra in V (E). Its setof generators onsists of the =E-lasses of the variables, and this set has ardinality� sine E was assumed to be non-trivial. We all this algebra the E-free algebrawith generators X .4 The fat that it is free in V (E) means that any mapping fromX into an algebra A 2 V (E) an uniquely be extended to a homomorphism ofT (F0;X )==E into A.Now, we introdue the lasses of formulae that orrespond to equational uni�-ation problems. Let E be an equational theory, and F0 := Sig(E) be the set offuntion symbols ourring in E. An atomi F0-formula is an equation s = t. Apositive F0-matrix is built from atomi F0-formulae using onjuntion and disjun-tion. A positive F0-sentene is a quanti�er-pre�x followed by a positive F0-matrixthat ontains only variables introdued in the pre�x. Without loss of generalitywe assume that the variables ourring in the pre�x are all distint. A positiveexistential F0-sentene is a positive F0-sentene whose pre�x ontains only exis-tential quanti�ers, and a positive AE F0-sentene has a pre�x onsisting of a blokof universal quanti�ers, followed by a blok of existential quanti�ers. The positive(positive existential, positive AE) fragment of the equational theory E onsists ofthe set of all positive (positive existential, positive AE) F0-sentenes that are validin E, i.e., true in all models of E. Aordingly, for an F0-algebra A, the positive4Stritly speaking, the generators are the =E-lasses of the elements of X , but sine di�erentvariables belong to di�erent lasses, we slightly abuse the notation by identifying a variable x 2 Xwith its =E-lass.



478 Franz Baader and Wayne Snyder(positive existential, positive AE) theory of A is the set of all positive (positiveexistential, positive AE) F0-sentenes that are true in A.3.14. Theorem. Let E be a non-trivial equational theory, F0 := Sig(E), and V aountably in�nite set of variables.1. Elementary E-uni�ation is deidable i� the positive existential fragment of Eis deidable i� the positive existential theory of T (F0;V)==E is deidable.2. E-uni�ation with onstants is deidable i� the positive AE fragment of E isdeidable i� the positive AE theory of T (F0;V)==E is deidable.Proof. (1.1) Let � := fs1=?E t1; : : : ; sn=?E tng be an elementary E-uni�ationproblem, and let Var(�) = fx1; : : : ; xkg. The terms s1; t1; : : : ; sn; tn are F0-termswith variables in Var(�), whih implies that�� := 9x1: � � � 9xk: s1 = t1 ^ : : : ^ sn = tnis a positive existential F0-sentene. We laim that � is E-uni�able i� �� holds inT (F0;V)==E i� �� is valid in E.Assume that � is an E-uni�er of �, i.e., s1� =E t1�; : : : ; sn� =E tn�. Withoutloss of generality we may assume that � introdues only variables from V . Thus, thesubstitution � may also be onsidered as a valuation of the variables fx1; : : : ; xkgby elements of T (F0;V)==E . Conversely, any suh valuation an be seen as a sub-stitution. This shows that � is E-uni�able i� �� holds in T (F0;V)==E .If �� is valid in all models of E, it obviously holds in T (F0;V)==E 2 V (E).Conversely, assume that �� holds in T (F0;V)==E . If �� is not valid in E, then thereexists an algebra A 2 V (E) in whih �� does not hold. By the L�owenheim-Skolemtheorem, we may without loss of generality assume that A is ountable. Thus,there exists a surjetive homomorphism from T (F0;V)==E onto A (extending anarbitrary surjetion of X onto the arrier ofA). Sine validity of positive sentenes isinvariant under surjetive homomorphisms,5 validity of �� in T (F0;V)==E 2 V (E)implies validity of �� in A, whih is a ontradition.(1.2) Let � = 9x1: � � � 9xn:  be a positive existential F0-sentene. Without lossof generality we may assume that its matrix  is in disjuntive normal form, i.e., =  1 _ : : : _  n where the formulae  i are onjuntions of equations. Sineexistential quanti�er distribute over disjuntion, � is valid in E (in T (F0;V)==E )i� one of the formulae 9x1: � � � 9xn:  i is valid in E (in T (F0;V)==E). Obviously,the formulae  i an be translated into uni�ation problems �i, and as in part (1.1)of the proof we an show that �i is uni�able i� 9x1: � � � 9xn:  i is valid in E (inT (F0;V)==E).(2) The seond equivalene an be shown as in part (1.1) of the proof (sine therewe have only used the fat that �� is a positive F0-sentene).To see the �rst equivalene, assume that � is a positive AE sentene. Skolemizingthe universally quanti�ed variables6 yields a positive existential (F0 [F1)-sentene5See [Mal'ev 1973℄, pp. 143, 144 for a proof.6We must Skolemize the universally quanti�ed variables sine we are interested in validityinstead of satis�ability.



Unifiation Theory 479�0 suh that F1 is a set of onstants (not ontained in Sig(E)) and � is validin E i� �0 is valid in E. As in (1.2) of the proof, �0 an be translated into E-uni�ation problems � 0i suh that �0 is valid in E i� one of these uni�ationproblems is uni�able. Obviously, the problems � 0i are E-uni�ation problem withonstants sine they ontains the additional Skolem onstants F1. Conversely, anyE-uni�ation problem with onstants an be turned into a positive AE sentene byreplaing its free onstants by universally quanti�ed variables.The redution desribed in part (1.2) of the proof is exponential in the worst asesine the disjuntive normal form of the matrix  an be exponential in the size of . For syntati equality (i.e., E = ;), it an be shown that the problem of deidingvalidity of positive existential sentenes is NP-omplete, whereas the orrespondinguni�ation problem is linear [Kozen 1981℄.Before we state the analogous orrespondene between general E-uni�ation andthe (full) positive fragment of E, we introdue another lass of uni�ation problems,whih turns out to be equivalent to general E-uni�ation.3.15. Definition. An E-uni�ation problem with linear onstant restritions (lr)onsists of an E-uni�ation problem with onstants, �, and a linear ordering < onthe variables and free onstants ourring in �. A substitution � is an E-uni�er of(�; <) i� it is an E-uni�er of � that satis�esx <  implies  does not our in x�for all variables x and free onstants  in �.For example, the (syntati) uni�ation problem ff(x)=? f()g has fx 7! g asmost general uni�er. Under the restrition x < , this uni�er is not admissible.3.16. Theorem. Let E be a non-trivial equational theory, F0 := Sig(E), and V aountably in�nite set of variables. Then the following statements are equivalent:1. The positive theory of E is deidable.2. The positive theory of T (F0;V)==E is deidable.3. General E-uni�ation is deidable.4. E-uni�ation with linear onstant restritions is deidable.Proof.We only give a sketh of the proof (see [Baader and Shulz 1996℄ for details).In order to show (1), (2), it is suÆient to show that a positive F0-sentene �is valid in E i� it is true in T (F0;V)==E . This an be shown as in part (1.1) of theproof of theorem 3.14.A given positive sentene � an be turned into a positive existential sentene �0by Skolemization. As in part (2) of the proof of theorem 3.14, validity of �0 an beredued to validity of several E-uni�ation problems, whih are general sine theymay ontain Skolem funtions of arbitrary arity. This shows (3)) (1).A given E-uni�ation problem with linear onstant restritions (�; <) an betransformed into a positive F0-sentene �<� as follows: the matrix of �<� is simply



480 Franz Baader and Wayne Snyderthe onjuntion of all equations in �. However, the onstants in � are onsideredas variables in this matrix. The quanti�er-pre�x ontains a universal quanti�er forevery free onstant in �, and an existential quanti�er for every variable in �. Theorder of the quanti�ers is determined by the linear ordering <. It an be shownthat (�; <) is uni�able i� �<� is valid in E. This proves (1)) (4).Finally, (4)) (3) follows from the ombination result in [Baader and Shulz 1996℄(see setion 6).The following example, in whih we assume E = ff(x) � f(x)g, illustrates thetransformation of an E-uni�ation problem with linear onstant restritions into apositive sentenes, and of this positive sentene into a general E-uni�ation problem(by Skolemization).uni�ation with lr positive sentene general uni�ationfx=?E f()g; x <  9x:8y: x = f(y) fx=?E f(h(x))gfx := f()g;  < x 8y:9x: x = f(y) fx=?E f(d)gThe problem fx=?E f()g is not uni�able under the restrition x < , sine anyuni�er must replae x by f(), whih ontains the forbidden onstant . The or-responding positive sentene 9x:8y: x = f(y) is not valid sine it says that f isa onstant funtion, whih is not true in all models of E. Finally, the general E-uni�ation problem fx=?E f(h(x))g, whih ontains the Skolem funtion h, is notuni�able sine one obtains an ours hek failure. Changing the linear orderingto  < x leads to a uni�able uni�ation problem with lr, and the orrespondingpositive sentene is trivially valid.3.3.3. The ategory-theoreti point of viewLet � := fsi=?E ti j i = 1; : : : ; ng be an E-uni�ation problem over F , andX := Var(�) be the �nite set of variables ourring in �. Sine all our alu-lations are done modulo E, we may onsider the terms si and ti as elementsof T (F ;X )==E , the E-free algebra with generators X . For example, let F on-sist of a binary funtion symbol f , and let A axiomatize assoiativity of f , i.e.,A := ff(x; f(y; z)) � f(f(x; y); z)g. The E-free algebra with generators X is thefree semigroup X+, whose elements are the nonempty words over the alphabet X .Instead of writing terms like f(x; f(y; f(x; x))) in A-uni�ation problems, we anomit the parentheses and all ourrenes of the letter f , and simply write wordslike xyxx.Also, sine the instantiation quasi-ordering ompares substitutions only on X andmodulo E, eah substitution an be seen as a homomorphism from T (F ;X )==E intoan E-free algebra T (F ;Y)==E , where Y is a suitable �nite set (of variables or gener-ators). For example, modulo A, the substitution � := fx 7! f(x; f(y; f(x; x))); y 7!f(y; z)g an be viewed as a homomorphism �: fx; yg+ ! fx; y; zg+ that maps x tothe word xyxx and y to the word yz.



Unifiation Theory 481The E-uni�ation problem � itself an be represented as a pair of homomorphismsbetween �nitely generated E-free algebras. Indeed, let I := fx1; : : : ; xng be a setof ardinality n. If we de�ne �; � : T (F ; I)==E ! T (F ;X )==E byxi� := si and xi� := ti (i = 1; : : : ; n);then Æ: T (F ;X )==E ! T (F ;Y)==E is an E-uni�er of � i� xi�Æ = siÆ = tiÆ =xi�Æ,7 that is, i� �Æ = �Æ. Consequently, any E-uni�ation problem over F an berepresented as a parallel pair of morphisms in the following ategory:83.17. Definition. Let E be an equational theory and F be a signature suh thatSig(E) � F . The ategory CF (E) is de�ned as follows:1. The objets of CF (E) are the �nitely generated E-free algebras T (F ;X )==E .2. The morphisms of CF (E) are the homomorphisms between these algebras. Fora morphism Æ: T (F ;X )==E ! T (F ;Y)==E , the algebra T (F ;X )==E is alledits domain, and the algebra T (F ;Y)==E its odomain.3. Composition �Æ of morphisms is the usual omposition of mappings, whih isonly de�ned if the odomain of � oinides with the domain of Æ.A uni�ation problem in CF (E) is a pair h�; �i of morphisms �; � : T (F ; I)==E !T (F ;X )==E having the same domain and the same odomain. A uni�er of h�; �iin CF (E) is a morphism Æ with domain T (F ;X )==E suh that �Æ = �Æ.The instantiation quasi-order, and the notions omplete and minimal ompleteset of uni�ers as well as most general uni�er an be adapted in an obvious way tothis view of E-uni�ation as a problem in CF(E). For example, the morphism Æ isa most general uni�er of h�; �i i� it is a uni�er of h�; �i suh that, for all uni�ers �of h�; �i, there exists a morphism � satisfying � = Æ�.Readers familiar with basi notions from ategory theory may have notied thatthis de�nition of a most general uni�er of h�; �i strongly resembles the de�nition ofa oequalizer of a parallel pair of morphisms (i.e., a pair with the same domain andthe same odomain). The only di�erene is that for a most general uni�er of h�; �ito be a oequalizer, the morphism � suh that � = Æ� must always be unique.It is easy to see that a most general uni�er of h�; �i need not be a oequalizer ofthis parallel pair. For example, the most general (syntati) uni�er Æ := fy 7! xg ofthe equation f(x; y)=? f(y; x) an be viewed as a morphism ÆY : T (ffg; fx; yg)!T (ffg;Y) for any �nite set of variables Y ontaining x. All these morphisms aremost general uni�ers of the parallel pair orresponding to the uni�ation problemf(x; y)=? f(y; x), but only Æfxg is a oequalizer. More generally, a most generaluni�er in CF (;) need not be a oequalizer, but it an always be transformed intoone by appropriately restriting the set of generators in its odomain.For nonempty theories, suh a transformation need not be possible, however. Asshown in [Baader 1991℄, there exists an equational theory, namely the theory ACU7Sine terms are now viewed as elements of E-free algebras (i.e., =E-equivalene lasses), wemay write equality (=) in plae of equality modulo E (=E).8See [Piere 1991℄ for basi de�nitions and results of ategory theory.



