COMP 3704 Computer Security

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/
RSA

Pick p, q prime and e such that

$$GCD((p - 1)(q - 1), e) = 1 \quad (1)$$

- Define $n = pq$,
- compute d such that $ed \equiv 1 \bmod (p - 1)(q - 1)$,
- Let $c \equiv m^e \bmod n$,
- then $m = c^d \bmod n$!
Proof

\[c^d \equiv (m^e)^d \mod n \] \hspace{1cm} (2)

\[\equiv m^{ed} \mod n \] \hspace{1cm} (3)

\[\equiv m^{k(p-1)(q-1)+1} \mod n \] \hspace{1cm} (4)

\[\equiv mm^{k(p-1)(q-1)} \mod n \] \hspace{1cm} (5)

\[\equiv m \mod n \] \hspace{1cm} (6)
RSA Summary

- Public key: n, e

- Private key: $d = e^{-1} \mod \phi(n)$ where $\phi(n) = (p - 1) \cdot (q - 1)$

- Encryption: $c = m^e \mod n$

- Decryption: $m = c^d \mod n$
RSA Facts

- \(D_{A_{\text{priv}}} \left(D_{B_{\text{priv}}} \left(E_{A_{\text{pub}}} \left(E_{B_{\text{pub}}} (M) \right) \right) \right) = M \)

- \(e \) is usually small prime \((3, 17, 65537)\)

\(\Rightarrow \) Encryption (significantly) faster than decryption!

\(\Rightarrow \) Signature verification (significantly) faster than signing!
Chinese Remainder Theorem

Let \(n = \prod_{i=1}^{t} p_i \) where \(p_i \) prime, \(p_i \neq p_j \) for \(i \neq j \). Then the system of equations (for \(i \in \{1, \ldots, t\} \))

\[
x = a_i \mod p_i
\]

has a unique solution \(x \mod n \).
Chinese Remainder Theorem and RSA

Suppose we kept p and q and calculated $u = q^{p-1} \mod n$ and $v = p^{q-1} \mod n$. Then we can compute $m = c^d \mod n$ using:

$$m_1 = c^d \mod (p-1) \mod p$$ \hspace{1cm} (8)

$$m_2 = c^d \mod (q-1) \mod q$$ \hspace{1cm} (9)

$$m = m_1 \cdot u + m_2 \cdot v.$$ \hspace{1cm} (10)
Re-using the Primes

Can we re-use $pq = n$ with a different e to generate a second key pair? Suppose we have (d_1, e_1) and (d_2, e_2) and encrypt the same message m:

$$c_1 = m^{e_1} \mod n \quad (11)$$
$$c_2 = m^{e_2} \mod n \quad (12)$$

Can the adversary recover m?
Common Modulus Attack

Given \(n, e_1, e_2, c_1 \) and \(c_2 \) the adversary can compute \(r < 0 \) and \(s \) such that:

\[
re_1 + se_2 = 1 \tag{13}
\]

Use again the extended Euclidean algorithm to compute \(c_1^{-1} \mod n \). Finally:

\[
(c_1^{-1})^{-r} \cdot c_2^s \equiv m \mod n \tag{14}
\]
Low Encryption Exponent Attack

- e is known
- M maybe small
- $C = M^e < n$?
- If so, can compute $M = \sqrt[n]{C}$

\Rightarrow Small e can be bad!
Padding and RSA Symmetry

• Padding can be used to avoid low exponent issues (and issues with \(m = 0 \) or \(m = 1 \))

• Randomized padding defeats chosen plaintext attacks (dictionary!)

• Padding breaks RSA symmetry:

\[
D_{A_{priv}}(D_{B_{priv}}(E_{A_{pub}}(E_{B_{pub}}(M)))) \neq M
\]

(15)

• PKCS#1 / RFC 3447 define a padding standard
ElGamal Signatures

- Calculate $y = g^x \mod p$ for p prime. x is the private key.
- Select k such that $GCD(k, p-1) = 1$, compute $a = g^k \mod p$.
- Solve $M = (xa + kb) \mod (p - 1)$ using the extended Euclidian algorithm.
- Signature is (a, b). Verified using $y^a a^b \mod p = g^M \mod p$.
Proof

\[y^a a^b \equiv g^{ax} g^{kb} \mod p \quad (16) \]
\[\equiv g^{ax+kb} \mod p \quad (17) \]
\[\equiv g^{M+(p-1)\cdot t} \mod p \quad (18) \]
\[\equiv g^M \cdot (g^{p-1})^t \mod p \quad (19) \]
\[\equiv g^M \mod p \quad (20) \]
Diffie-Hellman Key Exchange

Generator g and prime p are known to everyone.

1. Alice calculates $a \equiv g^x \mod p$ for random number x, sends a to Bob.

2. Bob calculates $b \equiv g^y \mod p$ for random number y, sends b to Alice.

3. Alice computes $K = b^x$.

4. Bob computes $K = a^y$.
ElGamal Encryption

• Calculate $y = g^x \mod p$ for p prime. x is private key.

• Select k such that $GCD(k, p - 1) = 1$, compute $a = g^k \mod p$.

• Calculate $a = g^k \mod p$ and $b = y^k M \mod p$, $C = (a, b)$

• Decrypt using $M = b/a^x \mod p$

• Really just Diffie-Hellman
Questions
Assignment

Implement RSA using libgmp.

Research PKCS#1 block type 2 padding.\(^1\)

\(^1\)A good starting point is the source of libgcrypt.