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Abstract
We show that for 8 real and varied C and C++ programs, sev-
eral conventional dynamic storage allocators provide near-
zero fragmentation, once we account for overheads due to
implementation details such as headers, alignment, etc. This
substantially strengthens our previous results showing that
the memory fragmentation problem has generally been mis-
understood, and that good allocator policies can provide good
memory usage for most programs. The new results indicate
that for most programs, excellent allocator policies are read-
ily available, and efficiency of implementation is the major
challenge. While we believe that our experimental results are
state-of-the-art and our methodology is superior to most pre-
vious work, more work should be done to identify and study
unusual problematic program behaviors not represented in
our sample.1 Introduction
Memory allocation has been an active area of research. A
large number of algorithms have been proposed which were
at least partly motivated by the belief that fragmentation can
be a severe problem for some programs. Other algorithms
have been proposed with the emphasis on performance rather
than fragmentation. In this paper, we show that some well-
known memory allocation algorithms, which can be imple-
mented very efficiently, have essentially zero fragmentation
for a wide variety of programs.

The extremely low fragmentation of these algorithms has
gone unnoticed largely because the overwhelming majority
of memory allocation studies to date have been based on a
methodology developed in the 1960’s [Col61], which uses
synthetic traces intended to model “typical” program behav-
ior. This methodology has the advantage that it is easy to
implement, and allows experiments to avoid quirky behavior�This research was sponsored by the National Science Foundation under
grant CCR-9410026

specific to a few programs. Often the researchers conducting
these studies went to great lengths to ensure that their traces
had statistical properties similar to real programs. However,
none of these studies showed the validity of using a randomly
generated trace to predict performance on real programs (no
matter how well the randomly generated trace statistically
models the original program). As we showed in [WJNB95,
Joh97], what all of this previous work ignores is that a ran-
domly generated trace isnot valid for predicting how well a
particular allocator will perform on a real program.

We therefore decided to perform simulation studies on
various memory allocationpoliciesusing memory allocation
traces from real programs. Using a large set of tools we built,
we measured how well these allocation algorithms performed
on a set of eight real traces. Our results confirm, and in
some cases exceed, the speculations we made in our survey
on memory allocation research [WJNB95]. In particular, we
stated that:

In simulations of two of the best allocators
(address-ordered first fit and best fit), eliminat-
ing all header overhead reduced their memory
waste to about 14%. We suspect that using one-
word alignment and a smaller minimum object
size could reduce this by several percent more.
This suggests the “real” fragmentation produced
by these policies—as opposed to waste caused
by the implementation mechanisms we used—
may be less than 10%.

In this paper, we show that almost none of the wasted memory
is due to true fragmentation.

An important point of this research is the separation of
policy from mechanism. We believe that research on memory
allocation should first focus on finding good policies. Once
these policies are identified, it is relatively easy to develop
good implementations. Unfortunately, many good policies
are discounted because the obvious implementation is ineffi-
cient. All of the measurements presented in this paper are for
the memory allocationpolicy under consideration, indepen-
dent of any particularimplementationof that policy.



2 Description of Allocators
In this section, we will describe the memory allocation poli-
cies we studied.1 These policies fall into three basic cate-
gories:� Sequential Fits, including first fit, next fit, and best fit.� Segregated Free Lists, including simple segregated stor-

age and segregated fit.� Buddy Systems, including conventional binary and dou-
ble buddies.2.1 Sequential �t algorithms

Several classic allocator algorithmimplementationsare based
on having a doubly-linked linear (or circularly-linked) list of
all free blocks of memory. Typically, sequential fit algorithms
use Knuth’sboundary tagtechnique to support coalescing of
all adjacent free areas [Knu73]. The list of free blocks is
usually maintained in either FIFO, LIFO, or address order
(AO). Free blocks are allocated from this list in one of three
ways: the list is searched from the beginning, returning the
first block large enough to satisfy the request (first fit); the
list is searched from the place where the last search left off,
returning the next block large enough to satisfy the request
(next fit); or the list is searched exhaustively, returning the
smallest block large enough to satisfy the request (best fit).

Theseimplementationsare actually instances of allocation
policies. The first-fit policy is to search some ordered collec-
tion of blocks, returning the first block that can satisfy the
request. The next-fit policy is to search some ordered collec-
tion of blocksstarting where the last search ended, returning
the next block that can satisfy the request. Finally, the best-fit
policy is to exhaustively search some collection of blocks,re-
turning the best fit among the possible choices, and breaking
ties using some ordering criteria. The choice of ordering of
free blocks is also a policy decision. The three that we men-
tioned above as implementation choices (FIFO, LIFO, and
address ordered) are also policy choices.

What is important is that each of these policies has several
different possible implementations. For example, best fit can
also be implemented using a tree of lists of same sized objects
[Sta80], and address-ordered first fit can be implemented us-
ing a Cartesian tree [Ste83]. For concreteness and simplicity,
we describe the sequential-fit algorithms’ well-known imple-
mentations, but we stress that the same policies can be imple-
mented more efficiently.2.1.1 First Fit
A first-fit allocator simply searches the list of free blocks from
the beginning, and uses the first block large enough to satisfy
the request. If the block is larger than necessary, it is split and
the remainder is put on the free list. A problem with first fit is
that the larger blocks near the beginning of the list tend to be
split first, and the remaining fragments result in a lot of small
free blocks near the beginning of the list.1For a much more extensive discussion on these issues, see [WJNB95]

2.1.2 Next Fit
A common “optimization” of first fit is to use aroving pointer
for allocation [Knu73]. This pointer records the point where
the last search was satisfied, and the next search begins from
there. Successive searches cycle through the free list, so that
searches do not always begin in the same place and do not
result in an accumulation of small unusable blocks in one part
of the list. As we will show in Section 6, this “optimization”
generally increases fragmentation.2.1.3 Best Fit
A best-fit sequential-fit allocator searches the free list tofind
the smallest free block large enough to satisfy a request. The
basic strategy here is to minimize the amount of wasted space
by ensuring that fragments are as small as possible. In the
general case, a best-fit search is exhaustive, although it may
stop when a perfect fit is found. This exhaustive search means
that asequentialbest-fit search does not scale well to large
heaps with many free blocks.