482 Franz Baader and Wayne Snyderthat axiomatizes an assoiative-ommutative binary symbol f with a unit e, suhthat all solvable uni�ation problems in Cff;eg(ACU) have a most general uni�er,but not all solvable uni�ation problems in this ategory have a oequalizer. In theappliations of E-uni�ation in automated dedution, the additional uniquenessrequirement in the de�nition of a oequalizer is not relevant. Thus, one should stikwith the de�nition of a most general uni�er as introdued above, and not replaeit by the one of a oequalizer.As suh, the simple observation that E-uni�ation has a ategory-theoreti in-terpretation does not solve any problems: it just transforms them into a di�erentrepresentation. This new representation is only of interest if tehniques and re-sults from ategory theory an be used to solve new and interesting problems inuni�ation theory. Rydeheard and Burstall [1985℄ use the ategory-theoreti repre-sentation of syntati uni�ation to derive a uni�ation algorithm based on olimitonstrutions in CF (;). In [Baader 1989b℄, results from ategory theory on so-alledsemi-additive ategories are used to obtain results on uni�ation modulo so-alledommutative theories (see subsetion 5.2 below).Even though the onstrution of the ategory CF (E) is quite natural, there arealso other ways of representing uni�ation problems in ategory-theoreti terms.Whereas Goguen [1989℄ just introdues the dual ategory of CF (E) (where mor-phisms are inverse homomorphisms), Ghilardi [1997℄ takes a quite di�erent ap-proah: he onsiders the ategory of all algebras in V (E) (not only the �nitelygenerated free ones), and represents uni�ation problems as �nitely presented alge-bras in this ategory. In this setting, the proof that uni�ation in Boolean algebrasand in primal algebras is unitary [Nipkow 1990℄ beomes trivial.3.4. Survey of results for spei� theoriesResearh in uni�ation theory has produed results on uni�ation properties of agreat variety of equational theories. In this setion, we will briey review some ofthese results, with an emphasis on the more reent ones that are not yet overedby previous surveys of the area [Siekmann 1989, Jouannaud and Kirhner 1991,Kapur and Narendran 1992a, Baader and Siekmann 1994℄. For eah theory, we areinterested in the deision problem and its omplexity as well as its uni�ation typeand the existene of uni�ation algorithms and proedures. Depending on whihkind of uni�ation problems (elementary, with onstants, or general) is onsidered,there may exist di�erent results for a given theory.AssoiativityThe theory Af := ff(f(x; y); z) � f(x; f(y; z))g axiomatizes assoiativity of thebinary funtion symbol f .Deision problem: This problem, whih is very hard and had been open for a longtime, was �nally solved by Makanin [1977℄, who proves deidability of Af -uni�ation with onstants (see also [P�euhet 1981, Ja�ar 1990, Abdulrab andP�euhet 1989, Shulz 1993℄). Using general ombination tehniques and an



Unifiation Theory 483extension of Makanin's algorithm [Shulz 1992℄, deidability of general Af -uni�ation was shown in [Baader and Shulz 1992, Baader and Shulz 1996℄.The deision problem for Af -uni�ation is NP-hard [Benanav, Kapur andNarendran 1985℄. The known upper bound is still higher, even though there hasreently been onsiderable progress in lowering the bound: the 3-NEXPTIMEresult by Kosielski and Paholski [1990℄ was �rst improved to EXPSPACEby Guti�errez [1998℄, then to NEXPTIME by Plandowski [1999a℄, and �nallyto PSPACE [Plandowski 1999b℄. Interestingly, the last two results no longerneed Makanin's algorithm, i.e., they yield a new deision proedure that isindependent of Makanin's result.Uni�ation type: in�nitary for all three kinds of uni�ation problems [Plotkin 1972℄(see also example 3.7).Uni�ation proedures: Plotkin [1972℄ desribes a minimal uni�ation proedure forgeneral Af -uni�ation, whih an even deal with several assoiative funtionsymbols. In general, this proedure does not yield a deision proedure sineit need not terminate even for non-solvable problems or problems having a�nite minimal omplete set of Af -uni�ers. For ertain restrited types of Af -uni�ation problems, modi�ations of Plotkin's proedure an be turned intodeision proedures that are simpler than Makanin's general proedure [Au�rayand Enjalbert 1992, Shmidt 1998℄.CommutativityThe theory Cf := ff(x; y) � f(y; x))g, whih axiomatizes ommutativity of thebinary funtion symbol f , has already been onsidered in example 3.6.Deision problem: NP-omplete for Cf -uni�ation with onstants and general Cf -uni�ation. The hardness result for uni�ation with onstants is mentioned in[Garey and Johnson 1979℄, where it is attributed to Sethi (private ommuni-ation, 1977). A simple NP-hardness proof due to Narendran (private om-muniation, 1993) is skethed in [Baader and Siekmann 1994℄. It is easy tosee that this proof an also be used to show NP-hardness of elementary Cf -uni�ation (private ommuniation by Narendran, 1997).9 NP-deision proe-dures for general Cf -uni�ation an easily be obtained from the simple uni�a-tion algorithm skethed in example 3.6: instead of testing all possible sets �0,the non-deterministi deision proedure �rst guesses suh a set �0, and thentests whether this set has a syntati uni�er.Uni�ation type: �nitary for all three kinds of uni�ation problems [Siekmann1979℄.Uni�ation algorithms: In addition to Siekmann's simple (non-minimal) uni�ationalgorithm for general Cf -uni�ation [Siekmann 1979℄, various other methodshave been proposed [Fages 1983, Kirhner 1985, Herold 1987℄. However, noneof them diretly produes a minimal omplete set of Cf -uni�ers.9In this proof, simply replae the onstants a; b by the terms ta := f(x; f(x; x) and tb := f(x; x)and add for eah propositional variable q an equation f(xq ; yq)=?Cf f(ta; tb), whih makes surethat xq is instantiated either by ta or by tb.



484 Franz Baader and Wayne SnyderDistributivityThe theories Dlf;g := ff(x; g(y; z)) � g(f(x; y); f(x; z))g and Drf;g := ff(g(y; z); x)� g(f(y; x); f(z; x))g axiomatize left-distributivity and right-distributivity of f overg, and their union Df;g := Dlf;g [ Drf;g axiomatizes (both-sided) distributivity off over g. In addition, we onsider ombinations of these theories with Ag andUf := ff(x; e) � x; f(e; x) � xg.Deision problem: Dlf;g-uni�ation (and, by symmetry, Drf;g-uni�ation) with on-stants is deidable in polynomial time [Tid�en and Arnborg 1987℄.If one adds a unit for f , i.e., onsiders Dlf;g [Uf (or Drf;g [Uf ), then the prob-lem beomes muh harder sine Af -uni�ation an be redued to (Dlf;g [ Uf )-uni�ation. Deidability of (Dlf;g [Uf )-uni�ation with onstants was shown in[Shmidt-Shau� 1996b℄. Sine this deision proedure an be extended to opewith linear onstant restritions, general results on the ombination of deisionproedures [Baader and Shulz 1996℄ imply that general (Dlf;g[Uf )-uni�ationis deidable.For uni�ation modulo both-sided distributivity, the deision problem was openfor quite a while. After some preliminary deidability results for restritedlasses of Df;g-uni�ation problems [Contejean 1993, Shmidt-Shau� 1992℄,deidability of Df;g-uni�ation with onstants was �nally shown by Shmidt-Shau� [1996a℄. His non-deterministi algorithm redues solvability of Df;g-uni�ation problems with onstants to Af -uni�ation with onstants and ACU-uni�ation with linear onstant restritions. Thus, the algorithm is of quite highomplexity, ompared to the best known lower bound, whih is NP-hard [Tid�enand Arnborg 1987℄.Undeidability of (Df;g [ Ag)-uni�ation with onstants was proved in [Szab�o1982, Siekmann and Szab�o 1989℄. This negative result has been strengthened in[Tid�en and Arnborg 1987℄: every equational theory that lies above (Df;g [Ag)or (Dlf;g [ Uf [ Ag) and is onsistent with Peano arithmeti (where f standsfor multipliation, g for addition, and e for 1) has an undeidable uni�ationproblem. Deidability of (Df;g [ Uf )-uni�ation is still an open problem.Uni�ation type: in�nitary for Df;g-uni�ation problems with onstants and gen-eral Df;g-uni�ation problems. Szab�o [1982℄ gives an example of a Df;g-uni�ation problem with onstants whose minimal omplete set of uni�ers isin�nite. The existene of minimal omplete sets of Df;g-uni�ers (for all threekinds of uni�ation problems) is a onsequene of the fat that the =Df;g -lassof a given term is always �nite [Szab�o 1982℄, whih implies that the instan-tiation quasi-ordering ��XDf;g is Noetherian [Szab�o 1982, B�urkert et al. 1989℄.Dlf;g-uni�ation (and, by symmetry,Drf;g-uni�ation) with onstants is unitary,and an mgu an be omputed in polynomial time [Tid�en and Arnborg 1987℄.Assoiativity-ommutativityThe theories ACf := Af [ Cf and ACUf := ACf [ Uf will be onsidered inmore detail in subsetion 5.1. Examples of operations satisfying theses identitiesare addition and multipliation of (rational, real, et.) numbers.



Unifiation Theory 485Deision problem: NP-omplete for uni�ation problems with onstants and generaluni�ation problems both for ACf and ACUf [Kapur and Narendran 1992a℄.Elementary ACUf -uni�ation problems always have a trivial solution, and solv-ability of elementary ACf -uni�ation problems is deidable in polynomial timeusing linear programming [Domenjoud 1991℄.Uni�ation type: ACUf is unitary for elementary and �nitary for the two otherkinds of uni�ation problems, and ACf is �nitary for all three kinds of uni�-ation problems [Livesey and Siekmann 1975, Stikel 1981, Fages 1987℄. Thenumber of uni�ers in a minimal omplete set of ACf -uni�ers may be doubly-exponential in the size of a given elementary ACf -uni�ation problem [Kapurand Narendran 1992b℄.Uni�ation algorithms: Beause uni�ation modulo assoiativity-ommutativityhas many appliations in automated dedution, a great variety of uni�ationalgorithms has been developed for ACf and ACUf [Stikel 1975, Livesey andSiekmann 1975, Kirhner 1985, Fortenbaher 1985, B�uttner 1986a, Herold 1987,Herold and Siekmann 1987, Linoln and Christian 1989, Boudet, Contejean andDevie 1990℄ (see also subsetion 5.1).Assoiativity-ommutativity-idempotenyWe onsider the theories ACIf := ACf [ ff(x; x) � xg, its extension by a unite, ACUIf := ACIf [ Uf , and by a zero n, ACUZIf := ACUI [ ff(x; n) � ng.Examples of operations satisfying theses identities are union and intersetion ofsets. The theory ACUIf will be onsidered in more detail in subsetion 5.1.Deision problem: For all three theories, the deision problem is polynomial forelementary uni�ation and for uni�ation with onstants, and NP-ompletefor general uni�ation [Kapur and Narendran 1992a, Narendran 1996b℄. Likesyntati uni�ation, ACIf - and ACUIf -uni�ation with onstants are not onlyin P , but even P -omplete [Hermann and Kolaitis 1997℄.Uni�ation type: ACUIf is unitary for elementary and �nitary for the two otherkinds of uni�ation problems, and ACIf is �nitary for all three kinds of uni-�ation problems [Livesey and Siekmann 1975, B�uttner 1986b, Baader andB�uttner 1988, Kapur and Narendran 1992b℄. As with ACf , the number of ACIf -uni�ers in a minimal omplete set may be doubly-exponential in the size of agiven elementary ACIf -uni�ation problem [Kapur and Narendran 1992b℄. Her-mann and Kolaitis show that omputing the ardinality of a minimal ompleteset of uni�ers for given ACIf - or ACUIf -uni�ation uni�ation problems is#P -hard, whih implies that this funtion annot be omputed in polynomialtime, unless P = NP [Hermann and Kolaitis 1997℄.Uni�ation algorithms: Baader and B�uttner [1988℄ desribe an algorithm forACUIf -uni�ation problems with onstants onsisting of a single equation, andKapur and Narendran [1992b℄ sketh an algorithm for general ACIf -uni�ation.



486 Franz Baader and Wayne SnyderAbelian groupsThe theory of Abelian groups is de�ned by the identities AGf := ACUf [ff(i(x); x) � eg.Deision problem: trivial for elementary uni�ation, polynomial for uni�ation withonstants [Baader and Siekmann 1994℄, and NP-omplete for general uni�ation[Shulz 1997℄.Uni�ation type: unitary for elementary uni�ation and for uni�ation with on-stants [Lankford, Butler and Brady 1984℄, and �nitary for general uni�ation[Shmidt-Shau� 1989b, Boudet, Jouannaud and Shmidt-Shau� 1989℄. Com-puting the ardinality of a minimal omplete set of uni�ers for a given generalAGf -uni�ation is again #P -hard [Hermann and Kolaitis 1996℄.Uni�ation algorithms: Lankford et al. [1984℄ desribe an algorithm for AGf -uni�ation with onstants, and Shmidt-Shau� [1989b℄ shows that this algo-rithm an be ombined with an algorithm for syntati uni�ation into analgorithm for general AGf -uni�ation.Commutative and Boolean ringsLet CRU denote the well-known axioms for ommutative rings with a (multiplia-tive) unit, and BR the theory of Boolean rings.Deision problem: As skethed in [Baader and Siekmann 1994℄, undeidability ofelementary CRU-uni�ation is an easy onsequene of the fat that Hilbert's10th problem is undeidable [Matiyasevih 1971, Davis 1973℄.For the theory BR, the deision problem is NP-omplete for elementary uni�-ation, �p2-omplete for uni�ation with onstants, and PSPACE-omplete forgeneral uni�ation [Baader 1998℄.Uni�ation type: The uni�ation type of CRU is at least in�nitary, even for ele-mentary uni�ation [Burris and Lawrene 1990℄.10.BR is unitary for elementary uni�ation and for uni�ation with onstants[B�uttner and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow1989a℄, and �nitary for general uni�ation [Shmidt-Shau� 1989b℄. As with thetheory of Abelian groups, the problem of omputing the ardinality of a minimalomplete set of uni�ers is #P -hard for general BR-uni�ation [Hermann andKolaitis 1996℄.Uni�ation algorithms: Algorithms that ompute most general uni�ers for elemen-tary BR-uni�ation and BR-uni�ation with onstants are desribed in [B�uttnerand Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow 1989a℄. Gen-eral ombination methods an be used to obtain algorithms for general BR-uni�ation [Shmidt-Shau� 1989b, Boudet et al. 1989℄.EndomorphismsThe theory Endh;g := fh(g(x; y)) � g(h(x); h(y))g states that the unary funtionsymbol h behaves like an endomorphism for the binary funtion symbol g, and10The losely related theory of ommutative semirings is known to be of uni�ation type zerow.r.t. elementary uni�ation [Franzen 1992℄



