Mark-Copy: Fast copying GC w

Narendran Sachindran

ith less space overhead

and J. Eliot B. Moss

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

{naren,mosg@cs.umass.edu

ABSTRACT

Copying garbage collectors have a number of advantagesowver
copying collectors, including cheap allocation and avugdirag-
mentation. However, in order to provide completeness (g
antee to reclaim each garbage object eventually), starutguyging
collectors require space equal to twice the size of the mamim
live data for a program. We presentaark-copycollection algo-
rithm (MC) that extends generational copying collectionl aig-
nificantly reduces the heap space required to run a progra@. M
reduces space overhead by 75-85% compared with standard cop
ing garbage collectors, increasing the range of applinattbat can

use copying garbage collection. We show that when MC is given
the same amount of space as a generational copying collétctor
improves total execution time of Java benchmarks signifigan

tight heaps, and by 5-10% in moderate size heaps. We also com
pare the performance of MC with a (non-generational) mavkep
collector and a hybrid copying/mark-sweep generationdéctor.

We find that MC can run in heaps comparable in size to the min-
imum heap space required by mark-sweep. We also find that for
most benchmarks MC is significantly faster than mark-sweep i
small and moderate size heaps. When compared with the hybrid
collector, MC improves total execution time by about 5% fome
benchmarks, partly by increasing the speed of executioheoép-
plication code.

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-Memory manage-
ment(garbage collection)

General Terms
Algorithms, Design, Experimentation, Performance

*This material is based upon work supported by the National Sc
ence Foundation under grants CCR-0085792. Any opiniond; fin
ings, conclusions, or recommendations expressed in thisriab
are those of the authors and do not necessarily reflect thes\oé
the NSF.

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

OOPSLA'030October 26-30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/001055.00.

Keywords

Java, copying collector, generational collector, marlesp; mark-
copy

1. INTRODUCTION

Java is becoming increasingly popular as a programminguizge
because of the advantages that it provides, includingysafbject
orientation, and portability. Garbage collection, whishain im-
portant feature of Java, relieves programmers from the dsuiaf
explicitly freeing allocated memory, making applicatiansre re-
liable. However, garbage collection does have an overhehith
can be significant especially when the amount of space &lriis
small.

Copying garbage collectors operate by occasionally scarthie
application heap (or portions of it) and copying the liveagkable)
objects found into a new area in the heap. Since copyingolle
tors always copy objects into contiguous regions, heapsageth
by copying collectors exhibit little fragmentation. Alssince free
space in the heap is contiguous, allocation is very cheaparit
be performed easily by incrementing a pointer across anathus
portion of the heap. Another advantage of copying collecier
that they are relatively simple to implement. However, nuagty-
ing collectors have a significant space overhead and caondhr
heaps smaller than twice the maximum live data size of a pragr

Among current copying collectors, generational collestfir2,
20] are the most widely used. Generational copying collsctid
vide the heap into multiple regions callgdnerations Generations
segregate objects in the heap by age. A two-generation gpyi
collector (2G) uses two regions, an allocation region cadlaeurs-
ery, and a promotion region consisting of two semi-spaces ¢alle
theold generation There are two common types of 2G collectors.
A fixed-size nursery collectdFG) maintains a constant size nurs-
ery, while avariable-size nursery collectpe.g., in the manner of
Appel [3] (VG), allows the nursery to consume up to half thaibv
able space in the heap. VG collectors usually perform bétian
FG collectors, but at the expense of longer average pausesdp
during which application program execution is suspendeatder
to perform garbage collection).

Figure 1 illustrates the functioning of a generational déogy
collector. The collector triggers garbage collection gviéme the
nursery fills up (Figure 1(a)), and copies reachable nurebjgcts
into a semi-space of the old generation (Semispace 1 in the fig
ure). When the old generation grows to occupy about halfphee
available (Figure 1(b)), the collector copies reachabjeab in the
old generation into the other (free) semi-space (Figurgdr{d (d)).
Generational collection is based on the hypothesis that ofjacts
live a very short time, while a small percentage live muchgkem
The short-lived objects are thus weeded out by frequentemyurs

f——— Old GeneratioR————+— Nursery-
L Semispace 1 Semispace2—|

Nursery Survivors

(a) Heap layout during nursery collection

fp————— Old Generatioh———— Nursery-
Semispace 1 o Semispace2—+

Semispace 1 Survivors

(c) Heap layout during a full collection

p———0Id Generation————+— Nurser
Semispace Semispace2—|

(b) Heap layout before a full collection

p————0Id Generation————— Nurser+
Semispace-2—

(d) Heap layout after a full collection

Figure 1: Generational Copying Collection

collections and the space occupied by dead long-lived tbjsc
reclaimed by the less frequent older generation collestion

Since a generational copying collector requires an entreis
space as a region into which to copy survivors during old gene
tion collections (full collections), heap occupancy caverexceed
half the heap space. It thus requires space equal to atVgastthe
maximum live size of a program to be able to operate. Germaralti
copying collectors usually achieve good performance onhlyeap
sizes that are at least 2.5-3 times the maximum live sizes fBhi
striction can be quite significant for programs that havgédive
sizes. Also, the space overhead usually rules out the usenafrg
ational copying collection for embedded systems, wheresfaee
available is very limited.

is not complete: it suffers from the same problem as OF. THe Be
way.X.X.100 collector solves the completeness problemduiirey
a third belt with a single increment, performing a full caifi®n
when the third belt grows as large as half the heap space.e Sinc
the Beltway collectors determine the amount of space reséfior
copying dynamically, the Beltway.X.X.100 collector doegumore
than half the heap space. However, since the third belt ¢ayroor
to be larger than half the heap space, the Beltway.X.X.108ctor
has the same problem as the generational copying colléottre
general case it cannot run in a heap smaller than twice thé-max
mum live data size for a program.

Our mark-copy (MC) algorithm extends generational copying
collection, and allows control over the maximum size to \katice

Recently, some schemes have been proposed that require lessld generation can grow, while still providing completenedy

space than generational copying collectors. The Oldet EUF)
collector [19, 17, 18] exploits the fact that generationapying
collectors prematurely copy the very youngest objects énrttrs-
ery. It lays out objects in the heap in order of decreasingaagk
slides a fixed size window across the heap starting from ttiesol
objects. At each collection, it copies reachable objecis &ne in
the window, and then slides the window towards younger dbjec
Thus it usually avoids copying the youngest objects. Whemin-
dow bumps into the allocation point (i.e., encounters thengest
objects), it is reset to the oldest end of the heap. OF gdpeml
duces the amount of copying and outperforms generatiomgicg
collectors. Also, it requires additional space only eqoahie size
of one collection window, not an entire semi-space. HoweDéris
notcomplete it will never reclaim cycles of garbage that are larger
than the collection window.