Because of the time costs of an exhaustive search, the
best-fit policy is often unnecessarily dismissed as being im-
possible to implement efficiently. This is unfortunate be-
cause, as we will show in Section 6, best fit is one of the
best policies in terms of fragmentation. By taking advantage
of the observation that most programs use a large number of
objects of just a few sizes, a best-fit policy can be quite ef-
ficiently implemented as a binary tree of lists of same-sized
objects. In addition, segregated fit algorithms (Section 2.2.2)
can be a very good approximation of best fit and are easy to
implement efficiently.

In this paper, we present results for first fit, next fit, and
best fit, each with LIFO, FIFO, and address ordered (AO)
free lists. Memory is requested from the operating system
in 4K blocks, and all free blocks are immediately coalesced
with their neighbors when possible. Two versions: first fit AO
8K and best fit AO 8K, request memory from the operating
system in 8K blocks.2.2 Segregated Free Lists
One of the simplest allocation policies uses a set of free lists,
where each list holds free blocks of a particular size. When
a block of memory is freed, it is simply pushed onto the free
list for that size. When a request is serviced, the free list
for the appropriate size is used to satisfy the request. There
are several important variations on thissegregated free lists
scheme.

One common variation is to usesize classesto group sim-
ilar object sizes together onto a single free list. Free blocks
from this list are used to satisfy any request for an object
whose size falls within this size class. A common size-class
scheme is to use size classes that are a power of two apart
(e.g., 4 words, 8 words, 16 words, and so on) and round the
requested size up to the nearest size class.2.2.1 Simple Segregated Storage
In this variant, larger free blocks are not split to satisfy re-
quests for smaller sizes, and smaller free blocks are not coa-
lesced to satisfy requests for larger sizes. When a request for
a given size is serviced, and the free list for the appropriate



size class is empty, more storage is requested from the un-
derlying operating system (e.g., using UNIXsbrk() to ex-
tend the heap segment). Typically, one or two virtual mem-
ory pages are requested at a time, and split into same-sized
blocks which are then put on the free list. Since the result is
that pages (or some other relatively large unit) contain blocks
of only one size class, we call thissimple segregated storage.

In this paper, we present results for two variations on sim-
ple segregated storage. The first, which we call simple seg2N , uses size classes which are powers of two (e.g., 16, 32,
64, etc., bytes), and requests memory from the operating sys-
tem in 4K blocks. The second, which we call simple seg2N
& 3 � 2N , uses twice as many size classes as simple seg2N
in an attempt to reduce internal fragmentation at the possible
cost of increased external fragmentation. Simple seg2N &3 � 2N uses size classes which are powers of two and three
times powers of two (e.g., 16, 24, 32, 48, 64, etc., bytes),
and requests memory from the operating system in 4K and
6K blocks depending on which size-class is empty. Neither
allocator does any coalescing.2.2.2 Segregated Fit Algorithms
Another variation on the segregated free list policy relaxes the
constraint that all objects in a size class be exactly the same
size. We call this segregated fit. This variant uses a set of free
lists, with each list holding free blocks of any size between
this size class and the next larger size class. When servicing a
request for a particular size, the free list for the corresponding
size class is searched for a block at least large enough to hold
it. The search is typically a sequential fit search, and many
significant variations are possible. Typically a first-fit ornext-
fit policy is used.

It is often pointed out that the use of multiple free lists
makes theimplementationfaster than searching a single free
list. What is oftennot appreciated is that this also affects the
policy in a very important way: the use of segregated lists
excludes blocks of very different sizes, meaninggoodfits are
usually found. The policy is therefore agood-fit or even a
best-fitpolicy, despite the fact that it is usually described as a
variation on first fit, and underscores the importance of sepa-
rating policy considerations from implementation details.

In this paper, we present results for Doug Lea’s memory
allocator version 2.6.12[Lea]. This allocator is a segregated
fit algorithm with 128 size classes. Size classes for sizes less
than 512 bytes each hold exactly one size, spaced 8 bytes
apart. Searches for available chunks are processed in best-fit
order. All freed chunks are immediately coalesced.2.3 Buddy systems
Buddy systems [Kno65, PN77] are a variant of segregated
free lists, supporting a limited but efficient kind of splitting
and coalescing. In simple buddy schemes, the entire heap
area is conceptually split into two large areas which are called
buddies. These areas are repeatedly split into two smaller
buddies, until a sufficiently small chunk is achieved. This hi-
erarchical division of memory is used to constrain where ob-
jects are allocated, and how they may be coalesced into larger
free areas. A free area may only be merged with its buddy, the
corresponding block at the same level in the hierarchical di-
vision. The resulting free block is therefore always one of the2At the time of this writing Doug Lea’s allocator is at version2.6.4.

free areas at the next higher level in the memory-division hi-
erarchy. At any level, the first block of a buddy pair may only
be merged with the following block of the same size; simi-
larly, the second block of a buddy pair may only be merged
with the first, which precedes it in memory. This constraint
on coalescing ensures that the resulting merged free area will
always be aligned on one of the boundaries of the hierarchical
division of memory.

The purpose of the buddy allocation constraint is to en-
sure that when a block is freed, its (unique) buddy can always
be found by a simple address computation, and its buddy will
always be either a whole, entirely free chunk of memory, or
an unavailable chunk. (An unavailable chunk may be entirely
allocated, or may have been split and have some of its sub-
parts allocated but not others.) Either way, the address com-
putation will always be able to locate the buddy’s header—it
will never find the middle of an allocated object.