Unifiation Theory 487Endh;e := fh(e) � eg states that h behaves like an endomorphism for the onstantsymbol e. We onsider these two theories in ombination with some of the theoriesintrodued above:Deision problem: Solvability of Endh;g-uni�ation problems with onstants is de-idable [Vogel 1978℄.For the theories Endh;g [ACg and Endh;g [ Endh;e [ACUg , solvability of uni-�ation problems with onstants is undeidable [Narendran 1996a℄.In ontrast, solvability of uni�ation problems with onstants is deidable forthe theory Endh;g [Endh;e [ACUIg . In [Baader and Narendran 1998℄ it shownthat this problem is EXPTIME-omplete.A similar result holds for Endh;g[ACUIg: for this theory, the deision problem isknown to be o-NP-hard and in EXPTIME [Guo, Narendran and Shukla 1998℄.Finally, for Endh;g [ Endh;e [ AGg , deidability of uni�ation with onstantswas shown in [Baader 1993℄. Sine this deidability result an be extended touni�ation with linear onstant restritions, general ombination results yielddeidability for general uni�ation modulo this theory [Baader and Nutt 1996℄.Uni�ation type: The theory Endh;g is unitary for uni�ation with onstants [Vogel1978℄.Endh;g [ Endh;e [ ACUg and Endh;g [ Endh;e [ ACUIg are of type zero, evenfor elementary uni�ation [Baader 1993, Baader 1989b℄.Endh;g [Endh;e [AGg is unitary for elementary uni�ation and for uni�ationwith onstants [Nutt 1990, Baader 1993℄, and �nitary for general uni�ation[Baader and Nutt 1996℄.In addition to investigating uni�ation properties of spei� equational theoriesof interest, uni�ation theory also tries to develop more general methods, and thusto obtain results for whole lasses of equational theories. Sine uni�ation moduloequational theories is in general undeidable (as illustrated by some of the examplesabove), and also uni�ation properties suh as the uni�ation type of a given the-ory are in general undeidable [Nutt 1991℄, approahes that apply to all equationaltheories are likely to yield very weak results. For example, the general E-uni�ationproedure introdued in setion 4.1, whih an be used to enumerate a ompleteset of E-uni�ers, is very ineÆient, and usually does not yield a deision proedureor a (minimal) E-uni�ation algorithm even for unitary or �nitary theories whoseuni�ation problem is deidable. In order to obtain more useful results, one an tryto develop methods that work for appropriately restrited lasses of theories. Thereare basially two di�erent ways of introduing appropriate restritions on equa-tional theories. Syntati approahes impose restritions on the syntati form ofthe identities de�ning the equational theories. The uni�ation methods produed bythese approahes are usually also of a quite syntati nature: as with the rule-basedapproah to syntati uni�ation, they transform the given uni�ation problem intoa problem in solved form (setion 4). In ontrast, semanti approahes depend onproperties of the (free) algebras de�ned by the equational theory. Uni�ation prob-lems are translated into equations over ertain algebrai strutures, whih (in someases) an be solved using known results from mathematis (setion 5).



488 Franz Baader and Wayne Snyder4. Syntati methods for E-uni�ationIn this setion we disuss two syntati approahes to generating omplete sets ofE-uni�ers, using inferene systems extending the set U presented in setion 2.2.3.We �rst onsider the general problem (E-uni�ation in arbitrary theories) andshow how it an be solved by adding a single rule to introdue identities into thetransformation proess; this simple method is proved to be omplete and somerestritions whih preserve ompleteness are disussed. We then present the mostsigni�ant speial ase of the general problem, when the equational theory anbe presented by a onvergent set of rewrite rules. This method, alled narrowing ,has been thoroughly investigated, and we will present the major results in theframework of transformation rules.4.1. E-uni�ation in arbitrary theoriesIn this setion, we present a rule for introduing identities into inferene steps in Uin suh a way that a omplete set of E-uni�ers for an arbitrary set E of equationsmay be generated. By speializing various aspets of the resultant alulus (and itsompleteness proof), we will obtain more pratial methods for the speial ase ofonvergent sets of rewrite rules. The results of this setion are based on [Gallierand Snyder 1989, Snyder 1991℄.In this setion we assume that the reader is familiar with the basi onepts ofrewriting (espeially equational proofs, redution orderings, ground onvergene,and ritial pairs) disussed in [Dershowitz and Plaisted 2001℄ (Chapter 9 of thisHandbook). By rewrite proof we refer to a sequene of rewrite steps between twoterms of the form s ��!u � � twhere u is in normal form. We will use e[u℄ in the following to represent a equation(or identity) with a distinguished ourrene of a subterm u in one of its terms; insuh a ontext e[r℄ will denote the result of replaing this subterm with the term r.We will use systems P ;S, representing uni�ation problems and sets of equationsin solved form, as before.4.1. Definition. For any equational theory E, a substitution � is an E-solution(or simply a solution when E is understood) of a system P ;S if it is an E-uni�erof every equation in P , and a uni�er of every equation in S.4.1.1. The alulus GThe set G of inferene rules onsists of the rules Trivial, Deomposition, Orientation,and Variable Elimination from U , plus the following rule for introduing identities:Lazy Paramodulation (LP):fe[u℄g [ P ;S =)lp fl ?=u; e[r℄g [ P ;S



Unifiation Theory 489for a fresh variant11 of the identity l � r from E [ E�1, and where (i) u is nota variable, and (ii) if l is not a variable, then the top symbols of l and u areidential, and no other inferene rule may be applied to the equation l=? u beforeit is subjeted to a Deomposition step.Computation in G proeeds as in U , starting with an initial system of the formfs=? tg; ; and applying inferene rules in an attempt to �nd some terminal system;;S representing an E-uni�er �S of s and t. Clearly, by the general harateristisof E-uni�ation disussed above, suh a proess an not share the nie propertiesof U whih we disussed in setion 2.2.4. However, it is possible to say quite a lotabout how to restrit the appliation of rules, as we shall see.4.1.2. Completeness of GIt an be shown easily that the alulus G is sound in the sense that a solution itprodues is always an E-uni�er; however this proof does not give muh insight intothe properties of G and we refer the interested reader to [Gallier and Snyder 1989℄. Itis more interesting to onsider the issue of ompleteness, whih is onsiderably moreomplex than in the standard ase. What we want to show is that if we onsiderthe (�nitely-branhing but in�nite) searh tree of every possible transformationsequene starting from fs=? tg; ;, then the leaves form a omplete set of E-uni�ersfor s and t. However, it is simpler to state and prove this in the following \non-deterministi" form.4.2. Theorem. Let E be a non-trivial equational theory and P be a set of uni�a-tion problems. If � is an E-solution of P ; ;, then there exists a sequeneP ; ; �=) ;;S(with S in solved form) in the alulus G suh that �S ��XE �, where X = Vars(P ).There are three main stages to the proof. First we will prove the result givenertain strong restritions on the equational theory E. Then we onstrut a kindof \abstrat ompletion" of E whih has the requisite restritions; �nally, we showthat any transformation sequene using this abstrat ompletion an be onvertedinto one using simply E.The major diÆulty in proving ompleteness of equational inferene systemsis generally in dealing with the restrition that equational steps not take plae atvariable positions (hene, \u is not a variable" in LP). The solution, due to Peterson[1983℄, is to work with a restrited form of substitution in the proof.4.3. Definition. Given a rewrite system R, a substitution � is R-redued (or justredued if R is unimportant) if for every x 2 Dom(�), x� is in R-normal form.11By a fresh variant we refer to an expression that has been renamed with fresh variables thatdo not our anywhere else in the previous omputation. Whenever we mention a rewrite rule oridentity used in an inferene step, we will assume that it has been so renamed.



490 Franz Baader and Wayne SnyderNote that it is always possible for any � and terminating set of rules R to �nd an R-equivalent redued substitution �0. This allows us to assume, when \lifting" rewritesteps at the ground level to inferene steps, that the position is a non-variable.Another essential ingredient in our proof is the notion of an \oriented groundinstane" of an identity.4.4. Definition. Let E be a non-trivial equational theory and � be a redutionordering total on ground terms. The set of ground instanes of E isGr(E) := f l� � r� j l� and r� are ground and l � r 2 E [ E�1 g:The set of oriented ground instanes of E isGr�(E) := f l� �! r� j l� � r� 2 Gr(E) and l� � r� g:A member l� �! r� of suh a set is alled redued if � is redued with respet tothe entire set.12 For any E, the set of redued oriented ground instanes is denotedRE .An important fat about Gr(E) is the following.4.5. Proposition. For any two ground terms s and t, there exists an equationalproof s � !E t i� there exists a proof s � !Gr(E) tThis is easily proved by showing that equational steps are losed under instantiation,and hene we an instantiate any \unbound variables" by ground terms so that onlyground instanes of identities from E are used.Another kind of restrition on proofs, whih will be essential in proving the\no inferenes into variable positions" restrition in our ompleteness result, is thesubjet of the next de�nition and lemma.4.6. Definition. Let u� be an instane of u, and R a set of rewrite rules. Arewrite step u� �!R u0 is based on u i� the redex is at a non-variable position inu (equivalently, is not wholly ontained within a term introdued by �). A rewritesequene s� ��!R t is based on s (or simply basi) i� either s� = t (reexive ase)or it starts with a rewrite step based on s, e.g.,s� �!R (s�)[r�℄ = s[r℄�� ��!R tand the remainder is based on s[r℄. A rewrite proof s� ��! � � t� is basi if the leftside is based on s and the right side is based on t.Intuitively, this means that no rewrite step an take plae at a term introdued byany substitution.The relationship between redued substitutions, redued oriented ground in-stanes, ground onvergene, and basi rewrite sequenes is now explored.12This notion is well-de�ned, as it ould more formally be de�ned by indution on a suitableordering of rules, using the fat that l an not be a variable when E is non-trivial.



Unifiation Theory 4914.7. Lemma. Let E be a non-trivial equational theory suh that Gr�(E) is groundonvergent, and s� be a ground term suh that � is RE-redued. Then for any rewritesequene s� ��! t using rules from Gr�(E) to redue s� to its normal form t, thereexists a basi rewrite sequene s� ��! t using rules only from RE.Proof. Sine Gr�(E) is ground anonial, we may hoose any fair strategy forredution; in partiular, we may speify that at eah step, among all the possiblerules that ould be used for redution, we hoose one that is minimal in the lexi-ographi extension of � to pairs of terms. But then for any l� �! r� used in thesequene, � must be redued, or else the rule would not be minimal. Thus, thereexists a rewrite sequene from s� to t using rules only from RE ; learly, sine allsubstitutions involved are redued, this is also a basi sequene.For our purposes we may summarize these results as follows.4.8. Corollary. Let E be an equational theory suh that Gr�(E) is ground on-vergent. For any ground terms s� and t�, where � is redued with respet to Gr�(E),the following are equivalent:1. s� and t� are E-equivalent.2. There exists a basi rewrite proof for s� and t� using rules from Gr�(E).We now prove our ompleteness result in the speial ase we have been disussing.4.9. Lemma. Let E be a non-trivial equational theory suh that Gr�(E) is groundonvergent, and P be a set of uni�ation problems. If � is a Gr�(E)-redued solutionof P ; ;, then there exists a sequeneP ; ; �=) ;;S(with S in solved form) in the alulus G suh that �S ��X � for X = Vars(P ).Proof. We proeed by indution, using the following measure. The omplexity ofa system P ;S and its solution � is a four-tuple hm;n1; n2; n3i, wherem = The total number of rewrite steps in all the minimal-length basirewrite proofs for equations in P�;n1 = The number of distint variables ourring in equations u=? v 2 Psuh that u� = v� and u� is in Gr�(E)-normal form;n2 = The number of symbols ourring in equations u=? v 2 P suh thatu� = v� and u� is in normal form;n3 = The number of equations in P of the form t=? x, where t is not avariable, and suh that t� = x� and t� is in normal form.The assoiated (well-founded) ordering is the lexiographi ordering using thenatural ordering on positive integers.We show by indution on this measure that if � is a solution of a system P ;S0,with S0 in solved form, there exists a transformation sequeneP ;S0 �=) ;;S



492 Franz Baader and Wayne Snyderwhere �S ��X � for X = Vars(P; S0).The base ase of the indution onsists of a system ;;S and the result is trivial,sine a fortiori �S �� �. For the indution step, suppose P = fu=? vg [ P 0. Ifu� = v� with u� in normal form; then we proeed as before with the inferenesystem U to generate a transformation step to a smaller system ontaining thesame set of variables, and with the same solution (f. lemma 2.4). As with U , anyequation introdued into S must keep this set in solved form. Completing this withthe indution hypothesis, we haveP ;S0 =)U P 00;S00 �=) ;;Ssuh that �S ��X � with X = Vars(P; S0).Otherwise, without loss of generality, pik a rewrite step from the term u� in aminimal-length basi rewrite proof u� �! ��! � � v�, in whih a redued groundinstane l� �! r� was used. If we let �0 = ��, then this �rst step was in fatu[u0℄�0 = u[l℄�0 �! u[r℄�0, where u0 an not be a variable (sine � is redued). Inaddition, the top symbols of u0 and l are idential if l is not a variable. Hene, thereexists some transformation stepfu[u0℄ ?= vg [ P 0;S0 =)lp fl ?=u0; u[r℄ ?= vg [ P 0;S0to a new system whih has a smaller omplexity with respet to its new solution�0. (It also ontains additional variables, i.e., those in Vars(l; r)). By the indutionhypothesis we an ontinue this with:fl ?=u0; u[r℄ ?= vg [ P 0;S0 �=) ;;Ssuh that �S ��X �0 with X = Vars(l; r; P; S0). But, sine x� = x�0 for everyx 2 Vars(P; S0), we are done.The seond stage of our main ompleteness proof for G involves onstruting aset of identities �tting the onditions of the previous lemma. We do this by a kindof abstrat ompletion of E:4.10. Definition. Let Cr(E) be the set of ritial pairs w.r.t. � of E, reatedfrom fresh variants of identities in E using the inferene system U to alulate therequisite mgu's. Then, for eah i � 0, de�neE0 = E...Ei+1= Ei [ Cr(Ei)...E! = Sn�0En



