COMP 3704 Computer Security

Christian Grothoff

 ${\tt christian} \verb"Q" groth off.org"$

http://grothoff.org/christian/

Quadratic Residues

If p is prime and 0 < a < p then a is a **quadratic residue** mod p if there exists an x such that

$$x^2 \equiv a \mod p. \tag{1}$$

Legendre Symbol

For odd primes p and $a \in \mathbb{Z}$, define:

$$L(a,p) := a^{\frac{p-1}{2}} \mod p \tag{2}$$

L(a, p) = 1 if and only if a is a quadratic residue mod p.

Computing $\sqrt{a} \mod pq$: Summary

If n = pq for primes p and q, computing x such that $x^2 \equiv a \mod n$ for arbitrary $a \in \mathbb{Z}_n$ is as hard as factoring n.

Computing $\sqrt{a} \mod pq$: Reduction Consider solving $x^2 - a \equiv 0 \mod pq$. x can be found by instead solving first

$$x_1^2 - a \equiv 0 \mod p \tag{3}$$
$$x_2^2 - a \equiv 0 \mod q \tag{4}$$

and then solve

 $x \equiv x_1 \mod p \qquad \land \quad x \equiv x_2 \mod q \qquad (5)$

for x using the Chinese remainder theorem.

Computing $\sqrt{a} \mod p$: Simple Case If $p \in 3 + 4\mathbb{Z}$, suppose $x^2 \equiv u \mod p$. Then

$$u \equiv x^{2} \mod p \qquad (6)$$

$$\equiv x^{2}x^{p-1} \mod p \qquad (7)$$

$$\equiv x^{p+1} \mod p \qquad (8)$$

$$\equiv u^{(p+1)/2} \mod p \qquad (9)$$

$$\equiv \left(u^{(p+1)/4}\right)^{2} \mod p \qquad (10)$$

Thus $x \equiv u^{(p+1)/4} \mod p$.

Feige-Fiat-Shamir Identification Scheme

- Based quadratic residues $\mod n$
- Cut-and-choose protocol
- Requires multiple rounds of communication
- More computationally efficient than RSA

Feige-Fiat-Shamir Protocol

Peggy's public key is a quadratic residue $v \mod n.$ Peggy's private key is $s \equiv \sqrt{v^{-1}} \mod n$

- 1. Peggy picks a random number r and sends $x \equiv r^2 \mod n$ to Victor.
- 2. Victor sends Peggy a random bit *b*.
- 3. If b = 0, Peggy sends Victor r. If b = 1, the Peggy sends Victor $y = r \cdot s \mod n$.
- 4. If b = 0, Victor verifies that $x \equiv r^2 \mod n$. If b = 1, Victor verifies that $x = y^2 \cdot v \mod n$.

Embedding Peggy's Identity

- Peggy does not need to have p, q so that pq = n.
- Trend may have p and q and just give Peggy s.
- v maybe constructed as H(I, j) where I is Peggy's identity, s is then computed using p and q by Trend and given to Peggy.
- I and j becomes Peggy's public key. j is needed since H(I) may not be a quadratic residue $\mod n$.

Schnorr Identification Scheme

- Based on difficulty of calculating discrete logarithms
- Not more efficient than RSA, but possibly more secure
- \bullet Uses two primes p and q and a number $a \neq 1$ where q | p 1 and $a^q \equiv 1 \mod p$

Schnorr Protocol

Peggy's private key is s < q. $v \equiv a^{-s} \mod p$ is the public key.

- 1. Peggy picks random number r < q and sends $x \equiv a^r \mod p$ to Victor.
- 2. Victor sends Peggy $e \in [0:2^t 1]$.
- 3. Peggy responds with $y \equiv r + se \mod q$.
- 4. Victor verifies that $x \equiv a^y v^e \mod p$.

Questions

Problem

Show that L(a, p) = 1 if and only if a is a quadratic residue mod p!

Reminder: For odd primes p and $a \in \mathbb{Z}$, we defined:

$$L(a,p) := a^{\frac{p-1}{2}} \mod p$$
 (11)

Proof (Part 1)

If a is a quadratic residue $\mod p$, then there exists x with $x^2 \equiv a \mod p$. Then:

$$1 \equiv x^{p-1} \mod p \tag{12}$$
$$\equiv a^{\frac{p-1}{2}} \mod p \tag{13}$$
$$\equiv L(a,p) \tag{14}$$

Proof (Part 2)

For any $x \in \mathbb{Z}_p$ and $x \not\equiv 0 \mod p$ consider $y \equiv x - p \mod p$. Then $x \not\equiv y$ and

$$y^{2} \equiv x^{2} - 2xp + p^{2} \mod p$$
(15)
$$\equiv x^{2} \mod p$$
(16)

Suppose $z^2 \equiv x^2 \mod p$. Then $p|y^2 - z^2 = (y - z)(y + z)$ and thus either p|y - z or p|y + z. Thus $z \equiv y$ or $z \equiv -y \equiv x \mod p$.

15

Proof (Part 3)

Part 2 implies that there are exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ positive quadratic non-residues.

Also,
$$f(a) = a^{\frac{p-1}{2}} - 1$$
 has at most $\frac{p-1}{2}$ roots.

Since there are exactly $\frac{p-1}{2}$ quadratic residues mod p, thus $f(a) \equiv 1 \mod p$ for all quadratic residues.