Several significant variations on buddy systems have been
devised. Of these, we studied binary buddies and double bud-
dies.2.3.1 Binary Buddy
Binary buddy is the simplest and best-known of the buddy
systems [Kno65]. In this scheme, all buddy sizes are a power
of two, and each size is divided into two equal parts. This
makes address computations simple, because all buddies are
aligned on a power-of-two boundary offset from the begin-
ning of the heap area, and each bit in the offset of a block rep-
resents one level in the buddy system’s hierarchical splitting
of memory—if the bit is 0, it is the first of a pair of buddies,
and if the bit is 1, it is the second. These computations can be
implemented efficiently with bitwise logical operations.

A major problem with binary buddies is that internal frag-
mentation is usually relatively high: about 25%. This frag-
mentation is caused by the requirement that any object size
be rounded up to the nearest power of two (minus a word for
the header, if a bit cannot be stolen from the block given to
the language implementation). The memory allocator used
in our study was originally implemented for the COSMOS
circuit simulator [BBB+88, Bea97].2.3.2 Double Buddy
Double buddy [Wis78, PH86] systems use a different tech-
nique to allow a closer spacing of size classes. They use two
different buddy systems, with staggered sizes. For example,
one buddy system may use powers-of-two sizes (i.e., 2, 4, 8,
16, ...) while the other uses a powers-of-two spacing starting
at a different size, such as 3, resulting in sizes 3, 6, 12, 24,etc.
Request sizes are rounded up to the nearest size class in either
series. This reduces the internal fragmentation by about half,
but means that a block of a given size can only be coalesced
with blocks in the same size series.33 The Test Programs
For our test programs, we used eight varied C and C++ pro-
grams that run under UNIX (SunOS 5.5). These programs3To our knowledge, the implementation we built for the present study may
actually be the only double buddy system in existence, though Page wrote a
simulator that is almost an entire implementation of a double buddy alloca-
tor [PH86].



allocate between 1.3 and 104 megabytes of memory during a
run, and have a maximum of between 69 KB and 2.3 MB live
data at some point during execution. On average they allo-
cate 27 MB total data and have a maximum of 966K live data
at some point during their run. Three of our eight programs
were used by Zorn and Grunwald,et al., in earlier studies
[ZG92, DDZ93]. We use these three to attempt to provide
some points of comparison, while also using five new and
different memory-intensive programs.3.1 Test Program Selection Criteria
We chose allocation-intensive programs because they are the
programs for which allocator differences matter most. Sim-
ilarly, we chose programs that have a large amount of live
data because those are the ones for which space costs mat-
ter most. In addition, some of our measurements of memory
usage may introduce errors of up to 4 or 5 KB in bad cases;
we wanted to ensure that these errors were generally small
relative to the actual memory usage and fragmentation. More
importantly, some of our allocators are likely to incur extra
overhead for small heap sizes, because they allocate in more
than one area. They may have several partly-used pages, and
unused portions of those pages may have a pronounced effect
when heap sizes are very small. We think that such relatively
fixed costs are less significant than an allocator’s scalability
to medium and large-sized heaps.4

We tried to obtain a variety of traces, including several that
are widely used as well as CPU and memory-intensive. In
selecting the programs from many that we had obtained, we
ruled out several for the reasons which follow. We attempted
to avoid over-representation of particular program types,i.e.,
too many programs that do the same thing. In particular, we
avoided having several scripting language interpreters—such
programs are generally portable, widely available and widely
used, but typically are not performance-critical; their memory
use typically does not have a very large impact on overall
system resource usage.

We ruled out some programs that appeared to “leak” mem-
ory, i.e., fail to discard objects at the proper point, and lead
to a monotonic accumulation of garbage in the heap. One of
the programs we chose, P2C, is known to leak under some
circumstances, and we left it in after determining that it could
not be leaking much during the run we traced. Its basic mem-
ory usage statistics are similar to our other programs: it deal-
locates over 90% of all allocated bytes, and its average object
lifetime is lower than most. Our justification for including
this program is that many programs do in fact leak, so having
one in our sample is not unreasonable. It is a fact of life that
deallocation decisions are often extremely difficult for com-
plex programs, and programmers often knowingly choose to
let programs leak on the assumption that over the course of
a run the extra memory usage is acceptable. They choose to
have poorer resource usage because attempts at plugging the
leaks often result in worse bugs, such as dereferencing dan-
gling pointers and corrupting data structures.

We should note here that in choosing our set of traces,4Two programs used by Zorn and Grunwald [ZG92] and by Detlefs,Dosser,
and Zorn [DDZ93] have heaps that are quite small: Cfrac only uses 21.4 KB
and Gawk only uses 41 KB, which are only a few pages on most modern ma-
chines. Measurements of CPU costs for these programs are interesting, because
they are allocation-intensive, but measurements of memoryusage are less use-
ful, and have the potential for boundary effects to obscure scalability issues.

among the traces we excluded were three that did very little
freeing, i.e., all or nearly all allocated objects live until the
end of execution5. (Two were the PTC and YACR programs
from Zorn,et al.’s experiments [ZG92, DDZ93].) We believe
that such traces are less interesting because any good allo-
cator will do well for them. This biases our sample slightly
toward potentially more problematic traces, which have more
potential for fragmentation. Our suite does include one al-
most non-freeing program, LRUsim, which is the only non-
freeing program we had that we were sure did not leak.63.2 The Selected Test Programs
We used eight programs because this was sufficient to obtain
statistical significance for our major conclusions. (Naturally
it would be better to have even more, but for practicality we
limited the scope of these experiments to eight programs and
a comparable number of basic allocation policies to keep the
number of combinations reasonable.) Whether the programs
we chose are “representative” is a difficult subjective judg-
ment: we believe they are reasonably representative of appli-
cations in conventional, widely-used languages (C and C++).
However, we encourage others to try our experiments with
new programs to see if our results continue to hold true.