Unifiation Theory 493The entire point of this onstrution is ontained in the following lemma, whihan be proved using tehniques familiar from [Dershowitz and Plaisted 2001℄, Chap-ter 9 of this Handbook (for a spei� proof, see Theorem 6.1.7 in [Snyder 1991℄).4.11. Lemma. For any E, Gr�(E!) is ground onvergent and equivalent to E onground terms.Thus, we an (oneptually, at least) use E! to onstrut transformation se-quenes as just shown in lemma 4.9. The seond main lemma of our ompletenessproof for G shows how to onvert suh a transformation sequene into one usingonly identities from E.4.12. Lemma. For any sequene P ; ; �=) ;;Sintroduing identities from E!, and suh that �S is an E-uni�er for P , there existsa sequene P ; ; �=) ;;S0introduing identities only from E, suh that S � S0 and x�S0 = x�S for everyx 2 Vars(P ).Proof. The basi idea is to use the alulus G itself to onstrut ritial pairs. Theomplexity measure in our indutive proof is as follows. The depth of an identitye 2 E! is the least k suh that e 2 Ek; the omplexity of a transformation sequeneis the (�nite) multiset of the depths of all identities from E! introdued, with theassoiated (well-founded) multiset ordering.The base ase being trivial, we proeed diretly to the indution step. Supposethe transformation sequene uses some identity r1� � l1[r2℄� of non-zero depth,obtained by forming a ritial pair from l1[l0℄ � r1 and l2 � r2 (eah of smallerdepth) with � = mgu(l0; l2). We show how the original use of the ritial pair in aLP step an be simulated by two LP steps involving the omponent identities, plussome number of U-transformations to simulate the onstrution of the ritial pair.There are two ases, depending on whih diretion the ritial pair was used in.Case One. Suppose the ritial pair was r1� � l1[r2℄�, e.g.,�=) fe[u℄g [ P ;S0=)lp fr1�=? u; e[l1[r2℄�℄g [ P ;S0�=) ;;Swhere an additional Deomposition is possibly applied afterwards to r1�=? u (ifr1� is not a variable). This sequene an be onverted into:�=) fe[u℄g [ P ;S0=)lp fr1=? u; e[l1[l01℄℄g [ P ;S0=)lp fl2=? l01; r1=? u; e[l1[r2℄℄g [ P ;S0�=) fr1�=? u; e[l1[r2℄�℄g [ P ;S [ [�℄�=) ;;S [ [�0℄



494 Franz Baader and Wayne Snyder(where by [�℄ we mean a set of equations representing the bindings in �). Thissequene has a smaller omplexity, as it replaed a ritial pair by two identities ofstritly smaller depth. The seond line from the bottom represents the alulationof the mgu; these bindings apply only to terms from the two equations, although asthey are arried along in the solution set they may hange as the result of additionalsubstitutions (hene the hange to �0). The (possible) Deomposition step after the�rst LP step in the original is delayed until after the omputation of �.Case Two. Suppose the ritial pair was l1[r2℄� � r1�; in this ase, we mayassume that the overlap in this ritial pair is not at the root, sine otherwise weould apply ase one. Our original sequene is thus:�=) fe[u℄g [ P ;S0=)lp fl1[r2℄�=? u; e[r1�℄g [ P ;S0�=) ;;Swhere Deomposition is applied to l1[r1℄� � u at some point after the LP step(sine l1 has at least one funtion symbol above the overlap position). This sequenebeomes:�=) fe[u℄g [ P ;S0=)lp fl1[l01℄ =? u; e[r1℄g [ P ;S0=)lp fl2=? l01; l1[r2℄ =? u; e[r1℄g [ P ;S0�=) fl1[r2℄�=? u; e[r1�℄g [ P ;S [ [�℄�=) ;;S [ [�0℄The Deomposition step is delayed until after the omputation of �. This sequeneis, again, of smaller omplexity than the original.Note in both ases that the variables in Dom(�) are (e�etively) fresh, as theyour in the omponent identities but not in the ritial pair; thus, x�S0 = x�S forall x 2 Vars(P ) as required.We may now present the proof of our main ompleteness result.Proof of theorem 4.2. First, note that we may assume that P� ontains onlyground equations, using a straight-forward Skolemization argument (viz. [Snyder1991℄, p.90). If � is an E-uni�er of P , we may onstrut an Gr�(E)-redued sub-stitution �0 suh that � =E �0. We then apply lemma 4.9, using rules from E!, toobtain a sequene P ; ; �=) ;;Swhere �S ��X �0 for X = Vars(P ). This is then onverted, using the tehnique oflemma 4.12 to a new sequene using rules only from E:P ; ; �=) ;;S0where x�S = x�S0 for every x 2 Vars(P ). Thus, we may onlude that �S ��XE �,where X = Vars(P ), as required.



Unifiation Theory 4954.2. Restritions on E-uni�ation in arbitrary theoriesIn this setion we desribe two re�nements of the alulus G that have been sug-gested:� The restrition on a equation l=? u introdued by LP, when l is not a variable,that the top symbol of l and u must be the same, an be strengthened sothat the entire overlap of the non-variable positions in the two terms must beidential.� The restrition in LP that u not be a variable may be strengthened so thatu an not even be a term introdued into P by substitution (i.e., VariableElimination) at any point in the sequene.Both of these restritions in some sense extend the original restritions on G hered-itarily , in the �rst ase inheriting the restrition on top symbols down into theterms, and in the seond, inheriting the non-variable restrition throughout thehistory of the equation, and regarding terms introdued by variable eliminationas being seond-lass itizens whih do not play a diret role in equational infer-enes, but only serve to onstrain the appliation of rules. This is alled the basirestrition, as it rests on the existene of basi rewrite proofs as shown above.For lak of spae, we do not onsider these re�nements to G in detail here, al-though the seond will form an essential part of the alulus in the next setion.For the �rst, see [Dougherty and Johann 1992℄, and also [Soher-Ambrosius 1994℄(where a further re�nement is presented); for the seond see [Moser 1993℄.4.3. NarrowingIn this setion we onsider the most important speial ase of the E-uni�ationproblem, when the equational theory an be represented by a ground onvergentset of rewrite rules. In this ase, the onversion of transformation sequenes tosimulate ritial pair generation is not neessary, and we an take a loser look atthe ompleteness proof and the restritions that an be imposed on the alulus.In partiular, we shall from the start onsider the existene of basi rewrite proofsas fundamental, and develop a new representation for problems whih prevents LPinferenes at terms introdued by substitutions.A onstraint system (or simply system in the rest of the setion) is either thesymbol ? (representing failure) or a triple onsisting of a multiset P of equations(representing the shema of the problem, in a sense that will beome lear below),a set C of equations (representing onstraints on variables in P ), and a set S ofequations (representing bindings in the solution). The set C plays a role similarto the multiset P in setion 2.2.4, and rules from U will be applied to C;S asbefore. The equational problems being worked on are in fat P�S , the separationinto the shema P and onstraints C;S serving to enfore the basi restrition onthe appliation of LP mentioned above. As expeted, a substitution � is said to bea solution (or E-uni�er) of a system P ;C;S if it E-uni�es eah equation in P , anduni�es eah of the equations in C and S; the system ? has no E-uni�ers.



496 Franz Baader and Wayne SnyderWe assume that our rewrite system R (representing E) is ground onvergent withrespet to a redution ordering �, and onsists of a numbered sequene of rulesfl1 �! r1; l2 �! r2; : : : ; ln �! rng:The index of a rule will be its number in this sequene, and will be used in a ertainre�nement of our inferene system.4.3.1. The alulus BIn this setion we present the rules whih are used in the alulus B for basinarrowing . We will �rst onsider a simple set of rules and prove its ompleteness,and then onsider re�nements and modi�ations based on the details of the proof.The set B onsists of the following six rules.Trivial: P ; fs ?= sg [ C 0;S =) P ;C 0;SDeomposition:P ; ff(s1; : : : ; sn) ?= f(t1; : : : ; tn)g [ C 0;S =) P ; fs1 ?= t1; : : : ; sn ?= tng [ C 0;SOrient: P ; ft ?=xg [ C 0;S =) P ; fx ?= tg [ C 0;Sif t is not a variable.Basi Variable Elimination:P ; fx ?= tg [ C 0;S =) P ;C 0fx 7! tg;Sfx 7! tg [ fx � tgif x does not our in t. (Note that the substitution is not applied to the set P .)(Modulo the hanges to Variable Elimination, these are just the non-failure rulesfrom U , adapted for onstraint systems; we shall denote these �rst four rules as S.)Constrain: feg [ P 0;C;S =)on P 0; fe�Sg [ C;SLazy Paramodulation:fe[u℄g [ P ;C;S =)lp fe[r℄g [ P ; fl�S ?=u�Sg [ C;S(with the exat same restritions as given above in setion 4.1.1).



Unifiation Theory 497Essentially, this alulus is no di�erent from G, exept that it is designed toenfore the basi restrition, by separating out the parts of terms that were intro-dued into the problem by substitution (i.e., Variable Elimination) and those thatwere not (the \shema"). The latter onstitute the only positions where equationalinferenes may take plae in the basi strategy. The ompleteness proof is henevery similar to lemma 4.9. We will add more restritions to the way that ertainhoies are made, however, whih will give us the ability to restrit our alulusorrespondingly.4.13. Theorem. Let R be a ground onvergent set of rewrite rules. If � is an R-solution of P ; ;; ;, then there exists a sequeneP ; ;; ; �=)B ;; ;;Ssuh that �S ��XR �, where X = Vars(P ).Proof. As in our ompleteness proof for G, we may assume that P� is ground andthat � is R-redued, sine the relation��R does not distinguish between R-equivalentsubstitutions. Thus, we will prove a stronger result, that when � is R-redued, thenin fat �S ��X �.The omplexity of a system P ;C;S and assoiated solution � is hM;n1; n2; n3i,whereM = The multiset of all terms ourring in P�;n1 = The number of distint variables in C;n2 = The number of symbols in C;n3 = The number of equations in C of the form t=? x, where t is not avariable.The assoiated ordering is the lexiographi ordering using the multiset extensionof the redution ordering � for the �rst omponent, and the ordering on naturalnumbers for the remaining omponents.Our indution shows that if � is a solution of a system P ;C;S0, with S0 in solvedform, there exists a transformation sequeneP ;C;S0 �=) ;; ;;Swhere �S ��X �, where X = Vars(P;C; S0).The base ase ;; ;;S is again trivial. For the indution step, there are severaloverlapping ases.(1) If C = fu=? vg[C 0, then u� = v� and we use S to generate a transformationstep to a smaller system ontaining the same set of variables, and with the samesolution (f. lemma 2.4). Completing this with the indution hypothesis, we haveP ;C;S0 =)S P 00;C 0;S00 �=) ;; ;;Ssuh that �S ��X � for X = Vars(P;C; S0).



498 Franz Baader and Wayne Snyder(2) If P = fu=? vg [ P 0 and u� = v�, then we may apply Constrain to obtain asmaller system (reduing the omponent M) with the same solution and the sameset of variables, and we onlude as in the previous ase.(3) Suppose P = fu=? vg [ P 0 and there is some redex in either u� or v�;without loss of generally, assume the former. We may also assume that the redex isinnermost, and that if more than one instane of a rule from R redues this redex,we hoose the rule l� �! r� with the smallest index in the set R. Note that, sine� is R-redued, the redex must our inside the non-variable positions of u; thuswe have the following transformation:fu[u0℄ ?= vg [ P 0;C;S0 =)lp fu[r℄ ?= vg [ P 0; fl�S0 ?=u0�S0g [ C;S0to a system whih is smaller with respet to its new solution �0 = �� (sine the newequation introdued into C is an identity modulo �0). Note that �0 is still R-redued.By the indution hypothesis we havefu[r℄ ?= vg [ P 0; fl�S0 ?=u0�S0g [ C;S0 �=) ;; ;;Ssuh that �S ��X �0 with X = Vars(l; r; P; C; S0), and sine x� = x�0 for everyx 2 Vars(P;C; S0), the indution is omplete.4.3.2. Standard narrowingAn interesting feature of this proof is that it also provides for the ompletenessof an alternate (and historially earlier) version of narrowing due to Fay [1979℄,whih does not distinguish between substitution positions and other positions inthe problem.Let us de�ne the alulus N for standard narrowing as the inferene system Bwith the following hange: Basi Variable Elimination is replaed by the followingtransformation:Variable Elimination:P ; fx ?= tg [ C 0;S =) Pfx 7! tg;C 0fx 7! tg;Sfx 7! tg [ fx � tgif x does not our in t.(The Constrain rule might also be hanged so that is does not instantiate anequation when moving it from P to C, however, sine �S is always idempotent, theexisting rule would have the same e�et.)The only di�erene is that the set P is kept instantiated with the substitutionde�ned by S during the transformation proess, so that substitution positions anbe used for narrowing.4.14. Corollary. Let R be a ground onvergent set of rewrite rules. If � is anR-solution of P ; ;; ;, then there exists a sequeneP ; ;; ; �=)N ;; ;;Sin the alulus N suh that �S ��XR � with X = Vars(P ).



Unifiation Theory 499The proof is essentially the same as the previous one, sine the same transforma-tion sequene an be used in eah ase.The di�erene between the two inferene systems is that B restrits the appli-ation of inferene rules to a smaller set of positions than N does, and hene thesearh tree for solutions is narrower.4.4. Strategies and re�nements of basi narrowingThere is a variety of strategies and re�nements that an be developed for the basinarrowing alulus without destroying ompleteness. Most of these, in one way oranother, an be derived from a lose examination of the ompleteness proof justgiven. In this setion we briey desribe the most important of these.4.4.1. Composite rules for basi narrowingThe �rst observation that an be made is that it is not neessary to onsider all pos-sible sequenes of transformation rules, sine we either solve (standard) uni�ationproblems (e.g., equations between two idential terms in P�) or simulate rewritingat the ground level by unifying left-hand sides of rules with non-variable positionsin terms, at the non-ground level. Thus, we may use the following two ompositerules as an alternate form of B:Solve (=)sol):feg [ P 0;C;S =)on P 0; fe�Sg [ C;S �=)S P 0;C�;S� [ [�℄(i.e., � = mgu(e�S)).Narrow (=)nar):fe[u℄g[P ;C;S =)lp fe[r℄g[ P ; fl�S ?=u�Sg [C;S �=)S fe[r℄g [ P ;C�;S� [ [�℄(that is, � = mgu(l�S; u�S)), where l �! r is a fresh variant from R.The ompleteness proof goes through with few hanges. Note that in this formu-lation, no new equations remain in C after eah step. A similar set of ompositerules ould be given for N .4.4.2. Simpli�ationThe inferene rules in S (like U) are signi�ant in that they an be applied when-ever we want during a transformation sequene without a�eting the outome; inour indutive proof, we may observe that they make the problem smaller withouthanging the solution. Suh rules are extremely important in reduing the searhspae for a solution.