The Beltway collectors [5] include two configurations thatp
form significantly better than a generational copying atilbe The
Beltway.X.X collector adds incrementality to the genevatil copy-
ing collector by dividing the generations (callbéélty into fixed
size increments. It collects only one increment at a timachéahe
additional free space required at any time is equal to theeiment
size. However, for any increment value below 100%, the ctdie

removing the restriction on the usable fraction of the hgagics,
MC can run in very tight heaps. By using the available spaceemo
efficiently, MC can provide better execution times than ottupy-

ing collectors. The efficient use of space makes MC very lisefu
for reducing memory requirements, and suitable even fon dgv
plications on embedded systems (so long as they do not have re
time constraints). A fully incremental version of the MC attighm
can meet real time constraints. We describe such a collgcthis
paper but leave its implementation and evaluation to futumek.

We have implemented, and here evaluate, non-incremerdagdan
tially incremental versions of MC.

2. FIXED VS. BOUNDED NURSERIES

We first take a closer look at the space utilization of the Fizctor
compared with the VG collector. VG triggers full collectiorhen
the heap is half full. Although it is usually unlikely that abjects
in the heap will survive (be reachable in the program), tHeector
uses this trigger to ensure that there is always enough $spacgy
surviving objects, even in the worst case. In contrast, &R can
use up to half the space available in the heap, it usually doedt
triggers a full collection when the heap occupancy exc¢ed®) —

N whereH is the heap size anM is the nursery size. This is to

Total size (MB)

(log)
33 385 44 55
T T T

66 77
" FG —
BG e

22 88
T 42.32

2116

10.58

N b m
e
-
-
/x/
X
X

GC time relative to best (log)
Total GC time (seconds) (log)

.
2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)

(a) GCtime

Total size (MB) (log)
22 275 33 385 44 55 88
T T T 82.92

" FG

BG -

41.46

31.09

H
o ~
S

26.95

Total execution time (seconds) (log)

Total execution time relative to best (log)
N
w

22.80

IR
B

. . . Pk 5073
35 4 5 6 7 8
Size relative to max. live size (log)

(b) Execution time

Figure 2: Performance of an FG collector and a BG collector réative to the best performance forjavac

ensure that there is enough space to collect the old geoemien

if all objects in the nursery survive collection. Thus, vemyall
nurseries allow better utilization of space but performlexion
more often. They also tend to have high survival rates (peage

of bytes copied), because in smaller nurseries, the nusgects
have not had as long to die. While larger nurseries have lower
survival rates, they do not utilize space as well. For examgh FG
collector with a nursery whose size is 10% of the total heazsp
will generally trigger a full collection when the old gengom size
grows to a little over 40% of the total space. This effectigssl|

of space can be quite significant when the collector is rupiira
tight heap. Poor space utilization is one of the primary saagor
the poor performance of FG in tight heaps, as compared to @Ge V
collector.

A simple modification of the FG collector demonstrates the ef
fect that early triggering of full collections has on coliecperfor-
mance. When the available space for FG drops below the urser
size, instead of triggering a full collection, we reduce thesery
size similarly to what VG does. We continue to run the cobect
with progressively smaller nurseries until either the hisapalf full
or the nursery size drops below a threshold. We call thisunded-
size nursery collectofBG). It differs from VG in that the nursery

3.1 Heap Layout and Collection Procedure

MC extends generational copying collection. Like general
copying collection, it can be implemented with a variakilee surs-
ery (VG-MC), a bounded-size nursery (BG-MC), or a fixed-size
nursery (FG-MC). As previously noted, we do not consider FG-
MC here. While MC collection has no restriction on the numdfer
generations, we consider only two generations.

MC divides the heap into two areas: a nursery, and an old gener
ation that has two regions. The nursery is identical to a gaiomal
collector’s nursery, but the old generation regions aré&énodown
into a number ofwindows The windows are of equal size, and
each window corresponds to the smallest increment in thgernd
eration that can be collected. The windows are numbered from
to n, with lower numbered windows collected before higher num-
bered windows. Given a heap of sideand an old generation with
nwindows, the amount of copy reserve space requirét/is, and
the old generation can grow to siek— H/n.

MC performs all allocation in the nursery, and promotes sur-
vivors of nursery collection into the old generation. Likgenera-
tional copying collector, MC uses a write barrier to recoairper
stores that point from the old generation into the nurserpis T
is done to avoid having to scan the entire heap to find nursery

size never exceeds a predefined bound. Figure 2 shows GC timesyypyivors. After each nursery collection, the collectoecks the

and execution times for both BG and FG relative to the best tim
either collector achieves for thjavac benchmark (Table 1 details
our benchmark suite). We ran both collectors with nursergsi
equal to 20% of the total heap space. The BG collector’s nurs-
ery lower bound was 512KB. The graphs show that by using the
available heap space better and performing fewer full cobes,

BG can perform significantly better than FG in small and matier
size heaps. At larger heap sizes, the performance of thediiere
tors is similar since FG needs to perform very few full caliens.

We implemented both BG and VG versions of MC, omitting an FG
version as not being worthwhile to consider.

3. MARK-COPY COLLECTION

We now describe MC collection in more detail. We first lookfs t
heap layout for MC and the collection algorithm. We then éers
the remembered set overhead and space utilization of MCt.\Wex
describe a variant of MC that eliminates the need for remeetbe
sets by using an extra header word per object. Finally weritesc
how to make MC partially and fully incremental.

amount of free space remaining in the heap. If it finds thas fre
space in the heap has dropped to the size of a single windatv (a |
tle more than that in practice), it invokes a full collectiofs the
first step in the full collection, the collector performs dl foeap
mark starting from the roots (stack(s), statics). While thark-

ing is in progress, the collector calculates the total vaduwh live
objects in each old generation window. At the same time, it co
structs remembered sets for each of these windows. Thesarem
bered sets are unidirectional: they record slots in highenlrered
windows that point to objects in lower numbered windows. The
point is to record pointers whose target may be copied befwe
source, a condition that requires updating the source @owlhen
the collector copies the target object. At the end of the rphdse,
the collector knows the exact amount of live data in each aind

It has also constructed a remembered set for each window. The
remembered set entries for each window have the followitg{pr
erties: they are live (not an overestimate of the live sétgytare
current (i.e., they really point into the window); and theg anique
(i.e., the remembered set does not contain any duplicates).

+— Mapped Space-|

— Low Region —==— High Region Nursery
Old Generation

(a) Heap layout before a full collection

_|—Mapped Spaee

t Low Region —==— High Region —= N’uféé}y’
Old Generation

(b) Heap layout after one copying pass

- Map

Low Region —==— High Region
Old Generation

(c) Heap layout after three copying passes

Nursery

Figure 3: Heap Layout during full MC collection, with a 50%
survival rate in each window

Once the old generation mark phase is complete, the catlecto
performs the copy phase. The copy phase is broken down into a
number ofpasseseach pass copying a subset of the windows in
the old generation. The collector has the option either pfyom
the old generation windows one after the other without perfog
any allocation in between, or of interleaving copying withrs
ery allocation. We focus on the first technique here, as oaf go
is increased throughput and not lower pause times, andstisbe
incremental possibilities in Section 3.4. Since the catie&nows
the exact volume of live data in each old generation windod an
also the total free space available in the heap, it may dathedti-
ple windows in a single pass. However, since the remembeitsd s
are unidirectional, the windows must be collected striatlprder
of window number, and not in any arbitrary order. One way to
overcome this restriction is to build bidirectional remesrdd sets,
which store pointers into each window from objects in allesth
windows. However, this would increase the space overhedlaeof
remembered sets and complicate their management. We dopiot s
port bidirectional remembered sets in our current impletakon.