Table 1 gives some basic statistics for each of our eight
test programs. TheKbytes alloc’dcolumn gives the total al-
location over a whole run, in kilobytes. Therun timecol-
umn gives the running time in seconds on a Sun SPARC ELC,
an 18.2 SPECint92 processor, when linked with the standard
SunOS allocator (a Cartesian-tree based “better-fit” (indexed-
fits) allocator). Themax objectscolumn gives the maximum
number of live objects at any time during the run of the pro-
gram. Thenum objectscolumn gives the total number of ob-
jects allocated over the life of the program. Themax Kbytes
column gives the maximum number of kilobytes of mem-
ory used by live objects at any time during the run of the
program7. Note that the maximum live objects and maxi-
mum live bytes might not occur at the same point in a trace,
if, for example, the average size of objects varies over time.
Theavg lifetimecolumn gives the average8 object lifetime in
bytes. This is the number of bytes allocated between the birth
and death of an object, weighted by the size of the object,
(that is, it is really the average lifetime of an allocated byte of
memory).

Table 2 is a histogram of the object sizes allocated by our
eight test programs. To create this histogram, object sizes
were rounded up to the next larger power of two. Thus, an
entry in Table 2 in the column “4K” is the number of objects
allocated by that program that were greater than 2K bytes, but
less than or equal to 4K bytes in size.

Descriptions of the programs follow:5Other programs were excluded because they either had too little live data
(e.g., LaTeX), or because we could not easily figure out whether their mem-
ory use was hand-optimized, or because we judged them too similar to other
programs we chose.6LRUsim actually must retain almost all allocated objects for the duration
of a run, because it cannot tell—even in principle—which ones will be needed
again.7This is the maximum number of kilobytesin use by the programfor actual
object data, not the number of bytes used by any particular allocator to service
those requests.8Following [FW86, DAP96], all averages presented in this paper are simple
arithmetic means.



Kbytes run max num max avg
program alloc’d time objects objects Kbytes lifetime
Espresso 104,388 146 4,390 1,672,889 263 15,478
GCC 17,972 167 86,872 721,353 2,320 926,794
Ghostscript 48,993 53 15,376 566,542 1,110 786,699
Grobner 3,986 8 11,366 163,310 145 173,170
Hyper 7,378 131 297 108,720 2,049 10,531
LRUsim 1,397 29,940 39,039 39,103 1,380 701,598
P2C 4,641 30 12,652 194,997 393 187,015
Perl 33,041 114 1,971 1,600,560 69 39,811
Average 27,725 3,823 21,495 633,434 966 355,137

Table 1: Basic Statistics for the Eight Test Programs

Object Size 16 32 64 128 256 512 1K 2K 4K
LRUsim 41 30 39010 0 9 0 1 0 1
gcc 14665 57204 11846 3420 172 18 73 18 18
Espresso 10 98 4325 18 11 13 5 8 6
Ghostscript 0 552 10472 2644 1317 318 36 4 33
Grobner 3664 7185 483 36 80 19 4 1 0
Hyper 0 1 292 0 0 0 0 2 0
P2C 1383 5595 5336 1517 1 1 10 1 0
Perl 377 248 1284 28 4 5 3 2 1
Object Size 8K 16K 32K 64K 128K 256K 512K 1M 2M
LRUsim 1 1 0 0 0 0 0 0 0
gcc 18 18 18 4 1 4 4 0 0
Espresso 8 7 2 4 0 0 0 0 0
Ghostscript 2 2 4 0 0 0 0 0 0
Grobner 0 1 0 0 0 0 0 0 0
Hyper 0 0 0 0 0 0 1 0 1
P2C 0 2 0 0 0 0 0 0 0
Perl 1 1 0 0 0 0 0 0 0

Table 2: Maximum number of live objects per size class� Espressois a widely used optimizer for programmable
logic arrays. The filelargest.espresso provided
by Ben Zorn was used as the input.� GCC is the main process (cc1) of the GNU C com-
piler (version 2.5.1). We constructed a custom tracer
that recordsobstack9 allocations to obtain this trace,
and built a postprocessor to translate the use of obstack
calls into equivalentmalloc() andfree() calls.10
The input data for the compilation was the the largest
source file of the compiler itself (combine.c).11� Ghostscriptis a widely-used portable interpreter for
PostScript, written by Peter Deutsch and modified by9Obstacks are an extension to the C language, used to optimizethe allocat-

ing and deallocating objects in stack-like ways. A similar scheme is described
in [Han90].10 It is our belief that we should study the behavior of the program without
hand-optimized memory allocation, because a well-designed allocator should
usually be able to do as well as or better than most programmers’ hand-
optimizations. Some support for this idea comes from [Zor93], which showed
that hand-optimizations usually do little good compared tochoosing the right
allocator.11Because of the way the GNU C compiler is distributed, this is avery com-
mon workload—people frequently down-load a new version of the compiler
and compile it with an old version, then recompile it with itself twice as a
cross-check to ensure that the generated code does not change between self-
compiles (i.e., it reaches a fixed point).

Benjamin Zorn to remove hand-optimized memory al-
location [Zor93]. The input used wasmanual.ps,
the largest of the standard inputs available from Zorn’s
ftp site. This document is the 127-page manual for the
Self system, consisting of a mix of text and figures.12� Grobneris (to the best of our very limited understand-
ing) a program that rewrites a mathematical function
as a linear combination of a fixed set of Grobner ba-
sis functions. Abstractly, this is roughly similar to a
Fourier analysis, decomposing a function into a combi-
nation of other, simpler functions. Unlike Fourier anal-
ysis, however, the process is basically one of rewrit-
ing symbolic expressions many times, something like
rewrite-based theorem proving, rather than an intense
numerical computation over a fixed set of array ele-
ments.� Hyper is a hypercube network communication simula-
tor written by Don Lindsay. It builds a representation
of a hypercube network, then simulates random mes-
saging, while accumulating statistics about messaging12Note that this is not the same input set as used by Zorn,et al., in their

experiments: they used an unspecified combination of several programs. We
chose to use a single, well-specified input file to promote replication of our
experiments.