500 Franz Baader and Wayne Snyder4.15. Definition. A transformation � is alled a simpli�ation rule for B ifwhenever P ;C;S � P 0;C 0;S0, then � is an R-redued solution of P 0;C 0;S0 i��jVars(P;C;S) is an R-redued solution to P ;C;S, and P 0;C 0;S0 is smaller in theindution ordering used in Theorem 4.13 with respet to � than P ;C;S w.r.t.�jVars(P;C;S).The restritions in this de�nition ensure that suh a rule an be used any timeit applies in the indution step to obtain a smaller system without hanging thesolution (w.r.t. the variables in the left side).Thus, the rules in S are simpli�ation rules in this respet. There are many otherad-ho simpli�ation rules that have been suggested for narrowing. For example,we may perform a form of Deomposition within P when we know that this doesnot remove a redex.Problem Deomposition:ff(s1; : : : ; sn ?= f(t1; : : : ; tn)g [ P 0;C 0;S =) fs1 ?= t1; : : : ; sn ?= tng [ P 0;C;Sif the symbol f does not our at the top of the left-side of a rule in R.In the indution in the ompleteness proof this rule dereases the measure (speif-ially, it redues the omponentM). Clearly it does not hange the set of solutions.Therefore, we may apply this rule any time, in any ontext, without a�eting theompleteness properties of the alulus.Suh rules an be applied \eagerly" to produe smaller problems, hopefully re-duing the searh spae.4.16. Definition. If T is a subset of rules for some alulus C, then the eager Tstrategy requires that a rule from CnT may only be applied if no rule from T appliesanywhere in the system.Simpli�ation rules an be performed eagerly.4.17. Theorem. Let R be a ground onvergent set of rewrite rules, and A be a setof simpli�ation rules. If � is an R-solution of P ; ;; ;, then there exists a sequeneP ; ;; ; �=)B[A ;; ;;Sunder the eager A strategy suh that �S ��XR �, where X = Vars(P ).The proof proeeds as before, with the exeption that in the indution step, wemust use a simpli�ation step if one applies; as noted above, the onditions of asimpli�ation rule ensure that the indution in the ompleteness proof goes through.One of the most useful simpli�ation rules is reduing the problem set by the set ofrules R. From an abstrat point of view, we may motivate suh equational inferenesas follows. If u� � !Ev� and u0 � !Eu, then, sine equational proofs are losedunder instantiation, we have u0� � !Eu� � !Ev�. Thus, we an not hange the set



Unifiation Theory 501of solutions by performing equational inferenes on the problem terms themselves,for example, by reduing them.From the point of view of our alulus, we might observe that in the rule Narrowjust introdued, if no appliation of Variable Elimination is ever applied to a variablefrom the system on the left side, then the set of solutions is unhanged by thistransformation: the substitution generated must in this ase apply only to l andr, and hene we have, at the ground level, replaed e[u℄�� = e[l℄�� = e[l�℄� withe[r�℄�. Sine the properties of � were not involved, this means that e�etively wehave done a rewrite step u[l�℄ �!R u[r�℄. Alternately, we might say that if you endup doing Variable Elimination on x=? t for x 2 Dom(�) for some solution �, thenyou are assuming that x� = t�; this uts down on the number of possible solutions.The resultant rule is:Redue (=)red):fe[u℄g [ P ;C;S =)lp fe[r℄g [ P ; fl ?=u�Sg [ C;S�=) fe[r�℄g [ P ;C;S [ [�℄where l �! r is a fresh variant from R (note that the variables in Dom(�) ouronly in r), and where the last line involves only Trivial, Deomposition, and VariableElimination applied to the variables from l (i.e., l� = u).Note that in the ontext of B, we are losing some \basiness" by instantiatingfully the right-hand side r; below we shall onsider how to reover some of the basirestrition lost in this fashion.4.18. Proposition. The Eager Redue Strategy is omplete for B and N .Historially, the narrowing alulus was the �rst to be invented, by Fay [1979℄;the basi narrowing alulus was developed by Hullot [1980℄, and it was observedby R�ety [1987℄ that redution needed to be modi�ed in this setting. A study ofbasi narrowing with redution, to whih our treatment is heavily indebted, may befound in [Nutt, R�ety and Smolka 1989℄. In the next two setions we present furtherre�nements whih may also be found in [Bokmayr, Krisher and Werner 1992℄ and[Nutt et al. 1989℄. For a omprehensive study of basi inferene systems, the readeris referred to [Bahmair, Ganzinger, Lynh and Snyder 1995℄ and to [Nieuwenhuisand Rubio 2001℄ (Chapter 7 of this Handbook).4.4.3. Redex orderings and variable abstrationOne of the useful properties of onvergent systems mentioned above is that anystrategy whih an �nd a redex in a reduible term is suÆient for reduing termsto normal form, and hene for generating rewrite proofs. For example, at the groundlevel we might always look for redies in depth-�rst, left-to-right order. More gen-erally, we may de�ne a redex ordering �red as an ordering on the positions in anequation whih ontains the proper subterm ordering (i.e., for any u[u0℄ with u 6= u0,



502 Franz Baader and Wayne Snyderwe have u0 �red u). Before onsidering whether a term t is reduible at a position� by some rule, we must onsider all positions �0 �red �. The ompleteness proofould be sharpened by suh an ordering simply by adding that we must hoose theminimal redex aording to the redex ordering (suh a redex must be innermost).In suh a ase, the positions less than this redex may be assumed to be irreduible.No further narrowing steps need be performed at suh positions, and in fat, weould remove these parts of the term and move them into the solved part of thesystem to enfore this.Variable Abstration (=)abst):fe[s℄g [ P ;C;S =) fe[x℄g [ P ; fx ?= sg [ C;Sif x is a fresh variable.A new version of the narrowing rule ould then be presented whih abstrats outterms whih are known to be redued.Redex Ordered Narrow (=)ron):fe[u℄g [ P ;C;S =)lp fe[r℄g [ P ; fl�S ?=u�Sg [C;S �=)S fe[r℄g [ P ;C�;S� [ [�℄�=)abst fe0[r℄g [ P ;C� [ C 0;S� [ [�℄where u ours at position � in e, and Variable Abstration is applied eagerly toall positions �0 �red � in e to obtain e0.The substitution of this version of Narrow in N preserves ompleteness; thefundamental idea is that whenever a term (at the ground level in our ompletenessproof) may be assumed to be redued, it may be moved into the onstraint partof the system without losing ompleteness. This leads to a further use for VariableAbstration in propagating what is known about redued terms: if a term oursin S, then (at the ground level) it may be assumed to be redued, and hene otherourrenes of this term may be abstrated out.Propagation:fe[u℄g [ P 0;C; fx � t[s℄g [ S =)prop fe[y℄g [ P 0;C; fx � t[s℄; y � sg [ Sif u�S = s is a non-variable and y is a fresh variable.This rule is a simpli�ation rule if we hange the omplexity measure in the proofto hM; i; n1; n2; n3iwhere the additional omponent i is the number of non-variable symbols ourringin P . Clearly it hanges the solution � of a system to a new solution �fy 7! s�gwhih satis�es the ondition for a simpli�ation rule.Returning to our Redue rule, we observe that in the ontext of B, Redue mayinstantiate terms into r that are known to be redued; Propagation an remove theseagain. The ombination of Redution with Eager Propagation e�etively gives usthe more omplex form of \basi simpli�ation" desribed for example in [Bahmairet al. 1995℄ and [Nutt et al. 1989℄, see also [Nieuwenhuis and Rubio 2001℄ (Chapter 7of this Handbook).



Unifiation Theory 5034.4.4. Failure rulesUnlike our presentation of the alulus U , we have hosen here not to present failurerules from the outset, in order to highlight the essential issues �rst. The onditionsunder whih sequenes may fail are of two kinds. First, the failure rules for U(Symbol Clash and Our Chek) may be applied to the sets C and S as before,sine these represent uni�ation problems; however, in this ase the orrespondingSolve, Narrow, or Redue would simply not be performed.The seond lass of onditions basially amount to heking for violations of thereduibility onditions in a system. At the ground level during the ompletenessproof, the substitution � is kept redued, and in addition, ertain assumptions anbe made about the existene of redies in terms. However, we have to be areful, asour proof only allows us to assume that all substitutions are R-redued, and thatno redex may be redued below its root, or at the root by an equation of lowerindex.This leads to the following rule:Bloking (=)blok): P ;C;S =) ?if some term in S is R-reduible, or if some term in C is reduible below the root.The Eager Bloking Strategy is omplete, sine the ompleteness proof requiresthe onverse of the ondition of this rule at all times. Note that this rule ouldbe applied in the middle of a omposite rule, for example, just after moving theequation into the set C in Narrow.In order to aount for redution at the top of equations in C, it is preferable toadd a further restrition to our Narrowing rule:Narrow (=)nar):fe[u℄g[P ;C;S =)lp fe[r℄g[ P ; fl�S ?=u�Sg [C;S �=)S fe[r℄g [ P ;C�;S� [ [�℄where l �! r is a fresh variant from R and l�S� is not the instane of the left-sideof any rule of lower index from R.This rule is onsistent with Redex Orderings.5. Semanti approahes to E-uni�ationThe syntati approahes to E-uni�ation introdued above an be seen as exten-sions of the rule-based approah to syntati uni�ation, whih use the identitiesde�ning the equational theory E to ome up with additional transformation rules.In ontrast, semanti approahes to E-uni�ation try to utilize algebrai propertiesof the models of the equational theories. The two most prominent instanes of theapproah are



504 Franz Baader and Wayne Snyder1. Uni�ation in Boolean algebras and rings [B�uttner and Simonis 1987, Martinand Nipkow 1989b, Martin and Nipkow 1989a℄, and its generalization to �niteand to primal algebras [B�uttner 1988, B�uttner, Estenfeld, Shmid, Shneiderand Tid�en 1990, Nipkow 1990, Kirhner and Ringeissen 1994℄, and2. Uni�ation modulo the theories ACU, ACUI, and AG (see subsetion 3.4 forreferenes to result on uni�ation modulo these theories).In the following, we onentrate on the approah used in the seond ase sine it anbe generalized to a whole lass of equational theories, alled ommutative theoriesin [Baader 1989b℄ and monoidal theories in [Nutt 1990℄. For suh theories, uni�a-tion an be redued to solving linear equations in a orresponding semiring.13 In thefollowing, we introdue the lass of ommutative/monoidal theories, show how theorresponding semiring is de�ned, and how uni�ation in ommutative/monoidaltheories an be redued to solving linear equations in this semiring. In ontrast tothe syntati approahes introdued above, general uni�ation problems annot besolved diretly by the semanti approah desribed below. However, for ommuta-tive/monoidal theories, the known tehniques for ombining uni�ation algorithmsan always be used to extend an algorithm for uni�ation with onstants to analgorithm for general uni�ation [Baader and Nutt 1996℄.The theoriesACU := ff(x; y) � f(y; x); f(f(x; y); z) � f(x; f(y; z)); f(x; e) � xg;ACUI := ACU [ ff(x; x) � xg;AG := ACU [ ff(x; i(x)) � egwill be used as examples throughout this setion. The introdution of the lass ofommutative/monoidal theories was motivated by the observation that the knownalgorithms for uni�ation modulo these three theories have many ommon features.5.1. Uni�ation modulo ACU, ACUI, and AG: an exampleWe will �rst restrit our attention to elementary uni�ation, and then show howthe methods an be extended to uni�ation with onstants.Elementary uni�ationTo illustrate how the algorithms for elementary uni�ation modulo these threetheories work, let us onsider the problem of unifying the two terms f(x; f(x; y))and f(z; f(z; z)).Let us start with the theory ACU. Obviously, the substitution �1 := fx 7!z1; y 7! z1; z 7! z1g is a syntati uni�er of this pair of terms, and thus alsoan ACU-uni�er of �ACU := ff(x; f(x; y))=?ACU f(z; f(z; z))g. There are, however,ACU-uni�ers of �ACU that are not syntati uni�ers of the two terms: �2 := fx 7!13A semiring is similar to a ring, with the only di�erene being that its addition is just requiredto form an Abelian monoid, and not neessarily an Abelian group.



Unifiation Theory 505e; y 7! f(z2; f(z2; z2)); z 7! z2g is an example of suh a uni�er, and �3 := fx 7!f(z3; f(z3; z3)); y 7! e; z 7! f(z3; z3)g is another one. None of these substitutionsis a most general ACU-uni�er of �ACU, but their \ombination"� := fx 7! f(x�1; f(x�2; x�3)); y 7! f(y�1; f(y�2; y�3));z 7! f(z�1; f(z�2; z�3))g=ACU fx 7! f(z1; f(z3; f(z3; z3))); y 7! f(z1; f(z2; f(z2; z2)));z 7! f(z1; f(z2; f(z3; z3)))gis. For example, �2 an be obtained as an ACU-instane of � by applying thesubstitution fz1 7! e; z3 7! eg. More generally, any �nite olletion �1; : : : ; �n ofACU-uni�ers of a given ACU-uni�ation problem an be ombined in this way to anew ACU-uni�er �, whih has all the uni�ers �i as ACU-instanes. In our example,there still remains the question of how we have found the three uni�ers �1; �2; �3,and why their ombination is a most general ACU-uni�er of the problem.In order to explain how we ame up with these uni�ers, assume that � is an ACU-uni�er of �ACU, and that z0 is a variable introdued by � , i.e., z0 ours in (at least)one of the terms x�; y�; z� . It is easy to see that f(x; f(x; y))� =ACU f(z; f(z; z))�implies that the number of ourrenes of z0 in f(x; f(x; y))� oinides with thenumber of ourrenes of z0 in f(z; f(z; z))� . Thus, if jx� jz0 ; jy� jz0 ; jz� jz0 respetivelydenote the number of ourrenes of z0 in x�; y�; z� , then we have 2jx� jz0 + jy� jz0 =3jz� jz0 , i.e., the numbers jx� jz0 ; jy� jz0 ; jz� jz0 are nonnegative integer solutions of thelinear equation 2x+ y = 3z:Thus, every variable introdued by an ACU-uni�er of a given ACU-uni�ation prob-lem yields a non-trivial14 solution of the linear equation orresponding to the prob-lem in the semiring of all nonnegative integers (with addition and multipliation assemiring operations). For the uni�er � introdued above, the variable z1 yields thesolution (1; 1; 1), z2 yields (0; 3; 1), and z3 yields (3; 0; 2). What makes these threesolutions speial is that they are the minimal non-trivial solutions of 2x + y = 3z(w.r.t. the omponent-wise �-ordering on triples). Consequently, any solution anbe obtained as a (nonnegative) linear ombination of these three solutions.Conversely, a substitution that introdues only variables (or free onstants)orresponding to solutions of the linear equation is an ACU-uni�er of the or-responding ACU-uni�ation problem. For example, the substitution � := fx 7!f(z0f(z00; f(z00; z00))); y 7! f(z0; f(z0; f(z0; z0))); z 7! f(z0; f(z0f(z00; z00)))g is anACU-uni�er of �ACU sine 2 � 1 + 4 = 3 � 2 and 2 � 3 + 0 = 3 � 2. The solutions(1; 4; 2) and (3; 0; 2) an be obtained as linear ombination of the minimal solu-tions: (1; 4; 2) = 1 � (1; 1; 1) + 1 � (0; 3; 1) + 0 � (3; 0; 2);(3; 0; 2) = 0 � (1; 1; 1) + 0 � (0; 3; 1) + 1 � (3; 0; 2):14Variables not introdued by the uni�er orrespond to the trivial solution (0; : : : ; 0).