Figure 3 shows the virtual memory layout of the collector-per
forming copying in a heap whose old generation regions are di
vided into nine windows each. Since each old generatiororegi
is divided into nine windows, the old generation can occupyau
90% of the total heap space. Before copying commences, tige ni
windows in the low region are all full and the heap has enough
free space for a single window in the high region (Figure 3(&)
this particular case, we assume that the amount of live daach
low region window is exactly 50%. The first copy pass scars liv
objects in the first two windows in the low region and copiesnth
into the first window of the high region. The roots for the eglion
are the stack(s), statics, and remembered set slots. Wipgimgo
is complete, the total amount of mapped virtual memory exjtied

total heap space. At this point, the space consumed by the firs
two windows in the low region is released (unmapped), as show
in Figure 3(b). This means that the mapped space after thpleem
tion of one copying pass is 80% of the maximum total heap space
This now allows objects from four windows in the low region to
be copied in the next pass. Finally in the third pass, theatbje
from the last three windows are copied, leaving the heap @srsh

in Figure 3(c).

Figure 4 shows a detailed example of a full collection using.M
For this example we assume that all objects allocated in ¢ag h
have the same size, and that the heap can accommodate atimost 1
objects. The heap consists of an old generation with 4 wissdow
Each of these windows can hold exactly 2 objects. R1 and R2 are
root pointers. Figure 4(a) shows a nursery collection, Wwhie-
sults in objects G and H being copied into the old generati®n.
is copied because it is reachable from a root, and H is coped b
cause it is reachable from an object (E) in the old generathin
this point, the old generation is full (Figure 4(b)). MC firstr-
forms a full heap mark and finds objects B, C, D, and G to be live.
During the mark phase it builds a unidirectional remembesed
for each window. After the mark phase (Figure 4(c)), the name
bered set for the first window contains a single entry«B). All
other remembered sets are empty, since there are no pointers
the windows from live objects in higher numbered windows. (I
we used bidirectional remembered sets, the second windawidwo
contain an entry to record the pointer from B to D.) In the fospy
pass, there is enough space to copy two objects. Since theifirs
dow contains one live object (B) and the second window caostai
two live objects (C, D), only the first window can be processed
this pass. MC copies B to a high region window and then unmaps
the space occupied by the first window (Figure 4(d)). It alddsaa
remembered set entry to the second window, to record thegyoin
from B to D (since B is now in a higher numbered window than
D, and B needs to be updated when D is moved). The old genera-
tion now contains enough free space to copy 3 objects. Ingke n
copying pass, MC copies the other 3 live objects and thers fupe
the space occupied by windows 2, 3, and 4 (Figure 4(e)).

The mark phase of the MC collector serves two purposes:

e By calculating the free space in each window, the mark phase
minimizes the number of passes the copy phase needs to
make in order to copy all the data. For example, for an old
generation with nine windows and an overall survival rate
of 10%, MC needs only one copying pass. This is because
the copy reserve of 10% is enough to accommodate all the
collection survivors. However, in the worst case, when the
survival rate is over 90%, it will need nine passes to copy the
data. One should, however, note that for survival rates over
50% a standard copying collector would not even be able to
run the program in this space.

By building remembered sets, the mark phase ensures that
the copy phase needs to perform only a single scan over the
old generation objects in spite of having to perform the eopy
ing in multiple passes.

From the above description, we can see that the amount oé spac
reserved for copying can be made extremely small by inangasi
the number of old generation windows. However, the minimum
copy reserve space needs to be at least as large as the Ghgest
allocated in the heap. By allowing control over the copy rese
the collector is able to run in very tight heaps. It also matkes
memory footprint of the collector much more predictablertiiaat
of a typical copying collector. For a heap of sidethe footprint of
a generational copying collector varies betwégt2 andH, i.e., by

R2

Low Region t High Region t
Old Generation—r Nurser?y

7]
Unmap%e\v

Unm%pe%

Unn/apped \
Un/napped
U/\mapped

i

(a) Heap layout before a nursery collection

=

IR IR AN
Q aQ Q o Q
o =) Q o o
© © < S ©
E|E|E| E|E
F H 5 5 5 5 5
Low Region t High Region t

Old Generation—r Nurser?y

(c) Heap layout after a full heap mark

R1 R2
° =] ° o jﬂ ° ° °
o o] o @ @ @ @
Q Q Q Q Q Q Q
o o o o o o o
S © < © < © <
£ £ £ £ £ £ £
c e c e C G = c e
=) o =) o] =) o o
Low Region t High Region t
T— Old Generatio Nurser?y

(e) Heap layout after two copy passes

R1 /R2

AEENE g e g
Q Q aQ Q Q

=) o o o o

© 5] © © S

E|E| E|E|E

F H 5 5 5 5 5

T Low Region t High Region

?— Old Generation—f Nurser?y

(b) Heap layout after a nursery collection

R1 /R2
EIEEE IR
Q aQ aQ Q o
o =) o Q o
5] © © © <
E E|E| E|E
5 F H 5 5 5 5

———— 7
T Low Region t High Region

?— Old Generation—f Nurser?y

(d) Heap layout after one copy pass

R1, R2 - roots
E Remembered Set
Heap Object

Marked Object

Figure 4: MC - Full collection example

a factor of 2. However, given an old generation thatmagndows,
the footprint of the MC collector varies betweeh— H/n andH,
a factor ofn/(n— 1). Since we can control the value of we can
minimize the variation (subject to the maximum object size)
Also, MC defers full collections until the free space dropsvd
to one window. Standard copying collectors perform fullleot

generally many fewer) over the stacks and statics may berestju
This could be significant if there are a large number of thsead
the thread stacks are very deep. This overhead could beeaédhyc
storing these slots in the remembered sets during the markeph
However, doing so would require additional space. While we d
not offer details here, we found that scanning stacks anitsid

tions when the heap becomes half full. Hence, when MC and othe not make a large contribution to GC time for our benchmarkesui

copying collectors are given the same amount of space, MC wil
perform many fewer full collections. This decreased fullleo-
tion frequency gives objects in the old generation a loniee to
die, resulting in much less copying than regular copyindeoion.

Another way to think of this is that MC increases #féectiveheap
size.