performance. The hypercube itself is represented as a
large array, which essentially lives for the entire run.
Each message is represented by a small heap-allocated
object, which lives very briefly—only long enough for
the message to reach its destination, which is a tiny
fraction of the length of the run.� LRUsimis an efficient locality analyzer written by Dou-
glas Van Wieren. It consumes a memory reference
trace and generates a grey-scale Postscript plot of the
evolving locality characteristics of the traced program.
Memory usage is dominated by a large AVL tree which
grows monotonically. A new entry is added when-
ever the first reference to a block of memory occurs
in the trace. Input was a reference trace of the P2C
program.13� P2C is a Pascal-to-C translator, written by Dave Gille-
spie at Caltech. The test input wasmf.p (part of the
Tex release). Note: although this translator is from
Zorn’s program suite, this isnot the same Pascal-to-
C translator (PTC) they used in their studies. This one
allocates and deallocates more memory, at least for the
input we used.� Perl is the Perl scripting language interpreter (version
4.0) interpreting a Perl program that manipulates a file
of strings. The input,adj.perl, formatted the words
in a dictionary into filled paragraphs. Hand-optimized
memory allocation was removed by Zorn [Zor93].4 Experimental Design

A goal of this research was to measure the true fragmentation
costs of particular memory allocationpoliciesindependently
of their implementations. In this section, we will describe
how we achieved this goal.

The first step was to write substitutes for malloc, realloc,
and free to perform the basic malloc functions and, as a side-
effect, create a trace of the memory allocation activity of the
program. This trace is composed of a series of records, each
containing:� the type of operation performed (malloc, realloc, free);� the memory location of this record (for malloc, this was

the memory location returned; for realloc and free, this
was the memory location passed by the application);
and� the number of bytes requested (for free, this was 0).

Each of our test programs was linked with this malloc trace
gathering library, and a trace for each program was generated.

The second step was to build a trace processor to read
a trace and produce the following basic statistics about the
trace:13The memory usage of LRUsim is not sensitive to the input, except in that
each new block of memory touched by the traced program increases the size of
the AVL tree by one node. The resulting memory usage is alwaysnondecreas-
ing, and no dynamically allocated objects are ever freed except at the end of a
run. We therefore consider it reasonable to use one of our other test programs to
generate a reference trace, without fearing that this wouldintroduce correlated
behavior. (The resulting fragmentation at peak memory usage is insensitive to
the input trace, despite the fact that total memory usage depends on the number
of memory blocks referenced in the trace.)

� the number of objects allocated,� the number of bytes allocated,� the average object size,� the maximum number of bytes live at any one time for
the entire trace, and� the maximum number of objects live at any one time
for the entire trace.

The third step was to build another trace processor to read
a trace and call malloc, realloc, and free of the implementa-
tion of the allocation policy under study. We modified each
memory allocator implementation to keep track of the total
number of bytes requested from the operating system. With
this information, and the maximum number of live bytes for
the trace, we can determine the fragmentation, as describedin
Section 5 for a particular program using that implementation
of a memory allocation policy.4.1 Removing implementation overheads
In order to study fragmentation costs due to policy, it was nec-
essary to account for and remove implementation overheads.
First, we removed header and footer overheads by requesting
fewer bytes than recorded in the trace being simulated. Thus,
if a request was for 24 bytes, and the particular implemen-
tation of malloc being studied used 4 bytes for header infor-
mation, the simulation only requested 20 bytes of memory.14
We also needed to remove minimum object size and hardware
required alignment overheads. For all allocator implementa-
tions that we studied, the minimum object size was 16 bytes,
and the hardware required that memory be aligned on 8 byte
boundaries. We removed both of these overheads by multi-
plying all size requests by 16 and dividing the final memory
use number by 16. The resulting memory use number is the
number of bytes needed by that policy for the trace being sim-
ulated.5 Our Measure of Fragmentation
In this paper, we express fragmentation in terms of percent-
ages over and above the amount of live data, i.e., increase
in memory usage, not the percentage of actual memory us-
age that is due to fragmentation. (The baseline is therefore
what might result from a perfect allocator that could some-
how achieve zero fragmentation.)

There are a number of legitimate ways to measure frag-
mentation. Figure 1 illustrates four of these. Figure 1 is a
trace of the memory usage of the GCC compiler, compiling
the combine.c program, using the simple segregated2N allo-
cator. The lower line is the amount of live memory requested
by GCC (in kilobytes). The upper line is the amount of mem-
ory actually used by the allocator to satisfy GCC’s memory
requests.

The four ways to measure fragmentation for a program
which we considered are:14We were able to do this because we were only simulating allocation and
deallocation using a trace of the actual activity. The memory returned by mal-
loc was unused.
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Figure 1: Measurements of Fragmentation for GCC using simple seg2N
1. The amount of memory used by the allocator relative

to the amount of memory requested by the program,
averaged across all points in time. In Figure 1, this is
equivalent to averaging the fragmentation for each cor-
responding point on the upper and lower lines for the
entire run of the program. For the GCC program using
the simple seg2N allocator, this measure yields 258%
fragmentation. The problem with this measure of frag-
mentation is that it tends to hide the spikes in memory
usage, and it is at these spikes where fragmentation is
most likely to be a problem.

2. The amount of memory used by the allocator relative to
the maximum amount of memory requested by the pro-
gramat the point of maximum live memory. In Figure
1 this corresponds to the amount of memory at point
1 relative to the amount of memory at point 2. For
the GCC program using the simple seg2N allocator,
this measure yields 39.8% fragmentation. The problem
with this measure of fragmentation is that the point of
maximum live memory is usually not the most impor-
tant point in the run of a program. The most important
point is likely to be a point where the allocator must
request more memory from the operating system.

3. The maximum amount of memory used by the allocator
relative to the amount of memory requested by the pro-
gramat the point of maximal memory usage. In Figure
1 this corresponds to the amount of memory at point
3 relative to the amount of memory at point 4. For
the GCC program using the simple seg2N allocator,
this measure yields 462% fragmentation. The prob-
lem with this measure of fragmentation is that it will
tend to report high fragmentation for programs that use
only slightly more memory than they request if the ex-
tra memory is used at a point where only a minimal

amount of memory is live. In our experimental results
(Section 6) we will see several examples of this effect.