506 Franz Baader and Wayne SnyderThis fat an be used to obtain a substitution � suh that u� =ACU u�� for allu 2 fx; y; zg: � := fz1 7! z0; z2 7! z0; z3 7! z00g.To sum up, we have seen that a given elementary ACU-uni�ation problem or-responds to a system15 of linear equations, whih must be solved in the semir-ing N of all nonnegative integers. A most general ACU-uni�er of the problemis obtained by ombining the uni�ers orresponding to the (�nitely many) min-imal solutions of the system of linear equations. The important property of theset of minimal solutions is that it generates all solutions as linear ombinationsin N . The fat that this set is always �nite is an easy onsequene of Dikson'sLemma [Dikson 1913℄. Methods for omputing this set an, for example, be foundin [Huet and Lang 1978, Lambert 1987, Clausen and Fortenbaher 1989, Boudetet al. 1990, Pottier 1991, Domenjoud 1991, Contejean and Devie 1994, Filgueiraand Tom�as 1995℄.The theory ACUI an be treated similarly, with the only di�erene being thatthe semiring N must be replaed by the Boolean semiring BS, whih onsistsof the truth values 0 and 1, and has onjuntion as its multipliation and dis-juntion as its addition operation. In fat, modulo ACUI it is no longer ne-essary that the numbers of ourrenes of variables on the left-hand side andthe right-hand side of the equation oinide. It is suÆient that eah variablethat ours on the right-hand side also ours on the left-hand side and vieversa. Thus, the linear equation orresponding to the ACUI-uni�ation problem�ACUI := ff(x; f(x; y))=?ACUI f(z; f(z; z))g is x+ y = z, and it is easy to see thatall solutions in BS an be generated as linear ombinations in BS of the solutions(1; 0; 1) and (0; 1; 1). The most general ACUI-uni�er obtained from this generatingset of solutions is �0 := fx 7! z1; y 7! z2; z 7! f(z1; z2)g. The ACU-uni�er �1 fromabove is also an ACUI-uni�er of �ACUI, and it an be obtained as an ACUI-instaneof �0 via the substitution �0 := fz1 7! z1; z2 7! z1g. Sine the Boolean semiring BSis �nite, there always exists a �nite set of solutions that generates all solutions aslinear ombinations in BS.For the theory AG, the presene of the inverse operation leads to the fatthat both the oeÆients and the solutions of the linear equations orre-sponding to an AG-uni�ation problem may also be negative integers. Thus,the semiring to be onsidered here is an fat a ring, namely the ring Z ofall integers. The linear equation orresponding to the AG-uni�ation problem�AG := ff(x; f(x; y))=?AG f(z; f(z; z))g oinides with the one obtained from�ACU, but in Z there exists a smaller set generating all solutions, onsist-ing of (0; 3; 1) and (1; �2; 0). Thus, the substitution �00 := fx 7! z2; y 7!f(z1; f(z1; f(z1; f(i(z2); i(z2))))); z 7! z1g is a most general AG-uni�er of �AG.General methods for omputing suh a �nite generating set of solutions of systemsof linear equations in Z an, for example, be found in [Knuth 1981, Kannan andBahem 1979, Iliopoulos 1989a, Iliopoulos 1989b℄.15Every equation in the uni�ation problem yields one linear equation.



Unifiation Theory 507Uni�ation with onstantsFor ACU-uni�ation with onstants, there are two di�erent ways of extending theapproah for elementary uni�ation to the ase of uni�ation with onstants. Theapproah originally proposed by Stikel [1975℄ and [1981℄ �rst solves an elementaryACU-uni�ation problem, whih is obtained by treating free onstants as variables,and then modi�es the solutions of the elementary problem to obtain solutions of theproblem with onstants. The other approah, due to Livesey and Siekmann [1975℄and desribed in more detail in [Herold and Siekmann 1987℄, handles free onstantswith the help of inhomogeneous linear equations. In the following, we restrit ourattention to this seond method.As an example, we slightly modify the ACU-uni�ation problem from above. Let�0ACU := ff(x; f(x; y))=?ACU f(a; f(z; f(z; z)))g, where a is a (free) onstant. Ofourse, the numbers of ourrenes jx� jz0 ; jy� jz0 ; jz� jz0 of a variable z0 introdued byan ACU-uni�er of this problem must still solve the (homogeneous) linear equation2x+ y = 3z. For the free onstant a, however, one must also take into aount thata already ours one on the right-hand side. Thus, the numbers jx� ja; jy� ja; jz� jamust solve the following inhomogeneous equation:2x+ y = 3z + 1:The minimal (non-trivial) nonnegative integer solutions of this equation are (0; 1; 0)and (2; 0; 1). Every nonnegative integer solution of the equation an be obtainedas the sum of one of the minimal solution and a solution of the orrespondinghomogeneous equation 2x + y = 3z. Consequently, eah of the minimal solutionsof the inhomogeneous equation together with the set of all minimal solutions ofthe homogeneous equation gives rise to one element of the minimal omplete set ofACU-uni�ers of the problem:ffx 7! f(z1; f(z3; f(z3; z3))); y 7! f(a; f(z1; f(z2; f(z2; z2))));z 7! f(z1; f(z2; f(z3; z3)))g;fx 7! f(a; f(a; f(z1; f(z3; f(z3; z3))))); y 7! f(z1; f(z2; f(z2; z2)));z 7! f(a; f(z1; f(z2; f(z3; z3))))g g:In the general ase, one must solve one inhomogeneous equation for eah free on-stant ourring in the uni�ation problem. The uni�ers in the minimal ompleteset then orrespond to all possible ombinations of the minimal solutions of theseinhomogeneous equations. For example, if the uni�ation problem ontains the freeonstants a; b; , and if the sets of minimal solutions of the inhomogeneous equationsindued by a; b, and , respetively, have ardinality 2; 3, and 5, then the minimalomplete set is of ardinality 2 � 3 � 5 = 30.Uni�ation with onstants modulo the theories ACUI and AG an be treated a-ordingly. In both ases, one works in the semiring orresponding to the theory, and�rst determines a generating set of solutions for the system of homogeneous equa-tions orresponding to the uni�ation problem. Then, one onsiders the systems of



508 Franz Baader and Wayne Snyderinhomogeneous equations indued by the free onstants, and for eah system deter-mines �nitely many solutions suh that all solutions of this system of inhomogeneousequations an be represented as the sum of one of these partiular solutions anda solution of the homogeneous equation. From these sets of solutions, the minimalomplete set of uni�ers an be omputed, as illustrated in the above example.For AG, the fat that the orresponding semiring is a ring implies that takingone partiular solution for eah system of inhomogeneous equations is suÆient.Consequently, AG is unitary both for elementary uni�ation and for uni�ationwith onstants, whereas the other two theories, though unitary for elementary uni-�ation, are only �nitary for uni�ation with onstants.5.2. The lass of ommutative/monoidal theoriesIn order to generalize this semanti approah to a whole lass of theories, let us tryto determine the relevant ommon features of the theories ACU, ACUI, and AG.Using a rather syntati point of view, we may observe that all three theories areonerned with an assoiative-ommutative binary funtion symbol f with a unit e.In addition, the signature of AG ontains a unary funtion symbol i, whih behaveslike an endomorphism for f and e, i.e., i(f(x; y)) =AG f(i(x); i(y)) and i(e) =AG e.This observation motivates the following de�nition of monoidal theories [Nutt 1990℄:5.1. Definition. An equational theory E is alled monoidal i� it satis�es thefollowing properties:1. Sig(E) ontains a binary funtion symbol f and a onstant symbol e, and allother funtion symbols in Sig(E) are unary.2. The symbol f is assoiative-ommutative with unit e, i.e., f(f(x; y); z) =Ef(x; f(y; z)), f(x; y) =E f(y; x), and f(x; e) =E x.3. Every unary funtion symbol h 2 Sig(E) is an endomorphism for f and e, i.e.,h(f(x; y)) =E f(h(x); h(y)) and h(e) =E e.Obviously, the theories ACU, ACUI, and AG are monoidal. Other examples ofmonoidal theories are the theories Eh;g [ Eh;e [ ACUg, Eh;g [ Eh;e [ ACUIg, andEh;g [ Eh;e [ AGg introdued in subsetion 3.4. The theory of Boolean rings andthe theory of ommutative rings are not monoidal sine their signatures ontaintwo binary funtion symbols.A drawbak of the above de�nition of monoidal theories is that the signature andthe axioms de�ning a theory play an important rôle. In fat, the theory of Abeliangroups allows for many di�erent axiomatizations, some of whih do not satisfy thede�nition of a monoidal theory. For example, let g be a binary funtion symbol ande be a onstant symbol. The theoryAG0 := fg(x; x) � e; g(x; e) � e; g(g(x; g(e; y)); g(e; z)) � g(g(z; g(e; y)); g(e; x))gis not monoidal sine g is neither assoiative nor ommutative modulo AG0. Never-theless, any model of AG0 is an Abelian group, where the group operations f andi are de�ned as f(x; y) := g(x; g(e; y)) and i(x) := g(e; x).



Unifiation Theory 509In order to apture theories like AG0 as well, one must take a more semantipoint of view. A ommon feature of the free algebras de�ned by ACU, ACUI,and AG is that the �nitely generated free algebras are diret powers of the freealgebras in one generator. For example, it is well known that the free Abeliangroup in one generator is just the additive group of the integers, and that the freeAbelian group in n generators is the n-fold diret produt of this group. As shownin [Baader 1989b℄, this ommon feature an niely be generalized in the ategorialsetting introdued in subsetion 3.3.3:5.2. Definition. Let E be an equational theory and F := Sig(E). Then E is aommutative theory i� CF (E) is a semi-additive ategory,16 i.e.,1. CF (E) has a zero objet.2. For every pair of objets in CF (E), their oprodut is also their produt.In algebrai terms, the �rst ondition means that the initial algebra in V (E), i.e.,T (F ; ;)==E , is of ardinality 1. Sine the oprodut of T (F ;X )==E and T (F ;Y)==Eis simply T (F ;X ℄ Y)==E (where ℄ denotes disjoint union), the seond onditionmeans that the free algebra T (F ;X ℄ Y)==E is isomorphi to the diret produtT (F ;X )==E � T (F ;Y)==E . In partiular, this implies that the �nitely generatedE-free algebras are diret powers of the E-free algebra in one generator.The theory of Abelian groups satis�es these properties (and thus is ommuta-tive). The theory of Boolean rings and the theory of ommutative rings are notommutative in the sense of the above de�nition sine the initial algebras ontaintwo elements (the onstants 0 and 1).In order to obtain a more algebrai de�nition of ommutative theories, whihalso makes lear that all monoidal theories are ommutative, we need two morenotions from universal algebra. A onstant symbol e 2 F is alled idempotent in Ei� f(e; : : : ; e) =E e holds for all f 2 F . Any term t(x1; : : : ; xn) over the signature Fde�nes an n-ary impliit operation ot in V (E): for an algebra A 2 V (E), the resultof applying ot to elements a1; : : : ; an of the arrier of A is obtained by evaluatingt(a1; : : : ; an) in A. For example, the terms g(x; g(e; y)) and g(e; x) de�ne a binaryand a unary impliit operation, whih together with the onstant e satisfy theaxioms of Abelian groups in all models of AG0, i.e., all algebras in V (AG0).5.3. Proposition. Let E be an equational theory and F := Sig(E). Then E is aommutative theory i�1. The signature F ontains a onstant e that is idempotent in E.2. There is a binary impliit operation � in V (E) suh that(a) The onstant e is a unit for � in all algebras in V (E).(b) For any n-ary funtion symbol h 2 F , the identity h(x1 � y1; : : : ; xn � yn) �h(x1; : : : ; xn) � h(y1; : : : ; yn) holds in all algebras in V (E).16See, e.g., [Herrlih and Streker 1973, Baader 1989b℄ for a more preise de�nition of and moreinformation on semi-additive ategories.



510 Franz Baader and Wayne SnyderAlthough it is not expliitly required by the proposition, the impliit operation �turns out to be assoiative and ommutative. Using this proposition, it is easy toshow that the theory AG0 is indeed ommutative: the impliit operation � is de�nedby the term g(x; g(e; y)).Another easy onsequene of the proposition is that every monoidal theory isommutative: just take the expliit assoiative-ommutative binary operation f inthe de�nition of monoidal theories as the impliit operation �. The theory AG0is an example of a ommutative theory that is not monoidal. However, it an beshown [Baader and Nutt 1996℄ that every ommutative theory an be turned intoan \equivalent" monoidal theory with the help of a signature transformation. Forthis reason, one an in priniple use both notions synonymously.5.3. The orresponding semiringLet E be a ommutative theory with Sig(E) = F . The semiring SE orrespondingto E is obtained by onsidering the E-free algebra in one generator, say x, and thentaking the set of all endomorphisms of this algebra. Eah suh endomorphism isuniquely determined by the image of the generator x. The multipliation operation\�" in SE is just omposition of morphisms, and the addition operation \+" is ob-tained by argument-wise appliation of the impliit operation � of the ommutativetheory E: (� + �)(x) := �(x) � �(x).As an example, we onsider the ommutative theory ACUI, where the ex-pliit operation f serves as the impliit operation �. Sine the ACUI-free alge-bra generated by x onsists of two equivalene lasses, with representatives xand e, respetively, there are two possible endomorphisms: 0, whih is de�nedby x 7! e, and 1, whih is de�ned by x 7! x. It is easy to see that the op-eration \+" in SACUI behaves like disjuntion and \�" like onjuntion on thetruth values 0 and 1. For example, (0 � 1)(x) = 1(0(x)) = 1(e) = e = 0(x) and(0 + 1)(x) = f(0(x); 1(x)) = f(e; x) =ACUI x = 1(x). Consequently, SACUI is thetwo-element Boolean semiring BS.A well-known result for semi-additive ategories [Herrlih and Streker 1973℄ saysthat morphisms � in the semi-additive ategory CF (E) an be represented as matri-esM� over SE suh that omposition of morphisms orresponds to matrix multipli-ation, i.e.,M�� =M� �M� . For example, the morphism �: T (F ; fx1; x2g)==ACUI !T (F ; fy1; y2g)==ACUI de�ned by �(x1) := f(y1; y2); �(x2) := y2 orresponds to thematrix M� =  fx1 7! y1g fx1 7! y2gfx2 7! eg fx2 7! y2g ! =  1 10 1 ! :The seond equality depends on the fat that all E-free algebras in one generatorare isomorphi, and thus a morphism �ij : T (F ; fxig)==E ! T (F ; fyjg)==E an beseen as an endomorphism of T (Ffxg)==E , i.e., an element of SE .