3.2 Remembered Sets

The MC collector builds remembered sets at two differennimoi
during program execution. While the mutator is running, wée
barrier inserts slots into the nursery remembered set. i$hienti-
cal to what a generational copying collector does and oesutie

MC collectors do have some disadvantages compared with gen-¢sme amount of space. During the mark phase of a full cofiecti

erational copying collectors. Each full collection for MGlgcan
every live object in the heap twice, once while marking andeon
while copying. The mark phase requires additional spaceafor
mark stack and there is a copying remembered set overhead, Al
for an old generation consisting afwindows, up ton passes (but

MC constructs unidirectional remembered sets to recordtps
between windows in the old generation. These rememberad set
are not required by a generational copying collector ancharad-
ditional space overhead for MC. However, the nursery andjetd
eration remembered sets do not co-exist in a non-incrert@a

T
HS 13MB --x---
HS 33MB -8

16 [HS 55MB --#--

08 -

Remembered set size (MB)

0.6 -

0.4

0.2

SN

L
5 10

Number of windows (log)

L
20

L
30

L
40

L
50

(a) Remembered set size

Figure 5: Effect of the number of old generation windows on tle space usage of MC fojavac

collector, since MC performs old generation marking onlieat
nursery collection completes. We look at the overhead ofjela-

eration remembered sets here.

to increase as the number of old generation windows incsease
This does not necessarily happen, for a couple of reasonst, Fi
the set size depends on the locations of the objects in thgeuled
eration, i.e., if objects that reference each other lieelugether

in the old generation, then increasing the number of windwaills
not have a significant impact. Second, an increase in the aumb
of windows increases the amount of usable space in the héwg. T
in turn changes the points at which collection occurs, amtée
the amount of live data in the heap during full collectionn&
the remembered set entries are accurate and depend on thaetamo
of live data in the heap, a change in the volume of live datddcou

reduce the remembered set size.

Figure 5(a) shows the variation in the maximum overall remem
bered set size as one varies the number of windows, for heap si
which are 1.2, 3, and 5 times the maximum live size (13MB, 33MB
55MB), for javac. The horizontal axis represents the number of
windows and is drawn to a logarithmic scale. We look at the re-
membered set sizes for an old generation with number of wisdo
ranging from 5 to 100. Although we do not use more than 20 win-
dows in the old generation with the non-incremental coliedt is
important to see what the remembered set overhead is witige la
number of windows, since an incremental collector mightonie

L
60

P
70 80 90100

use 100 or more windows to ensure a low pause time.

The remembered set sizes drop initially in the smaller heaps
and then generally increase as the number of windows isasere
The size in the smallest heap is about 1.35MB with 7 windoves an
about 1.57MB with 100 windows. The size in the largest heap is
about five times larger with 100 windows than with 5. Howevfer,
we look at the remembered set size as a fraction of the totad he

the smallest heap and 2.6% in the largest heap).

utilization for a given number of windowsusing the formulgH —
(H/n)—R)/H, whereH is the heap size{ /n is the copy reserve

we obtain significant gains in space utilization until thenter of

T
HS 13MB ---x---
HS 33MB &

HS 55MB --m-—

09 g

0.85 -

Space Utilization
w
B

st /4 <

.
5 10 20 30 40 50
Number of windows (log)

(b) Space utilization

L
60 70 80 90100

copy reserve is reduced by a larger amount than the corrdsppn
increase inremembered set size. Increasing the numbendbwis
beyond 50 causes the space utilization to improve slightigven
Normally we would expect the remembered set space overheadto deteriorate a little.

3.3 MC without Remembered Sets

Although the remembered set overhead for MC is not usually ve
high, in the worst case remembered sets could grow to be ge lar
as the heap. We describe in this section a variant of MC tregt us
an extra header word per object in the old generation (MCHW),
eliminating the need for remembered sets and thus boundiag t
worst case space utilization. However, unlike MC, MCHW can b

used only as a non-incremental collector.

The heap layout for MCHW is identical to the layout for MC.
MCHW performs allocation in the nursery and promotes surgv
to the old generation. MCHW adds an extra header word to each
object that is copied into the old generation. When the fpaes
in the heap drops down to the size of a single window, it ingoke
full collection. Like MC, MCHW performs a full collection itwo

phases.

During the mark phase, MCHW marks all objects reachable from
roots. While performing the marking, it maintaindiee offset ar-
ray that stores the sum of the sizes of the live objects foundrdo fa
each window. It also maintains a bitmap that indicates thatlons
of the live objects. While marking a reachable object, thigector
computes dogical addresdor the object. The logical address is a
combination of the window to which the object belongs anditree
offset of the object within the window. The logical addresstored
in the extra header word reserved for the object and it indicthe
location to which the object will be copied in the next phaSeery
time a slot referencing the object is found, the contenthefdot
are replaced with the logical address of the object. Figusbdvs
the logical address layout used for MCHW. The lowest bit igge
space, it is not very large even when we use 100 windows (12% in 1 to indicate that the value stored is a logical address. @bjare
word aligned and the machine is byte addressed, so orditgegto

Figure 5(b) shows the space utilization for MC as we increase pointers always have zeroes in the two low order bits.) Thediei
the number of old generation windows. We calculate the space bits store the live offset, and the high order bits store tlirecaw

number.

Once the mark phase is complete, the live offset array cositai
size, andRis the maximum remembered set size. For all heap sizes, the sum of sizes of the live objects in each window. The cellec
tor now calculates a cumulative live offset (CLO), which &ach
old generation windows grows to about 40. This is because the window is the sum of the offsets of all preceding windows. rigsi
this information, the new address for any heap object isutated

‘ Window‘ Live Offset ‘ l‘

Figure 6: Logical address layout for MCHW

using the logical address (LA) of the object and the startesidlof
the copy space (CSA) using the formula:

CSA}+CLO[Window(LA)H-LiveOffset(LA)

The MCHW collector requires that the entire copy space be con
tiguous (in virtual memory). Otherwise it will need to penfo an
extra pass over the live objects to determine the correcutative
live offset (since objects may span two windows). Once tifeetd
are calculated, the collector starts the copy phase. Itstahs the
roots and updates pointers into the heap using the aboveifarih
then scans the bitmap, processing one window at a time. Ebr ea
live object in the window being processed, it updates anytpos
that the object contains using the above formula, and theieso
the object to the to-space location computed from its Idgach
dress. After processing all live objects in a window, it upsiahe

space occupied by the window and then processes the next. The

copy phase terminates when all windows have been processed.
As can be seen from the description, MCHW does bound the
worst case space utilization. It requires one additionaidwmer
object plus space for a bitmap. The size of the bitmap is appro
imately 3% of the heap space when objects are word aligneal (on
bit per 32-bit word). However, since it adds an extra worddote
object, the layout of the old generation is not as compadiatsfor
MC, which could cause negative locality effects and alsacedhe
effective heap size.

3.4 Incremental Collection

Until now we have dealt only with batched collection of wimdoin

the old generation. Although the collector performs theybog in
increments, it performs multiple passes one after the athgfall

the copying is finished. This scheme is meant to optimizeutjine
put and does not necessarily give good maximum pause tintes. T
maximum pause time is typically close to that of the genenat
copying collectors. A fully incremental version of BG-MGattes
some loss in throughput for reduced maximum pause times. We
now describe how we can construct a fully incremental versio
MCI, of the BG-MC collector, describing a partially incrental
version along the way.

