COMP 3704 Computer Security

Christian Grothoff

 $\verb|christian@grothoff.org||$

http://grothoff.org/christian/

Definition: Divisor

Let $m \neq 0$ and $n, m \in \mathbb{Z}$, then m divides n if there exists a $q \in \mathbb{Z}$ such that n = mq.

We then also say that n is a multiple of q.

We write d|a and say d divides a.

Rules

$$m|n \Leftrightarrow n\%m = 0 \tag{1}$$

$$n|0 \wedge n|n \quad \text{for } n \neq 0 \tag{2}$$

$$m|n \Rightarrow -m|n \wedge m| - n \qquad (3)$$

$$1|n \quad \text{for all } n \qquad (4)$$

$$m|n \wedge n \neq 0 \Rightarrow |m| \leq |n| \qquad (5)$$

$$n|1 \Rightarrow |n| = 1 \tag{6}$$

3

More Rules

$$m|n \wedge n|m \Rightarrow n = m \vee n = -m$$

$$m|n \Leftrightarrow lm|ln \quad \text{if } l \neq 0$$

$$m|n_1 \wedge m|n_2 \Rightarrow m|(l_1n_1 + l_2n_2) \quad \text{for all } l_1, l_2 \quad (9)$$

$$m_1|n_1 \wedge m_2|n_2 \Rightarrow m_1m_2|n_1n_2 \quad (10)$$

Definition: Prime Numbers

Let $\tau(n)$ be the number of positive divisors for $n \in \mathbb{N}$.

A prime number p is a natural number with exactly two positive divisors (1|p and p|p):

$$\tau(p) = 2. \tag{11}$$

Fundamental Theorem of Arithmetic

Every positive integer can be represented in exactly one way (modulo permutations) as a product of zero or more primes.

Greatest Common Divisor

d = GCD(a, b) if $d \in \mathbb{N}$ is the largest number such that d|a and d|b.

Euclidean Algorithm

```
unsigned int gcd(unsigned int a, unsigned int b)
  unsigned int g = b;
  while (a > 0) {
    g = a;
    a = b % a;
    b = g;
  }
  return g;
}
```


Definition: Coprime

Two numbers $a, b \in \mathbb{Z}$ are called **coprime**, **relatively** prime or strangers if GCD(a, b) = 1.

Multiplicative Functions

A function $f : \mathbb{Z} \to \mathbb{C}$ is called **multiplicative** if

$$f(n_1 \cdot n_2) = f(n_1) \cdot f(n_2)$$
 (12)

for all coprime numbers $n_1, n_2 \in \mathbb{N}$.

Product of Infinite Series

If $f : \mathbb{Z} \to \mathbb{C}$ multiplicative and $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent, then:

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} \sum_{v=0}^{\infty} f(p^{v}).$$
 (13)

(using fundamental theorem of arithmetic).

Riemann Zeta Function

 $\zeta:\mathbb{C}\to\mathbb{C}$ is for $Re\ s>1$ defined as:

$$\begin{aligned} \zeta(s) &:= \sum_{n=1}^{\infty} n^{-s} \\ &= \prod_{p} \sum_{v \ge 0} p^{-sv} \\ &= \prod_{p} (1 - p^{-s})^{-1}. \end{aligned} \tag{14}$$

Proof: Using product of infinite series and summation of geometric series.

Euclid

"There are infinitely many primes."

Non-standard **Proof:**

$$\zeta(2) = \sum_{n \in \mathbb{N}} n^{-2} = \frac{1}{6} \pi^2 \notin \mathbb{Q}.$$
 (17)

Modular Arithmetic

- $a = a + (b \cdot n) \mod n$ for $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$
- $a \cdot b \equiv (a \mod n) \cdot (b \mod n) \mod n$

We call the resulting ring \mathbb{Z}_n .

For p prime, $\mathbb{Z}_p \equiv \mathbb{F}_p$ is a field.

Modular Exponentiation (1/2)

- How to calculate $a^{14} \mod n$?
- 1. $a_1 \equiv a \mod n$
- 2. $a_2 \equiv a_1 \cdot a_1 \mod n$
- 3. $a_4 \equiv a_2 \cdot a_2 \mod n$
- 4. $a_8 \equiv a_4 \cdot a_4 \mod n$
- 5. $a_{12} \equiv a_8 \cdot a_4 \mod n$
- 6. $a_{14} \equiv a_{12} \cdot a_2 \mod n$

Modular Exponentiation (2/2)

How to calculate $a^{14} \mod n$ in parallel?