4. The maximum amount of memory used by the alloca-
tor relative to the maximum amount of live memory.
These two points do not necessarily occur at the same
point in the run of the program. In Figure 1 this cor-
responds to the amount of memory at point 3 relative
to the amount of memory at point 2. For the GCC
program using the simple seg2N allocator, this mea-
sure yields 100% fragmentation. The problem with this
measure of fragmentation is that it can yield a number
that is too low if the point of maximal memory usage is
a point with a small amount of live memory and is also
the point where the amount of memory used becomes
problematic.

We measured fragmentation using both methods 3 and 4
(Section 6). However, the other measures of fragmentation
are also interesting, and deserve future study. Unfortunately,
there is no right point at which to measure fragmentation. If
fragmentation appears to be a problem for a program, it is
important to identify the conditions under which it is a prob-
lem and measure the fragmentation for those conditions. For
many programs, fragmentation will not be a problem at all.
Allocation policy is still important for these programs, how-
ever, because allocator placement choices can have a dra-
matic effect on locality. In [Joh97], we presented results for
a number of locality experiments using the programs and al-
locators presented in this paper. We found that there is little
correlation between fragmentation and locality. However,we
also found that the best placement policies in terms of frag-
mentation are also the best placement policies in terms of lo-
cality.



5.1 Experimental Error
In this research, we worked very hard to remove as much
measurement error as possible. However, some error still re-
mains, which we will describe next.

The remaining experimental error comes from the way our
allocators request memory from the operating system (using
thesbrkUNIX system call). Most of the implementations of
our allocators request their memory from the operating sys-
tem in 4K byte blocks. Because all calls tosbrk in these
experiments returned memory contiguous with previously al-
located memory, any measurement of the heap size of a pro-
gram using a particular allocator can be an over-estimate by
at most 4K bytes. Recall, however, that to remove alignment
overheads, we multiplied all object sizes by 16, and divided
the resulting heap size by 16. This also has the effect of
decreasing our experimental error due tosbrk by a factor
of 16. Thus, our measurements for most allocators can be
an overestimate by at most 256 bytes. This error is slightly
higher for three allocators.

The double buddy allocator requests memory from the op-
erating system in two different sizes: 4K and 6K, yielding an
average size of 5K. Thus, for this allocator, our experiments
can overestimate the memory used by as much as 640 bytes.

Neither of the simple segregated storage allocators (sim-
ple seg2N and simple seg2N & 3�2N ) perform any coalesc-
ing. Thus,each size classcan contribute to an over-estimate
of up to 256 bytes. For example, if a particular program al-
locates objects in 7 size classes, then the amount of memory
used can be over-estimated by up to 1792 bytes.6 Results
In this section, we present the results of our experiments, as
shown in Tables 3 and 4. We begin by analyzing the allo-
cation policies in our study. We then present astrategyfor
allocating memory, which is followed by the two best alloca-
tion policies. Finally, we present an analysis of two important
properties of our test programs and how they reinforce this
strategy.6.1 Analysis of the Experiments
Tables 3 and 4 show the percentage actual fragmentation for
each of the selected allocators, for each trace, using fragmen-
tation methods #3 and #4. It is particularly interesting to note
how high the standard deviation is for first fit LIFO and next
fit LIFO. These allocators actually perform quite well on two
of our test programs: Hyper and LRUsim. However, they per-
form disastrously on one program: Ghostscript. At the same
time, the best fit LIFO, first fit AO, and Lea’s 2.6.1 allocators
all perform quite well, using fragmentation measure #4, on all
of the test programs. Perl is the only program for which they
have any real fragmentation (10%), and because that program
has only 70K bytes maximum live data, this fragmentation
represents just 6.9K of wasted memory. The fact that first fit
AO performsvery well on Espresso, using just 0.26% more
memory than the theoretical minimum, but shows over 25%
fragmentation using measure #3 is evidence of the misleading
behavior of fragmentation measure #3.

From Tables 3 and 4 we can see that the two best allo-
cation policies, first-fit addressed-ordered free list with8K
sbrk, and best-fit addressed-ordered free list with 8Ksbrk,

both average less than 1% actual fragmentation, using both
measures of fragmentation. Conversely, the worst of our al-
locators (those that tried to trade increased internal fragmen-
tation for reduced external fragmentation, and did not coa-
lesce all possible blocks) had over 50% actual fragmentation,
giving further evidence that this is not a good policy deci-
sion. The extremely high fragmentation numbers for the sim-
ple segregated storage allocators using fragmentation mea-
surement #3 are largely due to their lack of coalescing and
their performance with one program: LRUsim. Excluding
LRUsim, simple seg2N averaged 174% fragmentation, and
simple seg2N & 3 � 2N averaged 164% fragmentation using
measurement #3. The extremely high fragmentation for the
simple segregated storage allocators on the LRUsim trace is
further evidence that fragmentation measure #3 can produce
misleading results.

In terms of rank order of allocator policies, these results
contrast with traditional simulation results, where best fit usu-
ally performs well but is sometimes outperformed by next
fit (e.g., in Knuth’s small but influential study [Knu73]). In
terms of practical application, we believe this is one of our
most significant findings. Since segregated fit implements an
approximation of best fit fairly efficiently, it shows that a rea-
sonable approximation of a best-fit policy is both desirable
and achievable.6.2 A StrategyThat Works
In Sections 1 and 2, we discussed the importance of separat-
ing policy from mechanism. There is yet a third consideration
that is important to separate:strategy. In Section 6.1, we saw
that there are several policies that result in low fragmentation.
The question is: “are these policies in some way related?” In
other words, is there some underlying strategy to allocating
memory that will lead to policies that usually provide low
fragmentation? We believe that there is such a strategy, and
that when this strategy is understood, it will lead to new poli-
cies that expose even more efficient implementations.