BG-MC consists of three different collection phases: nyrse
collection, old generation marking, and old generationyaagp. In
order to make the collector fully incremental, we need torzbu
the amount of copying and marking work done in each phase. The
amount of copying performed during nursery collection isibded
because the size of the nursery is bounded. The copying arid ma

ing work done in the other two phases can also be bounded. We

first describe how the collector can perform incrementalyaugyp
while using a non-incremental mark phase (MCIC, IC ifocre-
mental copyiny We then describe how to make the mark phase
incremental (MCI).

Incremental old generation copyingVhen the marking of the
old generation is complete, we know the exact amount of dhatia t
will be copied out of each of the old generation windows. |gsin
this information, we divide the old generation copying werdtoss
one or more nursery collections. We first group the old geti@ra
windows based on the amount of live data in each window. Each
group consists of one or more adjacent old generation windows,
with the condition that the total amount of live data in a gras
less than or equal to the size of a single old generation windo

Once the grouping is done, we copy objects within the firstigro
and give the freed memory (less one window) to the nurseogall
tor (i.e., we can use up to half of those windows for nurselgcal
tion, subject also to the BG bound on nursery size). We theumne
program execution and the program runs until the nursesy i,
which we then collect. At this point, we copy the next group of
windows in the old generation. We repeat this process of-alte
nating program execution with nursery then old generatiaug
collection until the entire old generation is copied, thpseesding
the old generation copying work across several nursergctitins.

In the case that an old generation collection does not freegmn
space, we repeatedly collect old generation groups untifree
enough memory for the nursery. A problem MCIC can run into is
that a large number of full windows may lie next to each ottmer i
the heap. This causes the collector to perform a large nuwiber
consecutive copy passes, resulting in a longer pause. QuiEso
for this problem is to use bidirectional remembered setschvhl-
low MCIC to collect windows in any order, so that it can cotlec
windows that are mostly full along with windows that are ntypst
empty. Bidirectional remembered sets, however, have iaddit
space overhead and increase write barrier cost.

We can also extend the incremental copying so that it does not
perform old generation copying immediately after nursesilec-
tion. We call this thesplit-phaseapproach. In the split-phase ap-
proach, after we copy the first group of windows in the old gene
ation, we allow the program to run until the nursery becoimaé
full. At this point, we copy the next old generation windowogp.
We then allow the program to run until the nursery becomes (en
tirely) full, at which point we perform a nursery collectioThis
approach tends to spread out the copying pauses better.

There are some policy considerations in MCIC collection.eOn
is when to trigger old generation marking. We should mark som
what in advance of filling the old generation, to reduce thespinl-
ity of the collector’s needing to collect several groups iettiately
after one nursery collection. However, if we mark too mucladh
vance, then there are two negative effects: old objects hatvkad
as much time to die, so we reclaim fewer dead ones; and mean-
while we have more objects promoted from the nursery, whieh w
cannot reclaim until theextold generation collection. It is clear
that in general MCIC will need more space than MC to perform
reasonably, and will likely do more total work than MC. Thésan
expected tradeoff for incrementality in collection.

A second policy consideration is how often to collect old gen
eration groups. The policy we gave above is to collect oneqgro
after each nursery collection (or, in split-phase, betweaech nurs-
ery collection and the next one). However, we could wait foren
than one nursery collection, e.g., until nursery collettitmes not
leave enough blocks for nursery allocation. We would thdlecb
one group, hoping to free enough memory for nursery allocati
to proceed. Doing group collection as rarely as possiblerdef
reclaiming old generation memory, so we expect it will putreno
pressure on the nursery and cause more frequent nursegc<oll
tions. It might also require agarlier marking trigger.

A third policy variation is to allow collection of more thame
group at (or between) nursery collections. Since the goabis
bound maximum pause time, if the maximum nursery size is more
than one window, salk windows, then, since a nursery collection
could copyk windows of objects, we could allow MCIC to collect
up tok groups (or, enough from-space windows to Kilto-space
windows), if there is space available. Collecting groupsnes re-
claims their free space sooner, allowing larger nursegés, The
point is that once we have marked, the only reason to wait-to re
claim dead objects is to spread pauses out: even if more olerge

ation objects die, we will not reclaim them until thextold gener-
ation marking and copying.

The MCIC collector has additional overhead compared wiéh th
MC collector. First, it performs a larger number of garbagd ¢
lections. Second, it must use a more complex write barrie€ M
needs to track pointers into only the nursery, whereas M@&€ts
to track pointers into both the nursery and the uncolleciertiqgn
of the old generation. This means that a simple directioréew
barrier cannot be used with the incremental copying cadle@in-
less one runs the algorithm in a large address space, e lits64s

with reproducible results. We first ran each benchmark 7 gimi¢h
the adaptive run-time system, logging the names of methuals t
were optimized and their optimization levels. We then detaed
the methods that were optimized in a majority of the runs, thed
highest level to which each of these methods was optimizea in
majority of runs. We ran our experiments with only these rodth
always optimized (to that optimization level) and all otimeeth-
ods always baseline compiled. The resulting system behavio
repeatable, and does very nearly the same total allocasiartypi-
cal adaptive system run; it differs from adaptive systemsalvéir in

has been proposed for OF). Remembered set sizes also terd to bthat it tends to invoke the optimizing compiler before thelagm-

larger for MCIC.

Incremental marking:MCIC performs non-incremental mark-
ing when it triggers old generation collection. We can botimel
amount of marking work by replacing the non-incremental kmar
phase with incremental marking. Incremental marking cafop@
small amounts of marking work along with each collectioneen
during allocation. In order to support incremental markitig col-
lector requires a more complex write barrier: it must log pointer
assignment whose target is an unmarked object in the regimg b
marked. This will ensure that all reachable old generatibjects
are marked.

Replacing non-incremental marking with incremental nagki
will affect performance. Incremental marking must be stdrnuch
sooner than a non-incremental mark phase, to ensure thaingar
completes before the collector runs out of space. As a coeseg,

tion has built up its live data set, whereas adaptive rund tern-
voke the (memory-hungry) optimizing compiler in the thidktloe
application. Thus, adaptive system maximum live size téad®
bigger (and unpredictable). However, the pseudo-adaptisem,
since its average and peak live sizes are closer to one anthes
to run closer to its peak. Thus, when scaled by live size, gizeu
adaptive is consistently closer to its peak memory usagee robr
the time.

Jikes RVM is itself written in Java, and some system clasaas c
be compiled either at run time or at system build time. We céedp
all the system classes at build time to avoid any non-appica
compilation at run time. The system classes are stored in a re
gion called théboot imagethat is separate from the program heap.
We used the Java memory management toolkit (JMTk), standard
with Jikes RVM 2.2.2, as the base collector framework. JMTFk a

the set of objects marked at the end of the mark phase will be anready supplied the generational collector and mark-swedpa:

overestimate (larger, compared with MCIC) of the true setath-
able objects in the old generation. This in turn will incredake
amount of copying work. The more complex write barrier wi@
reduce the performance of the collector.

Implementation:We have implemented a version of MCIC that
performs incremental copying and uses unidirectional rebered
sets. We describe some of the results from this collectoreane
the implementation of MCI to future work.