- 1. $a_1 \equiv a \mod n$
- 2. $a_2 \equiv a_1 \cdot a_1 \mod n$
- 3. $a_3 \equiv a_1 \cdot a_2 \mod n$ and $a_4 \equiv a_2 \cdot a_2 \mod n$
- 4. $a_7 \equiv a_3 \cdot a_4 \mod n$
- 5. $a_{14} \equiv a_7 \cdot a_7 \mod n$

Inverses mod n

Given $a \in \mathbb{Z}_n$, find $x \in \mathbb{Z}_n$ such that

$$a \cdot x \equiv 1 \mod n.$$
 (18)

We also write

$$a^{-1} \equiv x \mod n. \tag{19}$$

 a^{-1} exists mod n if a and n are coprime.

Computing Inverses $\mod n$

Extended Euclidean algorithm finds x and y in

$$ax + by = GCD(a, b).$$
⁽²⁰⁾

If a and b are coprime, then

$$ax + by \equiv 1$$
(21)

$$\Rightarrow ax \equiv 1 \mod b$$
(22)

$$\Rightarrow a^{-1} \equiv x \mod n$$
(23)

Extended Euclidean Algorithm

Homework

Either:

- Learn about functional programming, or
- Understand Schneier's version on pages 246-248

Fermat's Little Theorem

Let p be prime. Then

$$a^p \equiv a \mod p \tag{24}$$
 for any $a.$ If $p \not\mid a$ then

$$a^{p-1} \equiv 1 \mod p \tag{25}$$

Euler's Totient Function

$$\phi_{\alpha}(n) := \# \{ (l_1, \dots, l_{\alpha}) \in \{1, \dots, n\}^{\alpha} : \\ GCD(l_1, \dots, l_{\alpha}, n) = 1 \}$$
(26)

In particular $\phi(n) := \phi_1(n)$ is the number of natural numbers smaller than n that are coprime to n.

Computing Euler's Totient Function

- $\phi(p) = p 1$.
- $\phi(p^j) = p^{j-1} \cdot (p-1).$
- $\phi(n)$ is multiplicative.

Euler's Theorem

Let $a, m \in \mathbb{N}$ be coprime. Then

$$a^{\phi(m)} \equiv 1 \mod m. \tag{27}$$

Factoring

- Factoring is *assumed* to be a hard problem.
- If not, a lot of cryptography breaks down.
- Complexity has not been established, but is likely not in $P \ {\rm or} \ NP.$
- The hardest problem is factoring products of two randomly-chosen primes of about the same size, but not too close.

Evidence of Complexity of Factoring

 General number field sieve for b-bit number has complexity

$$O\left(exp\left(\left(\frac{64}{9}b\right)^{\frac{1}{3}}(\log b)^{\frac{2}{3}}\right)\right).$$
 (28)

• RSA 640 has been factored, RSA-704 is still pending.

Prime Number Generation

- Factoring is hard
- \Rightarrow Cannot generate primes efficiently by factoring
 - Use statistical tests:
 - For a random number $t,\,$ non-primes pass with probability 1-p
- \Rightarrow Number passing *n* tests is prime with probability $1 p^n$.

Lehmann

- 1. Choose a random number a less than p.
- 2. Calculate $t \equiv a^{(p-1)/2} \mod p$.
- 3. If $t \neq \pm 1 \mod p$ then p is not prime.
- 4. Otherwise the likelihood that p is not prime is no more than 50%.

Rabin-Miller

Calculcate m such that $p = 1 + 2^b \cdot m$ using the largest b with $2^b | p - 1$.

1. Choose a random positive number $a \neq 1$ less than p.

2. Set
$$j = 0$$
 and $z \equiv a^m \mod p$

3. If z = 1 or z = p - 1 then p maybe prime.

- 4. If j > 0 and z = 1, then p is not prime.
- 5. Set j = j+1. If j < b and $z \neq p-1$ set $z \equiv z^2 \mod p$ and go back to step 4.
- 6. If j = b and $z \neq p 1$ then p is not prime.

Prime Number Generation

- 1. Choose a random n-bit number p.
- 2. Set the high-order and low-order bit to 1.
- 3. Check that p is not divisible by any small primes (3, 5, 7, 11).
- 4. Perform Rabin-Miller test n times. If it ever fails, goto step 1.

Naturally, step 3 is optional, but generally cheaper than Rabin-Miller.

Discrete Logarithms

Given $a, b \in \mathbb{Z}_n$, find $x \in \mathbb{Z}_n$ such that

$$a^x \equiv b \mod n.$$
 (29)

We also write

$$\log_a b \equiv x \mod n. \tag{30}$$

Questions

Problem

Show that:

$$m|n_1 \wedge m|n_2 \Rightarrow m|(l_1n_1 + l_2n_2)$$
 for all l_1, l_2 (31)
 $m_1|n_1 \wedge m_2|n_2 \Rightarrow m_1m_2|n_1n_2$ (32)

Problem

Find values for a, b and m such that there is no x with

$$\log_a b \equiv x \mod n. \tag{33}$$