All of the policies that performed well in our studies share
two common traits: they all immediately coalesce memory,
and they all preferentially reallocate objects that have died
recently over those that died further in the past.15 In other
words, they all give some objects more time to coalesce with
their neighbors, yielding larger and larger contiguous free
blocks of memory. These in turn can be used in many ways to
satisfy future requests for memory that might otherwise result
in high fragmentation. In the following paragraphs, we will
analyze each memory allocation policy that performs well to
show how it fits into this strategy.

The best-fit policy tries to preferentially use small free
blocks over large free blocks. This characteristic gives the
neighbors of the large free blocks more time to die and be
merged into yet larger free blocks, which, in turn, makes them
even less likely that best fit will allocate something out of
these larger free blocks. The cycle continues until there are
only a few very large areas of contiguous free memory out of
which to allocate free blocks. When one of these free blocks15An important exception is the first-fit FIFO free list allocator. This alloca-
tor performed remarkably well, and does not preferentiallyreallocate objects
that have died recently over those that died further in the past. We do not know
if this indicates that there is a different effective strategy at work, or if this is
evidence that our suggestion of a good strategy is not correct. Clearly, more
study is needed on this allocator.



Allocator Espresso GCC Ghost Grobner Hyper Perl P2C LRUsim Average Std Dev
best fit AO 8K 0.30% 0.34% 3.25% 1.67% 0.03% 1.07% 1.17% 0.03% 0.98% 1.09%
best fit AO 1.64% 0.49% 3.65% 4.14% 0.20% 17.3% 2.09% 0.29% 3.73% 5.68%
best fit LIFO 1.65% 0.50% 3.65% 4.35% 0.20% 17.3% 2.11% 0.29% 3.76% 5.68%
best fit FIFO 1.63% 0.49% 5.40% 4.11% 0.20% 17.3% 2.05% 0.29% 3.93% 5.72%
first fit AO 8K 0.30% 0.36% 3.02% 1.11% 0.03% 1.06% 1.33% 0.03% 0.91% 0.99%
first fit AO 25.3% 0.51% 3.40% 3.78% 0.20% 17.3% 2.22% 0.29% 6.63% 9.41%
first fit LIFO 41.4% 92.9% 180% 68.6% 0.23% 17.3% 5.28% 0.29% 50.7% 62.3%
first fit FIFO 1.66% 0.53% 7.59% 9.74% 0.21% 17.3% 2.46% 0.29% 4.97% 6.13%
next fit AO 27.2% 0.84% 19.4% 36.2% 0.24% 17.3% 8.34% 0.29% 13.7% 13.6%
next fit LIFO 41.4% 88.6% 201% 57.2% 0.23% 17.3% 16.9% 0.29% 52.9% 67.0%
next fit FIFO 1.69% 0.88% 54.6% 81.3% 0.24% 17.3% 10.6% 0.29% 20.9% 30.5%
Lea 2.6.1 1.66% 0.48% 3.65% 4.52% 0.20% 17.3% 2.31% 0.29% 3.80% 5.68%
binary buddy 82.3% 34.2% 41.5% 37.0% 102% 48.3% 55.1% 77.6% 59.8% 24.7%
double buddy 77.7% 34.9% 22.0% 12.7% 51.2% 24.9% 32.7% 33.6% 36.2% 20.2%
simp seg2N 480% 451% 41.0% 57.5% 26.0% 76.4% 87.1% 13328% 1818% 4654%
simp seg3 � 2N 475% 452% 34.4% 41.6% 26.0% 56.1% 64.9% 10595% 1468% 3693%
Average 78.8% 72.4% 39.2% 26.6% 13.0% 23.8% 18.5% 1502%
Std Dev 158% 151% 61.5% 27.5% 27.9% 19.8% 27.0% 4113%

Table 3: Percentage actual fragmentation (using method #3)for each allocator for all traces

Allocator Espresso GCC Ghost Grobner Hyper Perl P2C LRUsim Average Std Dev
best fit AO 8K 0.26% 0.33% 3.00% 1.34% 0.01% 0.58% 1.02% 0.08% 0.83% 0.99%
best fit AO 0.26% 0.33% 3.40% 2.03% 0.16% 9.98% 1.78% 0.26% 2.28% 3.32%
best fit LIFO 0.26% 0.50% 3.40% 2.03% 0.16% 9.98% 1.78% 0.26% 2.30% 3.31%
best fit FIFO 0.26% 0.33% 3.04% 2.03% 0.16% 9.98% 1.78% 0.26% 2.23% 3.31%
first fit AO 8K 0.26% 0.35% 2.77% 1.00% 0.01% 0.58% 1.15% 0.08% 0.78% 0.90%
first fit AO 0.26% 0.50% 3.40% 2.03% 0.16% 9.98% 1.78% 0.26% 2.30% 3.31%
first fit LIFO 9.37% 23.7% 179% 62.7% 0.16% 9.98% 4.83% 0.26% 36.3% 61.2%
first fit FIFO 0.26% 0.50% 7.36% 4.79% 0.16% 9.98% 1.78% 0.26% 3.14% 3.81%
next fit AO 1.77% 0.67% 16.7% 26.9% 0.16% 9.98% 7.89% 0.26% 8.04% 9.64%
next fit LIFO 9.37% 21.0% 200% 51.7% 0.16% 9.98% 15.0% 0.26% 38.4% 67.3%
next fit FIFO 0.26% 0.85% 54.6% 71.0% 0.16% 9.98% 9.92% 0.26% 18.4% 28.1%
Lea 2.6.1 0.26% 0.33% 3.40% 2.03% 0.16% 9.98% 1.78% 0.26% 2.28% 3.32%
binary buddy 45.8% 34.1% 38.4% 36.9% 99.9% 39.0% 55.0% 77.7% 53.4% 23.6%
double buddy 68.6% 31.3% 20.8% 12.3% 50.0% 24.9% 32.4% 33.7% 34.3% 17.7%
simp seg2N 162% 99.5% 39.0% 57.4% 26.0% 51.2% 74.5% 79.0% 73.6% 42.7%
simp seg3 � 2N 159% 99.9% 32.4% 41.0% 26.0% 33.9% 56.2% 43.2% 61.5% 45.7%
Average 28.6% 19.6% 38.2% 23.6% 12.7% 15.6% 16.8% 14.8%
Std Dev 55.0% 33.5% 61.4% 25.8% 27.4% 14.1% 24.1% 28.0%