4. RESULTS

We describe in this section our experimental setup, detdithe
collector implementation, the benchmarks we used, andriexpe
mental results comparing the collectors. We compare spaee o
heads, copying costs, GC times, and total execution timethé
VG, VG-MC, and VG-MCHW collectors. We also compare GC
times and total execution times of VG-MC with a (hon-geriersl)
mark-sweep collector (MS) and a hybrid copying/mark-swgep-
erational collector that uses a variable size nursery (V&)yMror
the MC collectors, we use 20 windows in the old generatiorr. Fo
each benchmark, we ran the collectors in heaps ranging fhem t
minimum space required to run the benchmark to 8 times the max
imum live size.

4.1 Experimental Setup

We implemented our collector in Jikes RVM 2.2.2 [1, 2]. Jikes
RVM does not have an interpreter: it compiles all bytecode to
native code before execution. Jikes RVM has two compilers, a
baseline compiler that essentially macro-expands eackcoge
into non-optimized machine code, and an optimizing compile
also has an adaptive run-time system that first baseline ibesnp
all methods and later optimizes methods that execute fretyue
Methods can be optimized at three different levels dependim
the execution frequency. However, the adaptive system does
produce reproducible results, since it uses timers and mpamize
different methods in different runs.

We used gseudo-adaptiveonfiguration to run our experiments

tors. JMTk also provided us with most of the generic funcidy
required by a copying collector, so it aided rapid deployhwdrour
two new collectors.

We ran our experiments on a Macintosh PowerPC with two 533
MHz G4 7410 processors (though the system uses only one of
them), 32 KB on-chip L1 data and instruction caches, 1 MB adifi
L2 cache and 640 MB of memory, running PPC Linux 2.4.10. We
performed our experiments with the machine in single useteno

4.2 Implementation Details

We first describe the implementation of the non-incremewéad
sion of MC. The collector divides the entire usable virtuddieess
space into a number oégions The lowest region stores boot im-
age objects, the next region stores immortal objects, aridre t
region stores large objects. All these regions come by dafathe
JMTk framework, for any collector. MC allocates objectsgiar
than 8KB into the large object region, and this region is ngada
by the IMTk mark-sweep collector (the size threshold foocat
tion into this region is 8KB for all collectors that we compdrMC
against). JMTk rounds up the size of large objects to whoiepa
(4KB), and allocates and frees them in page-grained units.

The type information block (TIB) objects, which include tie
tual method dispatch vectors, etc., and which are pointdbto
the header of each object of their type, are allocated by JMitk
immortal space. This has a couple of benefits for the MC ctec
First, the TIB objects do not have to be copied when perfogmin
collection. Second, the remembered set overhead is rediiged
nificantly since we do not store pointers into immortal spacte
remembered sets.

MC creates two more regions, one for the old generation and
one for the nursery. The old generation is divided into a neimb
of fixed sizeframes A frame is the largest contiguous chunk of
memory into which allocation can be performed. The frame siz
in our implementation is 8MB. Each frame accommodates at mos
one old generation window. Old generation windows can, lvewe
span multiple frames. The portion of the address space nwihi

Benchmark Description Maximum Total
live size (MB) | Allocation (MB)

202 jess a Java expert system shell 4.0 291
_209.db a small data management program 105 85
213 javac a Java compiler 11.0 285
_222 mpegaudio| an MPEG audio decoder 3.0 27
_227_mtrt a dual-threaded ray tracer 10.0 145
228 jack a parser generator 4.5 329
pseudojbb SPEC JBB200 with a fixed number of transactigns ~ 28.0 334
health simulation of a health care system 67.5 552

Table 1: Description of the benchmarks used in the experimes

frame that is not occupied by a window is left unused. Sinee th which it ran (rounding up to the next MB) with a VG collectoath
frames are power-of-two aligned, only a single shift is riegplito did not use a large object space (except for the thread stacks), and
find the frame number of a heap object during garbage catlecti dividing the result by 2.

MC uses a fast write barrier that records only pointer sttias .
cross the boundary separating the nursery region from titeofe 4.4 Space Accounting

the heap; this is the same barrier used by the generatiopginmp In all the experiments we ran, the VG collector used the $igeci
collectors. The write barrier is partially inlined [6]: theode that heap space to allocate heap objects and nursery remembegred s
tests for a store of an interesting pointer is inIined, arsdabde that entries. The nursery remembered set space was not accdonted
inserts interesting slots into a remembered set is out ef Iach Separate|y_ MC also used the heap space in the same manmer. Ho
frame has an associated remembered set. The remembered set kyer, the old generation remembered sets were accountedtéor
implemented as a sequential store buffer [9]. Remembetsis® each run completed, by adding the maximum space occupied by
used to store the addresses of slots that reside in the heédh@n the remembered sets to the heap space. MCHW used the specified

boot image and that contain interesting pointers. heap space to store heap objects (along with an extra headey, w
The MCHW implementation uses the same memory layout as the nursery remembered set, and a bitmap.
MC, except for the layout of the old generation. The old ganer

tion for MCHW is not divided into power-of-two aligned frame 4.5 Mark-Copy Space Overheads

Instead, it is divided into page-size aligned windows whefolia Table 2 shows the remembered set space overhead for all eight

collection is performed. This ensures that objects areatted con- o chmarks, for an MC collector that has 20 windows in the old
tiguously in the old generation (which avoids an extra pass the generation. For each benchmark, the table shows the remethbe

heap to calculate addresses). Thi; condition does r.'Ot sedlys set size for heap sizes ranging from 1.1 to 6 times the live Sihe
hold true when frames are used since the window size and frameheap sizes do not include the remembered set size. They do how
size are usyally not equal.)) ever include a 7.5% copy reserve (we trigger a full collettichen

We also implemented the MCIC collector. The write barriar fo the free space drops down to 1.5 windows, so that the cotleotes
MCIC is slower than the one used for MC, since simple boundary |.: \;se nurseries smaller than 2.5% of the heap space). Bach e

cr.ossing checks are n.Ot. adequate. The full heap.mark for M§:|C try in the table represents the remembered set size as anpefce
triggered sooner than itis for MC (when the heap is 85% fillhis the heap size. An entry with a '~ indicates that MC did not-per

is because de]aying th.e marking until the heap is almostéquis form a full collection for the heap size, and hence did notstarct

to cause multlple copying passes to be clugtered togethesingy remembered sets.

long copying pauses in addition to the marking pause. For four of the eight benchmarks, the remembered set overhea
for MC is always less than 5% of the maximum live size. jaeac

4.3 Benchmarks the overhead is about 11% of the live size, andHfealth the over-

We compare results from eight benchmarks, six from the SPEC head is about 15%. The total minimum space overhead for MC

JVMO8 suite [15], plupseudojbb, andhealth. pseudojbb is a varies between 12% and 25% of the maximum live size.