Unifiation Theory 5115.4. Results on uni�ation in ommutative theoriesLet E be a ommutative theory with Sig(E) = F . In subsetion 3.3.3 wehave seen that any E-uni�ation problem over F orresponds to a parallel pair�; � : T (F ; I)==E ! T (F ;X )==E of morphisms in CF (E), and that an E-uni�erorresponds to a morphism Æ with domain T (F ;X )==E suh that �Æ = �Æ holds inCF (E).If we translate the morphisms into matries over SE , this means that an E-uni�er of the parallel pair h�; �i orresponds to a matrix M over SE suh thatM� �M = M� �M . This orrespondene is used in [Nutt 1990, Baader 1993℄ toharaterize the uni�ation types of ommutative theories by algebrai propertiesof the orresponding semirings. The rows of the matrix M are n-tuples of elementsof SE , written as row vetors. We will denote the set of all suh n-dimensional rowvetors over SE by SnE .5.4. Theorem. A ommutative theory E is unitary w.r.t. elementary uni�ationi� the orresponding semiring SE satis�es the following ondition: for all m;n � 1and all m� n-matries M1;M2 over SE the setU(M1;M2) := fv 2 SnE jM1 � v =M2 � vgis �nitely generated, i.e., there exist k � 0 and v1; : : : ; vk 2 SnE suh thatU(M1;M2) = fv1 � s1 + � � �+ vk � sk j s1; : : : ; sk 2 SEg.If fv1; : : : ; vkg is suh a �nite generating set for U(M�;M� ), then the matrix whoseolumns are the vetors v1; : : : ; vk orresponds to the most general E-uni�er ofh�; �i.Uni�ation with onstants an also be reformulated as a problem in CF (E) forF = Sig(E). To this end we view onstants as speial variables that must alwaysbe substituted for themselves. Let C be a �nite set of free onstants. We say thata morphism �: T (F ;X [ C)==E ! T (F ;Y [ C)==E respets the onstants in C i�� =  for all  2 C. In this ase, the matrix M� has a speial form:M� =  Mh� M i�0 U ! ;whereMh� is an jX j�jYj-matrix,M i� is an jX j�jCj-matrix, 0 is the jCj�jYj-matrixwith all entries 0, and U is the jCj � jCj-unit matrix. The 0-submatrix is due to thefat that � does not substitute terms with variables for onstants, and the unitmatrix expresses that � maps any onstant to itself.An E-uni�ation problem with onstants from a �nite set C orresponds to aparallel pair h�; �i of morphisms respeting the onstants in C, and eah E-uni�erÆ of this pair also orresponds to a morphism respeting C. For the omponents ofthe orresponding matries, the fat that Æ is a uni�er of h�; �i, i.e., thatM� �MÆ =M� �MÆ, leads to the following equations:Mh�MhÆ = Mh�MhÆ ;



512 Franz Baader and Wayne SnyderMh�M iÆ +M i� = Mh�M iÆ +M i� :The �rst equation is a system of homogeneous equations in SE , whereas the seondis a system of inhomogeneous equations.From these observations one an derive the following haraterization of the type\at most �nitary" for uni�ation with onstants in ommutative theories:175.5. Theorem. Let E be a ommutative theory that is unitary w.r.t. elementaryuni�ation. Then E is at most �nitary w.r.t. uni�ation with onstants i� theorresponding semiring SE satis�es the following ondition: for all m;n � 1, allm � n-matries M1;M2 over SE, and all u1; u2 2 SmE , there exist �nitely manyv1; : : : ; vk 2 SnE suh thatfw 2 SnE jM1 � w + u1 =M2 � w + u2g = fvi + v j 1 � i � k; v 2 U(M1;M2)g:This onditions means that �nitely many partiular solutions of the system of in-homogeneous equations, M1 � x + u1 = M2 � x + u2, together with the solutionsU(M1;M2) of the orresponding system of homogeneous equations,M1 �x =M2 �x,generate all solutions of the system of inhomogeneous equations. The assumptionthat E is unitary w.r.t. elementary uni�ation implies that U(M1;M2) is �nitelygenerated. The omplete set of E-uni�ers an now be built from the generating setof U(M1;M2) and the �nitely many partiular solutions of the systems of inhomoge-neous equations orresponding to the free onstants as illustrated in subsetion 5.1.We lose this setion by mentioning some additional results on uni�ation inommutative theories. Let E be a ommutative theory.1. For elementary uni�ation, E is either unitary or of type zero.2. If SE is �nite, then E is unitary for elementary uni�ation and at most �nitaryfor uni�ation with onstants.3. If SE is a ring and E is unitary for elementary uni�ation, then E is also unitaryfor uni�ation with onstants.4. If E is at most �nitary for uni�ation with onstants, then E is also at most�nitary for uni�ation with linear onstant restritions, and thus also for generaluni�ation.Proofs of these and other interesting results on uni�ation in ommutative/monoidaltheories an be found in [Baader 1989b, Nutt 1990, Baader 1993, Baader andNutt 1996℄.Compared to syntati approahes to uni�ation, the semanti approah intro-dued here has the disadvantage that it annot treat general uni�ation problemsdiretly. In fat, for a ommutative theory E, we have onsidered the ategoryCF (E) for F = Sig(E), and have used the fat that this ategory is semi-additive.For an extended signature F1 � F , the ategory CF1(E) would no longer be semi-additive, and thus the presented approah to uni�ation in ommutative theoriesannot be applied diretly. For uni�ation with onstants, we have shown that onean still work within the ategory CF (E) by onsidering speial morphisms. For17Reall that \at most �nitary" means unitary or �nitary.



Unifiation Theory 513arbitrary free funtion symbols suh an approah does not appear to be possible.The general methods for ombining uni�ation algorithms desribed in the nextsetion an, however, overome this problem (see result 4. from above).6. Combination of uni�ation algorithmsIn appliations of equational uni�ation in automated dedution, one is often faedwith the problem of unifying terms ontaining several funtion symbols whose prop-erties are de�ned by equational theories. For example, assoiative-ommutativefuntion symbols often ome in pairs (e.g., the addition operation + and the multi-pliation operation � of rings). However, a given AC- or ACU-uni�ation algorithman only treat terms ontaining one of these two symbols, but not both. In pro-gram veri�ation one may enounter data strutures suh as sets and lists, and theirombination (e.g., sets of lists). Sine union of sets ([) is assoiative, ommutative,and idempotent, and the append operation for lists (app) is assoiative, uni�ationof terms ontaining both ACI- and A-symbols is of interest in this setting. Thus,the question arises whether we an use the known ACI[- and Aapp-uni�ation al-gorithms for unifying terms ontaining both [ and app modulo ACI[ [Aapp . Thisis an instane of the following ombination problem for uni�ation algorithms:Assume that E1; : : : ; En are equational theories over pairwise disjoint sig-natures. How an algorithms for uni�ation modulo Ei (i = 1; : : : ; n) beombined to an algorithm for uni�ation modulo E1 [ � � � [ En?To be more preise, there are two variants of this problem: one an either tryto ombine algorithms omputing omplete sets of uni�ers or deision proedures.It should also be noted that without the disjointness ondition there annot ex-ist a general ombination method.18 For example, as mentioned in setion 3.4,Dlf;g-uni�ation and Drf;g-uni�ation are unitary, whereas uni�ation modulo theirunion Df;g is in�nitary, whih shows that algorithms omputing �nite omplete setsof uni�ers annot be ombined in the non-disjoint ase. Setion 3.4 also yields anegative example for the ombination of deision proedures: Df;g-uni�ation andAg-uni�ation are deidable, whereas uni�ation modulo their union is undeidable.The formulation of the ombination problem given above is still not quite preisesine it does not speify whih kind of Ei-uni�ation problems (elementary, withonstants, or general) the omponent algorithms must be able to handle. As weshall see below, algorithms for uni�ation with onstants are not quite suÆient:the ombination method requires algorithms for uni�ation with linear onstantrestritions for the omponent theories Ei. In partiular, algorithms for general E-uni�ation an be obtained from algorithms for E-uni�ation with lr by ombiningthem with an algorithm for syntati uni�ation (whih treats the free funtionsymbols).18There are some approahes that try to weaken the disjointness assumption, but the theoriesto be ombined must satisfy rather strong onditions [Ringeissen 1992, Domenjoud, Klay andRingeissen 1994℄.



514 Franz Baader and Wayne SnyderThe researh on the ombination problem was triggered by the searh for auni�ation algorithm that an deal with terms ontaining several assoiative-ommutative funtion symbols and free symbols [Stikel 1975, Stikel 1981, Fages1984, Fages 1987, Herold and Siekmann 1987℄. It turned out that the methods usedin this partiular instane of the ombination problem an easily be generalized toother equational theories, provided that they satisfy ertain restritions (suh asollapse-freeness or regularity19) on the syntati form of their de�ning identities,whih make sure that the theories behave similarly to assoiativity-ommutativityand syntati equality [Kirhner 1985, Tid�en 1986, Herold 1986, Yelik 1987, Boudetet al. 1989℄.The problem of ombining algorithms omputing omplete sets of uni�ers wassolved in a very general form by Shmidt-Shau� [1989b℄. His approah imposes norestrition on the syntati form of the identities. The only requirements on theomponent theories Ei are of an algorithmi nature: both Ei-uni�ation problemswith onstants and so-alled \onstant elimination problems" (see [Shmidt-Shau�1989b℄ for a de�nition) must be �nitary solvable modulo Ei. Boudet [1993℄ desribesa more eÆient ombination algorithm, whih depends on the same requirementsas the one by Shmidt-Shau�.In the following, we will desribe the ombination method introdued in [Baaderand Shulz 1992, Baader and Shulz 1996℄ in more detail, sine it an be used bothfor ombining algorithms omputing omplete sets of uni�ers and for ombining de-ision proedures. Instead of splitting the algorithmi problem to be solved for theomponent theories Ei into two parts (uni�ation with onstants and onstant elim-ination), this method requires algorithms (deision proedures) for Ei-uni�ationwith lr. In this setting, Shmidt-Shau�'s ondition that onstant elimination prob-lems must be �nitary solvable modulo Ei an be seen as just one way of ensuringthat Ei-uni�ation with lr is at most �nitary provided that Ei-uni�ation withonstants is at most �nitary.6.1. A general ombination methodBefore desribing the ombination method of Baader and Shulz [1992℄ and [1996℄formally, we illustrate the underlying ideas by a simple example. Let g be a unaryand f be a binary funtion symbol. We onsider the theories Af and Fg := fg(x) �g(x)g,20 and the (elementary) uni�ation problem�0 := fg(f(y; y)) ?=E g(x); g(x) ?=E g(y); x ?=E f(y; y)gmodulo their union E := Af [Fg . In a �rst step, we transform �0 into an equivalentuni�ation problem in deomposed form, i.e., into a union of an (elementary) Af -19A theory E is alled ollapse-free if it does not ontain an identity of the form x = t where xis a variable and t is a non-variable term, and it is alled regular if the left- and right-hand sidesof the identities ontain the same variables.20Obviously, =Fg is just syntati equality. The \dummy" axiom g(x) � g(x) makes sure thatg belongs to Sig(Fg).



Unifiation Theory 515uni�ation problem and an (elementary) Fg-uni�ation problem:� := fz ?=Af f(y; y); x ?=Af f(y; y)g [ fg(z) ?=Fg g(x); g(x) ?=Fg g(y)g:This has been ahieved by replaing \alien" subterms (in the example, just the termf(y; y) ourring on the left-hand side of the �rst equation) by new variables andintroduing appropriate new equations (see [Baader and Shulz 1996℄ for a formalde�nition of this deomposition step).Unfortunately, it is not suÆient simply to test the \pure" uni�ation problemsobtained this way for solvability. The problem is that these uni�ation problemsstill share variables, and the single solutions may instantiate these variables withinompatible terms. For example, �1 := fx 7! f(y; y); z 7! f(y; y)g solves theAf -subproblem, and �2 := fx 7! g(x); y 7! g(x); z 7! g(x)g is a solution of theFg-subproblem, but these solutions replae both x and z by di�erent (even non-uni�able) terms. In order to avoid suh inompatible assignments, we hoose atheory label for eah variable: in the subproblem orresponding to this theory, thevariable may be instantiated, whereas in the other subproblem the variable mustbe treated as a onstant. For example, if we assignL(x) := L(z) := Af and L(y) := Fg ;then y must be treated as a onstant in the Af -subproblem, whereas x and z mustbe treated as onstants in the Fg-subproblem.This avoids inompatible instantiations of shared variables, but also leads toa new problem: in the example, the equation g(z)=?Fg g(x) is no longer solvablesine both z and x must be treated as (di�erent) onstants. This problem an beoverome by hoosing an appropriate variable identi�ation. In the example, x mustbe identi�ed with z, whih an be ahieved by replaing every ourrene of z byx: �0 := fx ?=Af f(y; y)g [ fg(x) ?=Fg g(x); g(x) ?=Fg g(y)g:Unfortunately, the solutions �01 := fx 7! f(y; y)g and �02 := fy 7! xg of thepure subproblems still annot be ombined to a solution of their union, sine thereis a yli dependeny between the two substitutions: x is replaed by a termontaining y, and y is replaed by a term ontaining x. Suh yli dependeniesbetween solutions of the pure subproblems an �nally be avoided by hoosing alinear ordering on the shared variables of the uni�ation problem, whih indueslinear onstant restritions for the subproblems.These ideas an be formalized as follows. Let E1; : : : ; En be non-trivial equationaltheories over disjoint signatures. An (E1 [ � � � [ En)-uni�ation problem � is indeomposed form i� � = �1[� � �[�n where eah �i is an elementary Ei-uni�ationproblem. As illustrated in the example, it is easy to transform a given elementary(E1 [ � � �[En)-uni�ation problem into an equivalent problem in deomposed form(see [Baader and Shulz 1996℄ for details). Thus, we may without loss of generalityassume that all our (E1 [ � � � [ En)-uni�ation problems are in deomposed form



