COMP 3704 Computer Security

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/
Quadratic Residues

If p is prime and $0 < a < p$ then a is a quadratic residue mod p if there exists an x such that

$$x^2 \equiv a \mod p.$$ (1)
Legendre Symbol

For odd primes p and $a \in \mathbb{Z}$, define:

$$L(a, p) := a^{\frac{p-1}{2}} \mod p$$ \hspace{1cm} (2)

$L(a, p) = 1$ if and only if a is a quadratic residue $\mod p$.
Computing $\sqrt{a} \mod pq$: Summary

If $n = pq$ for primes p and q, computing x such that $x^2 \equiv a \mod n$ for arbitrary $a \in \mathbb{Z}_n$ is as hard as factoring n.
Computing $\sqrt{a} \mod pq$: Reduction

Consider solving $x^2 - a \equiv 0 \mod pq$.

x can be found by instead solving first

$$x_1^2 - a \equiv 0 \mod p \quad (3)$$
$$x_2^2 - a \equiv 0 \mod q \quad (4)$$

and then solve

$$x \equiv x_1 \mod p \quad \wedge \quad x \equiv x_2 \mod q \quad (5)$$

for x using the Chinese remainder theorem.
Computing $\sqrt{a} \mod p$: Simple Case

If $p \in 3 + 4\mathbb{Z}$, suppose $x^2 \equiv u \mod p$. Then

$$u \equiv x^2 \mod p$$ \hspace{1cm} (6)

$$\equiv x^2 x^{p-1} \mod p$$ \hspace{1cm} (7)

$$\equiv x^{p+1} \mod p$$ \hspace{1cm} (8)

$$\equiv u^{(p+1)/2} \mod p$$ \hspace{1cm} (9)

$$\equiv \left(u^{(p+1)/4}\right)^2 \mod p$$ \hspace{1cm} (10)

Thus $x \equiv u^{(p+1)/4} \mod p$.
Feige-Fiat-Shamir Identification Scheme

- Based quadratic residues \(\mod n \)
- Cut-and-choose protocol
- Requires multiple rounds of communication
- More computationally efficient than RSA
Feige-Fiat-Shamir Protocol

Peggy’s public key is a quadratic residue $v \mod n$.
Peggy’s private key is $s \equiv \sqrt{v^{-1}} \mod n$

1. Peggy picks a random number r and sends $x \equiv r^2 \mod n$ to Victor.

2. Victor sends Peggy a random bit b.

3. If $b = 0$, Peggy sends Victor r. If $b = 1$, the Peggy sends Victor $y = r \cdot s \mod n$.

4. If $b = 0$, Victor verifies that $x \equiv r^2 \mod n$. If $b = 1$, Victor verifies that $x = y^2 \cdot v \mod n$.
Embedding Peggy’s Identity

- Peggy does not need to have \(p, q \) so that \(pq = n \).
- Trend may have \(p \) and \(q \) and just give Peggy \(s \).
- \(u \) maybe constructed as \(H(I, j) \) where \(I \) is Peggy’s identity, \(s \) is then computed using \(p \) and \(q \) by Trend and given to Peggy.
- \(I \) and \(j \) becomes Peggy’s public key. \(j \) is needed since \(H(I) \) may not be a quadratic residue \(\mod n \).
Schnorr Identification Scheme

- Based on difficulty of calculating discrete logarithms
- Not more efficient than RSA, but possibly more secure
- Uses two primes p and q and a number $a \neq 1$ where $q | p - 1$ and $a^q \equiv 1 \mod p$
Schnorr Protocol

Peggy’s private key is $s < q$. $v \equiv a^{-s} \mod p$ is the public key.

1. Peggy picks random number $r < q$ and sends $x \equiv a^r \mod p$ to Victor.

2. Victor sends Peggy $e \in [0 : 2^t - 1]$.

3. Peggy responds with $y \equiv r + se \mod q$.

4. Victor verifies that $x \equiv a^y v^e \mod p$.
Questions
Problem

Show that $L(a, p) = 1$ if and only if a is a quadratic residue $\mod p$!

Reminder: For odd primes p and $a \in \mathbb{Z}$, we defined:

$$L(a, p) := a^{\frac{p-1}{2}} \mod p \quad (11)$$
Proof (Part 1)

If \(a \) is a quadratic residue \(\mod p \), then there exists \(x \) with \(x^2 \equiv a \mod p \). Then:

\[
1 \equiv x^{p-1} \mod p \tag{12}
\]

\[
\equiv a^{\frac{p-1}{2}} \mod p \tag{13}
\]

\[
\equiv L(a, p) \tag{14}
\]
Proof (Part 2)

For any $x \in \mathbb{Z}_p$ and $x \not\equiv 0 \mod p$ consider $y \equiv x - p \mod p$. Then $x \not\equiv y$ and

$$y^2 \equiv x^2 - 2xp + p^2 \mod p \quad (15)$$

$$\equiv x^2 \mod p \quad (16)$$

Suppose $z^2 \equiv x^2 \mod p$. Then $p | y^2 - z^2 = (y - z)(y + z)$ and thus either $p | y - z$ or $p | y + z$. Thus $z \equiv y$ or $z \equiv -y \equiv x \mod p$.

15
Proof (Part 3)

Part 2 implies that there are exactly \(\frac{p-1}{2} \) quadratic residues and \(\frac{p-1}{2} \) positive quadratic non-residues.

Also, \(f(a) = a^{\frac{p-1}{2}} - 1 \) has at most \(\frac{p-1}{2} \) roots.

Since there are exactly \(\frac{p-1}{2} \) quadratic residues mod \(p \), thus \(f(a) \equiv 1 \mod p \) for all quadratic residues.