modified version of the SPEC JBB2000 benchmark [1p$eu- The header word overhead for MCHW is higher than the remem-

dojbb executes a fixed number of transactions (70000), which al- bered set overhead for MC. Table 3 shows the overhead foighe e

lows better comparison of the performance of the differesit ¢~ benchmarks. We calculate the overhead by dividing the heade

lectors. health is an object oriented Java version of the Olden C Word size (4 bytes) by the average old generation object(size

benchmark [14]. We do not present results from two SPEC JvM98 cluding the header word). This is because the header worttlech

benchmarks,201_compress and_205_raytrace. -201_compress only to old generation objects. The space overhead for MCEHW i
mostly allocates large objects, which are placed in largeab about 5-10% higher than the overhead for MC, still considlgra
space. Since the large object space for all the collectonmisaged ~ lower than the generational copying overhead.

using mark-sweep, this benchmark is not interesting forstudy. .
227 mirt is a dual threaded version a205_raytrace. Since the 4.6~ Copying Costs

results for the two benchmarks are very similar, we presesitlts We examine here the copying characteristics of VG-MC and VG.
only for _227_mtrt. We ran all SPEC benchmarks using the default Although the performance of copying collectors is influeshdsy
parameters, and ignoring explicit GC requests. trealth, we set factors such as locality, the total amount of data copieddsad
the number of levels to 8 and maximum time to 200. performance indicator and can explain differences in dvgex-

Table 1 describes each of the benchmarks we used. We calcu-formance. For generational collectors, the amount of aupys
lated the live size for a benchmark by finding the smallesptira strongly related to the number of full collections. We firabk

Heap size relative to maximum live size Header Word
Benchmark 11] 12 15] 2] 3] 4]s6 Benchmark overhead
202 jess 88%| 83%| 51% | 1.4% - - - 202 jess 9.0-10.7%
209.db 16%| 1.5% | 1.0% | 0.8% | 0.3% - - _209.db 13.5-13.7%
213 javac 10.3% | 9.2% | 7.1% | 4.8% | 3.7% | 2.8% | — _213javac 13.9-14.1%
222 mpegaudio|| 4.4% | 3.7%| 2.9% | 2.0% | - - - _222 mpegaudio| 9.7-11.0%
227-mtrt 29% | 2.1%| 1.6% - - - - 227 mtrt 14.5-15.9%
228 jack 51%| 2.7% | 2.6% | 0.9% | 0.6% - - _228jack 11.3-11.6%
pseudojbb 17%| 1.6%| 1.2%| 0.8% | - - |- pseudojbb 5.2-6.6%
health 14.2% | 11.9%| - - - - — health 18.2-18.5%

Table 2: Remembered set size as a percent of the heap size, € using 20

windows in the old generation

at the full collection behavior of VG-MC and VG for two bench-
marks, and then see how this affects the amount of data copied

Figure 7 shows the number of full heap collections performed
by VG-MC and VG forjavac andpseudojbb. The horizontal axis
represents the total space used relative to the maximunsitheg
and is drawn to a logarithmic scale. The vertical axis regmesthe
total number of full collections performed. Favac, VG-MC has
a significant advantage until the heap has grown to 4.5 timmes t
maximum live size. In space that is about 2.3 times the maximu
live size, VG-MC performs as few as three full collectionsGV
performs approximately five times as many full collectionshés
point. The performance fgpseudojbb is even better, with VG-
MC performing only one full collection in space that is abowb
times the maximum live size. VG catches up with VG-MC only
when the space grows to five times the maximum live size.

VG-MC performs many fewer full collections because it dsfer
full collection until the heap is almost full, while VG haspgerform
them when the heap is half full. The survival rate of objentthie
old generation is much higher than nursery objects, sineeotti
generation typically contains long lived objects. For epéanfor
VG runningjavac in a heap that is 2.3 times the live size, 66% of
old generation data survives on average, while only 21% taf oha
the nursery survives. By deferring full collections, VG-Mfres
the old generation objects a longer time to die, thus sigifiy
reducing the survival rate, which in turn reduces the totabant
of copying work. Therefore, even though VG-MC potentiales
more work at each full collection, the lower frequency altoivto
do much less work overall.

Figure 8 shows the effect of the number of full collectiongtom
amount of copying performed by the collectors. The graplwvsh
the relativemark/consratio, the ratio of total bytes marked and
copied (“marked”) to total bytes allocated (“cons’ed”)r ¥G-MC
and VG, forjavac andpseudojbb. Forjavac, VG copies approx-
imately two times more data than VG-MC in space that is about
2.3 times the maximum live size. At four times the live siz& V
copies 30% more data than VG-MC. In heaps that are six tinees th
live size or larger, VG-MC does not perform full collectioaad
the copying cost for VG is 20-25% higher. Fpseudojbb, the
copying cost for VG is twice as much as that for VG-MC, in space
that is about 2.5 times the maximum live size. In heaps batwee
2.5-4.5 times the live size, the cost is at least 50% highezntt-
ally, at six times the live size, the collectors perform rblygequal
amounts of copying. We look at the effect this reduced capyias
on overall performance of the collectors in the next section

4.7 Mark-Copy vs. Copying Collection

Figure 9 shows GC times for VG-MC, VG-MCHW, and VG, rela-
tive to the best GC time for the eight benchmarks. Figure tvsh

Table 3: Average header word space
overhead for MCHW

the total execution times for the collectors relative to ltlest total
execution time. Although we measured the performance of BG-
MC, we omit the results in the graphs in order to make them leg-
ible. We briefly discuss the results for BG-MC at the end of the
section. In the graphs, the vertical axis represents veldimes,
and is drawn to a logarithmic scale. The horizontal axisesents
total space relative to the maximum live size, and is alsovdr®

a logarithmic scale, so as to show greater detail for smaksp
sizes.

For all eight benchmarks, the MC collectors clearly run incimu
smaller space than VG. Since VG uses a large object spacer(whi
is managed by a mark-sweep collector), it can run in heaghbtbfi
smaller than twice the maximum live size (it does not haveeto r
serve any space for copying large objects). For all of thechen
marks, the VG collector does much worse than the MC collsctor
when the space available is around twice the maximum live siz

javac: When the space available is about 2.3 times the maximum
live size, the GC time for VG is twice as high as that for VG-MC.
In space that is about four times the maximum live size, the GC
time for VG is 1.5 times higher. When the total space grows to
about five times the live size, the GC time for VG is 15% higher
than that for VG-MC. The GC time for VG-MC drops sharply at
this point because it does not perform any full collectiofise GC
time for VG is 50-60% higher than that for VG-MC in space that
is six times the maximum live size or larger.

The shapes of the curves for the relative execution timesiare
ilar. In space that is about 2.3 times the maximum live siatglt
execution time with VG is 40% higher than with VG-MC. VG con-
sistently performs within 10% of VG-MC only in heaps largean
4.5 times the live size. At eight times the live size, the Iteta
ecution time for VG is 5% worse than that for VG-MC. The GC
and total execution time curves for VG-MC and VG are very sim-
ilar in shape to the curves for the copying costs, which shihat
VG-MC obtains the performance improvement by reducing eopy
ing cost significantly.

