COMP 3704 Computer Security

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/
Design Criteria for Hash Functions

- \(H : \{0, 1\}^n \rightarrow \{0, 1\}^m \) for fixed \(m \in \mathbb{N} \) and any \(n \in \mathbb{N} \)
- Given \(M \), it is easy to compute \(h = H(M) \)
- Given \(h \), it is hard to find an \(M \) such that \(H(M) = h \)
- Given \(M \), it is hard to find an \(M' \neq M \) such that \(H(M) = H(M') \)
- It is hard to find random messages \(M \) and \(M' \neq M \) such that \(H(M) = H(M') \)
Birthday Attack!

Probability of not finding a n-bit collision after generating $2^{n/2}$ messages is less than 50%:

\[p(k) = \prod_{i=0}^{k} \left(1 - \frac{i}{2^n}\right) \tag{1} \]

\[\approx \prod_{i=0}^{k} e^{-\frac{i}{2^n}} \tag{2} \]

\[= e^{-\frac{(k(k-1))}{2^{n+1}}} \tag{3} \]
General Construction

Difficult to define function $H : \{0, 1\}^n \rightarrow \{0, 1\}^m$. Instead use:

$$h_i = f(M_i, h_{i-1})$$

(4)

$f : \{0, 1\}^b \times \{0, 1\}^m \rightarrow \{0, 1\}^m$ for a fixed b is called a compression function.
General Implementation

struct hash_context;
void hash_init_context(struct hash_context * ctx);
void hash_process_bytes(const void * buf,
 size_t len,
 struct hash_context * ctx);
void hash_finish(struct hash_context * ctx,
 void * result);
Example: MD5

Figure 1: MD5 consists of four rounds of 16 operations.
MD5 Functions

\[F(X, Y, Z) = (X \land Y) \lor (\neg X \land Z) \] \hspace{1cm} (5)

\[G(X, Y, Z) = (X \land Y) \lor (Y \land \neg Z) \] \hspace{1cm} (6)

\[H(X, Y, Z) = X \oplus Y \oplus Z \] \hspace{1cm} (7)

\[I(X, Y, Z) = Y \oplus (X \lor \neg Z) \] \hspace{1cm} (8)
Common Hash Functions

- MD5 – 128 bits
- RIPE160MD – 160 bits
- SHA1 – 128 bits
- SHA-2 – 256-512 bits
- WHIRLPOOL – 512 bits
Miyaguchi-Preneel Constructions

Example: WHIRLPOOL = Miyaguchi-Preneel + AES
Successful Attacks

- SHA-1: collisions found in 2005
- MD4, MD5 and RIPEMD-128: collisions found in 2004

⇒ Use 256 or more bits
Password Crackers

- Passwords do not usually have 128-bits of entropy
- We could actually compute hash codes for all 2^{64} “realistic” passwords (8 ASCII characters)
- However, we could not store all 2^{64} values

⇒ Precompute and use space-computation trade-off when cracking!
Precomputed Hash Chains

- Have set \(P \) of realistic passwords and domain \(D \) of \(H \)
- Define \textbf{reduction} function \(F : D \rightarrow P \)
- Pre-compute chains \(X(I) = H(F(H(F(H(F(H(I))))))) \) for many \(I \)
- When cracking \(C \), check if \(C = X(I) \) or \(H(F(C)) = X(I) \) or \(H(F(...(H(F(C)))))) = X(I) \).

\[\Rightarrow \text{reduce storage space by chain length } L \text{ at the expense of } O(L) \text{ more computation during cracking.} \]
Problems with Hash Chains

• F can cause collisions in two chains, merging the chains

• Collisions reduce effectiveness of table construction (to often less than 70%) and bound chain length

⇒ Tables are much too big!

⇒ Some chains are discarded as ineffective

⇒ Wasted time during construction!

⇒ Possibility of “false alarms”
Rainbow Tables

- Key idea: use different functions F_i in chain
- Pre-compute chains $X(I) = H(F_3(H(F_2(H(F_1(H(I)))))))$

⇒ Collisions only merge chains if they also happen at same position

⇒ Can achieve 99% effectiveness

⇒ Cracking overhead increases from $O(L)$ to $O(L^2)$ for chain traversal

⇒ Cracking overhead decreases from $O(L)$ to $O(1)$ due to fewer chains
Defense: Salt!

- $\text{hash} = H(password + salt)$
- Extends length of the password
- Rainbow tables commonly only support 8 characters

\Rightarrow Add 16 characters (or more) of salt
Reality

- UNIX NIS/YP/shadow: salted for a long time
- Windows NT/2000 LAN Manager: unsalted, easily cracked
Questions

?
Exercise

Generate a rainbow table (and password cracker) for SHA1 that can invert passwords of up to 5 characters (A-Za-z). You may link against libgcrypt or OpenSSL for hashing.