516 Franz Baader and Wayne Snyder� = �1 [ � � � [ �n. A variable ourring in � is alled a shared variable i� it oursin at least two of the pure subproblems �i.Let X be the set of shared variables of � = �1[� � �[�n. A variable identi�ationan be represented by a partition � = fP1; : : : ; Pkg of X . For eah of the lassesPi, let xi 2 Pi be a representative of this lass, and let X� := fx1; : : : ; xkg be theset of these representatives. The substitution that replaes, for all i = 1; : : : ; k, eahelement of Pi by its representative xi is denoted by ��. We denote the result ofapplying �� to eah term in �i by �i��. For a given partition � of the sharedvariables of �, let L : X� ! f1; : : : ; ng be a labelling funtion, whih assigns atheory label to eah variable in X�, and let < be a linear ordering on X�. Using Land <, eah of the elementary Ei-uni�ation problems �i�� an be turned into anEi-uni�ation problem with linear onstant restritions h�i��; L;<i: the variablesx 2 X� with label L(x) 6= i are treated as (free) onstants in h�i��; L;<i, whereasthe other variables are still treated as variables, and the linear onstant restritionsare indued by <.216.1. Proposition. Let � := �1[ � � �[�n be an (E1[ � � �[En)-uni�ation problemin deomposed form. Then the following statements are equivalent:1. � is solvable, i.e., there exists an (E1 [ � � � [ En)-uni�er of �.2. There exists a partition �, a labelling funtion L : X� ! f1; : : : ; ng, and alinear ordering < on X� suh that, for all i = 1; : : : ; n, the Ei-uni�ationproblem with linear onstant restritions h�i��; L;<i is solvable.Assume that solvability of Ei-uni�ation problems with lr is deidable for i =1; : : : ; n. For a given elementary (E1 [ � � � [ En)-uni�ation problem �0 one anompute an equivalent problem in deomposed form � in polynomial time. For�, there exist only �nitely many di�erent triples (�; L;<), whih means that itis possible to ompute all possible suh triples, and then test the obtained Ei-uni�ation problems with lr for solvability. Thus, proposition 6.1 implies thatsolvability of elementary (E1 [ � � � [ En)-uni�ation problems is deidable. To bemore preise, instead of deterministially omputing all possible triples (�; L;<),one an also employ a non-deterministi algorithm that \guesses the right tuple"in polynomial time.6.2. Theorem. Let E1; : : : ; En be non-trivial equational theories over disjoint sig-natures. If solvability of Ei-uni�ation problems with linear onstant restritions isdeidable (in NP) for i = 1; : : : ; n, then solvability of elementary (E1 [ � � � [ En)-uni�ation problems is deidable (in NP).In general, it is not possible to avoid the non-determinism inherent in this ombi-nation method [Shulz 1997℄. For example, the deision problem is polynomial forACUI-uni�ation with lr, but NP-omplete for general ACUI-uni�ation [Baader21Non-shared variables are assumed to be larger than all shared variables, i.e., there are norestritions for the images of these variables.



Unifiation Theory 517and Shulz 1993b, Kapur and Narendran 1992a℄. This shows that the ombina-tion of an algorithm for syntati uni�ation with a deision proedure for ACUI-uni�ation with lr annot be ahieved with the help of a polynomial ombinationmethod. For regular and ollapse-free theories for whih, in addition, it is possibleto ompute most general uni�ers in polynomial time, one an, however, design a(deterministi) polynomial ombination proedure [Shulz 1999℄.The naive ombination algorithm obtained by a diret appliation of proposi-tion 6.1 is highly non-deterministi, and thus does not lead to satisfatory resultsin pratie. Optimizations of the ombination algorithm (whih avoid this unsatis-fatory behavior in many ases) are desribed in [Kepser and Rihts 1999℄.Proposition 6.1 an also be used to obtain a method for ombining uni�ationalgorithms, i.e., algorithms omputing �nite omplete sets of uni�ers. In fat, as weshall see below, given solutions �i of the Ei-uni�ation problems with lr induedby the triple (�; L;<) an e�etively be ombined into a solution �1�� � ���n of theoriginal (E1 [ � � � [En)-uni�ation problem. For a given (E1 [ � � � [En)-uni�ationproblem � in deomposed form, let T1; : : : ; Tk be all the triples onsisting of apartition �, a labelling funtion L, and a linear ordering < on X�, and let Ci;j bea omplete set of Ei-uni�ers of the Ei-uni�ation problem with lr indued by Tj .Then the set k[j=1f�1 � � � � � �n j �i 2 Ci;jgis a omplete set of (E1 [ � � � [ En)-uni�ers of � (see [Baader and Shulz 1996℄ fora proof).6.3. Theorem. Let E1; : : : ; En be non-trivial equational theories over disjoint sig-natures that are at most �nitary for Ei-uni�ation with linear onstant restritions.Then E1 [ � � � [ En is at most �nitary for elementary uni�ation.Although the ombination results (as formulated in theorem 6.2 and theorem 6.3)only apply to elementary uni�ation in the ombined theory, they an easily beextended to general uni�ation. In fat, it is easy to see that syntati uni�ationwith lr is deidable and unitary: just ompute the mgu of the uni�ation problemwithout lr, and then test whether it satis�es the onstant restritions. Thus, onean simply take as one of the Ei's a \free" theory F suh that Sig(F ) ontains allthe free funtion symbols ourring in the general uni�ation problem and =F isthe syntati equality on Sig(F )-terms.6.2. Proving orretness of the ombination methodIn order to show soundness of the ombination method (i.e., (2) ! (1) of propo-sition 6.1), it is suÆient to show that given solutions �i of the Ei-uni�ationproblems with lr indued by the triple (�; L;<) an indeed be ombined into a



518 Franz Baader and Wayne Snydersolution �1 � � � � � �n of the original (E1 [ � � � [En)-uni�ation problem in deom-posed form � = �1 [ � � � [ �n. First, we ombine �1; : : : ; �n into a solution � of��� = �1�� [ � � � [ �n��. Obviously, this implies that ��� is a solution of �.Without loss of generality, we may assume that the substitution �i maps allvariables with label i to terms ontaining only variables with label j 6= i (whih aretreated as free onstants in �i��) or new variables, i.e., variables not ourring in�. The ombined solution � of ��� is de�ned along the linear ordering <.Let x be the least variable with respet to <, and let i be its label. Sine thesolution �i of �i�� satis�es the onstant restritions indued by <, the term x�idoes not ontain any variables with index j 6= i. Thus we an simply de�ne x� :=x�i.Now let x be an arbitrary variable with label i, and let y1; : : : ; ym be the variableswith labels di�erent from i ourring in x�i. Sine �i satis�es the onstant restri-tions indued by <, the variables y1; : : : ; ym (whih are treated as free onstants in�i��) must be smaller than x. This means that y1�; : : : ; ym� are already de�ned.The term x� is now obtained from x�i by replaing eah yk by yk� (k = 1; : : : ;m).It is easy to see that the substitution � obtained this way satis�es � = �i�(i = 1; : : : ; n), i.e., � is an instane of all the substitutions �i. Sine �i is anEi-uni�er of �i��, this implies that � is also an Ei-uni�er of �i��, and thus anE-uni�er of �i��. Consequently, � is an E-uni�er of ��� = �1�� [ � � � [ �n��.Proving ompleteness of the ombination method (i.e, (1) ! (2) of proposi-tion 6.1) turns out to be a bit more omplex. In the following, we only give asketh of the proof. Assume that � is a solution of the (E1 [ � � � [ En)-uni�ationproblem in deomposed form � = �1 [ � � � [�n. This solution an be used to de�nethe orret triple (�; L;<):1. Two shared variables x; y belong to the same lass of � i� x� =E y�.2. If x� is not a variables, then L(x) = i i� the top symbol of x� belongs toSig(Ei). Otherwise, L(x) := 1 (this is an arbitrary deision).3. < is an arbitrary linear extension of the strit partial ordering � de�ned byx � y i� x� is a strit subterm of y�.It is easy to see that � is also a solution of ��� = �1�� [ � � � [ �n��. For eahi, the substitution � (whih is a substitution of the ombined signature Sig(E1) [� � � [ Sig(En)) an be turned into a Sig(Ei)-substitution �i by replaing aliensubterms in x� (i.e., subterms starting with a symbol not belonging to Sig(Ei))by new variables in suh a way that =E-equivalent subterms are replaed by thesame variable. Unfortunately, for an arbitrary E-uni�er � of �, the substitution�i obtained this way need not be a solution of the Ei-uni�ation problem withlr h�i��; L;<i. For this to be true, � must be normalized in a ertain way. Onepossibility to obtain an appropriate notion of a normalized substitution is to applyunfailing ompletion to the equational theory E1 [ � � � [ En, and normalize w.r.t.the ordered rewrite system R obtained this way (see [Baader and Shulz 1996℄for details). Sine R may be in�nite, it is not neessarily possible to ompute thenormal form of a given term, but this is irrelevant for the proof of ompleteness.Another possibility (whih has the advantage that normalization is e�etive) is to



Unifiation Theory 519ompute a so-alled \layer-redued" form [Shmidt-Shau� 1989b, Kirhner andRingeissen 1994℄. In priniples, this normal form is obtained by applying ollapse-equations as muh as possible.A di�erent way of proving soundness and ompleteness of the ombinationmethod desribed above was introdued in [Baader and Shulz 1995a℄: it dependson a representation of the free algebra in V (E1 [ � � � [ En) over ountably manygenerators as the so-alled free amalgamated produt of the free algebras in V (Ei)in ountably many generators. This approah an also deal with the ombinationof onstraint solvers in free strutures (where the signature may also ontain pred-iate symbols), and it has been generalized to strutures that are not neessarilyfree [Baader and Shulz 1995, Baader and Shulz 1998℄. The ombination methodhas also been extended to disuni�ation [Baader and Shulz 1995b, Kepser 1999℄.7. Further topisIn this artile we have onentrated on uni�ation of �rst-order terms, and havementioned only appliations in term rewriting and resolution-based theorem prov-ing. However, uni�ation is a broad paradigm with appliations in almost everyarea of automated dedution, and we would like to draw the reader's attentionin partiular to the two hapters of this handbook where varieties of uni�ationnot overed here are treated: higher-order uni�ation [Dowek 2001℄ and rigid E-uni�ation [Degtyarev and Voronkov 2001a℄ (Chapters 16 and 10 of this Handbook).In addition, we briey mention in this �nal setion a number of important variantsof the uni�ation problem that have been studied in the literature.MathingGiven a pair of terms s; t, the mathing problem asks for a substitution � suh thats� = t. Again, this syntati mathing problem an be generalized to mathingmodulo an equational theory E, where one asks for a substitution � satisfyings� =E t.If t does not ontain variables, then mathing and uni�ation are obviously thesame problem. In general, one an turn a given mathing problem into an \equiva-lent" uni�ation problem by replaing the variables in t by new free onstants. Thistransformation shows that mathing modulo E an be redued to E-uni�ation withonstants . B�urkert [1989℄ has shown that there exists an equational theory forwhih elementary uni�ation is deidable, but mathing and uni�ation with on-stants is undeidable. Also, if one is interested in omplete sets of E-mathers, thenone must be areful how to de�ne the instantiation quasi-ordering [B�urkert 1989℄.Semiuni�ationSemiuni�ation is a deeptively simple ombination of syntati mathing and syn-tati uni�ation on �rst-order terms.



520 Franz Baader and Wayne SnyderA semiuni�ation problem onsists of a set of pairs of termsfs1 �? t1; : : : ; sn �? tngand is alled uniform if n = 1. A substitution � is a solution (a semiuni�er) of suha problem i� there exist substitutions �1; : : : ; �n suh thats1��1 = t1�; : : : ; sn��n = tn�:This simple de�nition belies the broad variety of appliations of semiuni�ation interm rewriting, type heking for programming languages, proof theory, and ompu-tational linguistis; in addition, proving the properties of the problem turned out tobe extremely diÆult. Although it is easy to show that so-alled prinipal solutions(analogous to mgus in syntati uni�ation) always exist for solvable semiuni�a-tion problems, the proof that the non-uniform ase is undeidable is exeedinglyomplex; the interested reader is referred to [Kfoury, Tiuryn and Urzyzyn 1993℄,where a review of the results on the non-uniform ase is presented.The uniform ase is deidable, but it took a long time to develop a orret,eÆient algorithm. A fast algorithm based on the uni�ation-losure method, aswell as a review of the various attempts to provide algorithms for the problem, maybe found in [Oliart and Snyder 1998℄. This paper shows that the uniform ase anbe deided in O(n2 �(n)2), where n is the size of the two input terms, and � isthe funtional inverse of Akermann's funtion; onstruting a prinipal solution issomewhat more omplex.Disuni�ationA disuni�ation problem is of the formfs1 ?= t1; : : : ; sn ?= tn; sn+1 ?6= tn+1; : : : ; sn+m ?6= tn+mg;where s1; : : : ; tn+m are terms. A solution of suh a problem is a substitution �satisfying si� = ti� (i = 1; : : : ; n) and sn+j� 6= tn+j� (j = 1; : : : ;m). Again, thisproblem an be generalized to disuni�ation modulo an equational theory E.In ontrast to uni�ation, one must distinguish between di�erent types of solv-ability: for disuni�ation it makes a di�erene whether solutions are required tobe ground substitutions (i.e., substitution introduing only variable-free terms),or whether they may be arbitrary substitutions. Both types of solvability havebeen onsidered in the literature [Colmerauer 1984, Kirhner and Lesanne 1987,B�urkert 1988, Comon and Lesanne 1989, Comon 1988, Comon 1991, Buntineand B�urkert 1994, Baader and Shulz 1993a℄, but ground solvability appears tobe more interesting for most appliations. It should also be noted that sometimesmore general problems than the one introdued above are still alled disuni�ationproblems (see, e.g., [Comon 1991℄).Sorted uni�ationIn many appliations, the domain on whih the funtion symbols operate is notone homogeneous set: it is divided into di�erent subsets, whih on the syntati
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