Table 4: Percentage actual fragmentation (using method #4)for each allocator for all traces



Program 90% 99% 99.9%
GCC 1K 2,409K 17,807
Espresso 1K 8K 57K
Ghostscript 1K 40,091K 48,593K
Grobner 2K 3,311K 3,939K
Hyper 2K 12K 18K
P2C 11K 3,823K 4,494K
Perl 1K 11K 184K
LRUsim 1K 1K 1K
Average 2.5K 6,208K 9,387K

Table 5: Time before given % of freeobjectshave both tem-
poral neighbors free

Program 90% 99% 99.9%
GCC 223K 2,355K 17,805K
Espresso 1K 62K 9,552K
Ghostscript 14K 44,876K 48,752K
Grobner 2K 2,464K 3,836K
Hyper 1K 11K 16K
P2C 16K 4,142K 4,614K
Perl 1K 13K 7,153K
LRUsim 1K 1K 8K
Average 32K 6,740K 11,467K

Table 6: Time before given % of freebyteshave both tempo-
ral neighbors free

is used for memory allocation, a small piece is split out of it,
making it somewhat smaller, which will make it more likely
that that same free block will be used for subsequent memory
requests, saving the other larger free areas for later needs.

Using address-ordered free lists, which worked so well for
first fit and next fit, can be viewed as a variation on this same
theme. Blocks at one end of memory are used preferentially
over blocks at the other end. This gives objects at the end of
memory from which new blocks arenotbeing allocated more
time to die and merge with their neighbors. Note, however,
that this theme is much stronger with first fit address ordered
than with next fit address ordered. We believe this is why first
fit address ordered performs much better than next fit address
ordered.

In both best fit and first fit address ordered, objects allo-
cated at about the same time tend to be allocated from con-
tiguous memory. In the case of best fit, this is because once
a block is split, its remainder is smaller, making it a betterfit
for the next request. In the case of first fit address ordered,
this is because blocks tend to be allocated out of memory at
one end of the heap.6.3 Objects Allocated at the Same Time Tend toDie at the Same Time
The tendency of best fit and first fit address ordered to place
blocks allocated at about the same time in contiguous mem-
ory may interact favorably with another observation about our
test programs: objects allocated at about the same time tend
to die at about the same time.

Table 5 shows the number of bytes allocated before 90%,
99%, and 99.9% of allobjectshave both of their temporal
neighbors free (those objects allocated just before and just af-
ter the given object). On average, after just 2.5K of allocation

Program 90% 99% 99.9% 100%
GCC 5 12 254 641
Espresso 9 95 308 758
Ghostscript 7 85 344 589
Grobner 12 55 100 139
Hyper 1 2 2 6
LRUsim 1 1 5 21
P2C 4 26 58 92
Perl 10 27 60 99
Average 6 38 141 293

Table 7: Number of object sizes representing given percent
of all object sizes

90% of all objects have both of their temporal neighbors free.
Thus, if we allocate blocks from contiguous memory regions,
waiting just a short time after an object becomes free before
allocating the memory again, then most of the time its neigh-
bors will also be free and can be coalesced into a larger free
block.

Table 6 shows the same information as Table 5, except
weighted by thesizeof the objects becoming free. Thus, the
table shows how long (in allocation time) before 90%, 99%,
and 99.9% of thebytesallocated can be coalesced with neigh-
boring memory. Here, we see that if we wait for just 32K
of allocation, 90% of all memory allocated can be coalesced
with its neighboring memory.

Thus, whether we measure in bytes or objects, the vast
majority of all objects allocated at around the same time also
die at around the same time.6.4 Programs Tend to Allocate Only a Few Sizes
For most programs, the vast majority of objects allocated are
of only a few sizes. Table 7 shows the number of object sizes
represented by 90%, 99%, 99.9%, and 100% of all objects
allocated. On average, 90% of all objects allocated are of just
6.12 different sizes, 99% of all objects are of 37.9 sizes, and
99.9% of all objects are of 141 sizes.

The reason that most objects allocated are of so few ob-
ject sizes is that, for most programs, the majority of dynamic
objects are of just a few types. These types often make up
the nodes of large or common data structures upon which the
program operates. The remaining object sizes are accounted
for by strings, buffers, and single-use objects.

A good allocator should try to take advantage of the fact
that, for most programs, the majority of all objects allocated
are of only a few sizes. We believe that this is part of the
reason that the buddy systems and simple segregated storage
policies have so much fragmentation. These policies increase
internal fragmentation to try to reduce external fragmenta-
tion. As we can see from Table 7, this is unnecessary. The
vast majority of dynamic memory requests are for objects of
exactlythe same size as recently freed objects, and there is
no need to worry about the next memory request being for a
block that is just a little larger than any free region.7 Conclusions
We have shown that for a large class of programs, the frag-
mentation “problem” is really a problem of poor allocatorim-
plementations, and that for these programs well-known poli-



cies suffer from almost no true fragmentation. In addition,
very good implementations of the best policies are already
known. For example, best fit can be implemented using a tree
of lists of same sized objects [Sta80], and address-ordered
first fit can be implemented using a Cartesian tree [Ste83].
Most importantly, an excellent allocator implementation that
runs on many platforms was written by Doug Lea and is
freely available [Lea]. This allocator was improved partly
due to the results in our original survey [WJNB95], and is
now a very close approximation of best fit.

If these results hold up to further study with additional
programs, we arrive at the conclusion that the fragmenta-
tion problem is a problem of recognizing that good allocation
policiesalready exist, and have inexpensive implementations.
For most programs, the problem of simple overheads is more
significant than the problem of fragmentation itself.References
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