VG-MCHW, which uses an extra word per object in the old gen-
eration, has a slightly higher space overhead than VG-M@ght
heaps, itis significantly slower than VG-MC. When the spaeéla
able is larger than twice the live size, it performs at mostwéfse
than VG-MC, and is typically within a few percent of VG-MC. It
outperforms VG at most heap sizes.

db: This benchmark builds a large linked list, which it repe&ted
traverses during execution. This leads to locality issués-MC
performs better than VG until the space grows to about thireest
the maximum live size. The performance of all collectorsrddgs
in large heaps (possibly due to locality effects on TLB ns$se
VG-MCHW is significantly slower than VG-MC in small heaps
and about 5-8% worse than VG and VG-MC in heaps that are 2.25

Total size (MB) (log)

11 138 165 192 22 275 33 385 44 55 66 77 88
80 — T T — T T — T T T
X VG ——
: VG-MC —x—

70 ;

60
[{
g i t
g 50 ¢
2 H
=) :
O a0 ¢
= i
o) X
T 30 a8
S X
w \

20 ¥

x,
10 e
. :

o

L L L L L
1 125 15 175 2 25 3 35 4

Size relative to max. live size (log)
(a)javac

5 6 7 8

Total size (MB) (log)

28 35 42 49 56 70 84 98 112 140 168 196 224
45 T T T T T T T T T T T T
VG ——
| VG-MC -

@ IS
& 5

x
L

w
8

N
&

e N
& 3

x

I —

Full Heap Collections
x

-
5

@

T
o — — *—k

. . . .
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)

(b) pseudojbb

o

Figure 7: Number of full heap collections performed forjavac and pseudojbb

Total size (MB) (log)

11 138 165 192 22 275 33 385 44 55 66 77 88
16 T T T — T T T T T 2.40
VG ——
VG-MC -
2 X
= 8 \ 120
? 1 =)
@ \ [s)
o | =
2 b 2
2 % 3
z 060 2
[} . [
[%
© =
S g
Q . =
E A e 030
e,

= XXM

15 & 0.22

L b
13 3 - NV ——ed 0.20
S N
11 gz 0.17
) . P . P .] 08
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(a)javac

Total size (MB) (log
28 35 42 49 56 70 84 98 112
——— —

16 T —
X

140 168 196 224
T T 224
VG ——
VG-MC -

112

Mark/Cons relative to best (log)
e
R
X .
,'Xl(/
o
&8
Total Mark/Cons (log)

\o\w—v/\ N

-
«n

13 = 0.18
S
11 KK \\\ 0.15
- . P . PR s SO wJo1a
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(b) pseudojbb

Figure 8: Relative Mark/Cons ratio for javac and pseudojbb

times the live size or larger. This is possibly because ofefffect

the header word has on the cache.

jess, mpegaudio, mtrt, and jack: The results for these bench-
marks are similar. VG starts off with total execution timésoat
25-50% worse than VG-MC. Its performance is typically withi
10% of VG-MC only in heaps that are 2.5-3 times the live size
or larger, and it performs almost as well as VG-MC at eightesm
the maximum live size. VG-MCHW generally performs within a
few percent of VG-MC in heaps larger than twice the live saal
outperforms VG in heaps that are 3—4 times the live size oflema

pseudojbb: The total execution time for VG at 2.25 times the
live size is 30% worse than that for VG-MC. VG comes within 10%
of VG-MC in space that is 2.75 times the live size. VG performs
almost as well as VG-MC in space that is five times the live size
larger. VG-MCHW is 5-20% slower than VG-MC in tight heaps.
In heaps larger than twice the live size, its performancédiathe

same as VG-MC.

health: Here, the curve for VG-MC is noisy in the smaller heap
sizes. This is because, for some of the small heap sizesgthe r
membered set overhead for VG-MC is very large (up to 14MB).
This overhead causes configurations that use less heaptspasz

up a large amount of total space.

The execution time of VG converges much more quickly for

health than for the other benchmarks. At about 2.25 times the live
size, VG performs 5% better than VG-MC, and in heaps largan th
three times the live size, VG performs as well as VG-MC. How-
ever, since the live size is quite large, the actual addifiomemory
required by VG to perform as well as VG-MC is approximately
67MB. VG-MCHW performs about 3-5% worse than VG-MC and
VG in heaps that are 2.5 times the live size or larger, agassipty
due to locality effects caused by the additional word peechj
Summary: VG-MC and VG-MCHW are capable of running in
much smaller heaps than VG. The minimum space overhead for
VG-MC is between 1.12-1.25 times the maximum live size, and
5-10% higher for VG-MCHW. The space advantage is clear in the
plots for pseudojbb andhealth. The minimum space required to
run pseudojbb using VG is 25MB higher than the space required
by MC. The additional space required by VG fazalth is 50MB.
VG-MC consistently performs better than VG in small and mod-
erate size heaps. For VG, garbage collection is up to eighagi
slower in small heaps and is 1.2-2 times slower in moderaee si
heaps. Overall execution time is significantly higher in Bimeaps,
and is typically 5-10% higher in moderate size heaps. Fordive
the eight benchmarks, VG-MC performs within 6% of the bestex
cution time, in space that is slightly larger than twice theeximum
live size. VG-MC achieves the improved performance by zitilj

Total size (MB) (log)
8 1 14

4 5 6 0 12 16 20 24 28 32
128 — T —— T ——— T — 46.80
VG e
VG-MCHW --a
64 2 VG-MC --=- 42340
W
0
32 o 1170
u
»
16 LS 585

GC time relative to best (log) GC time relative to best (log) GC time relative to best (log)

GC time relative to best (log)

Size relative to max. live size (log)

(9) pseudojbb

8 b o,
o
-
4
2
P - . P . P .
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(a)jess
Total size (MB) (log)
11 138 165 19.2 22 2715 33 385 44 55 66 7 8
64 T T T T T T T T T T T T 110.78
VG -
- VG-MCHW --a
32 iy k1 VGMC === Jesao
: X
. 3
16 "\ En 27.69
.
L
"
8 5 13.85
[N
"o
4 . > 692
2
g - L L P L L P L Mils SR Y
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(c) javac
Total size (MB) (log)
10 125 15 175 20 25 30 35 40 60 70 0
32 T — 11.92
o VG e
o VG-MCHW --a
. x VG-MC --=-
16 L X 596
i \>‘§
b \
P aQ
.
8 ‘\ =} 298
.
Yom
"

4 3 1.49
2 N - X‘ 0.74
N =3 E

e, B
e
L . M . I s o
1 125 15 175 2 25 3 35 4 5
Size relative to max. live size (log)
(e) mtrt
Total size (MB) (log)
28 35 42 49 56 70 84 98 112 140 168 196 224
128 — T ——— T ——— T — 48.23
R VG
VG-MCHW --a
64 VG-MC --=- 4 7411
"a %
32 8 Y 37.06
i
v ‘,\
16 “\ 1 & 1853
N '
\8 N
8 9.26
"
'l
e
4) < 463
‘\\ "o
eGSR Do X
2 ! : 2.32
Py . L .
1 125 15 175 2 25 3 35 4 5 6 7 8

Total GC time (seconds) (log) Total GC time (seconds) (log) Total GC time (seconds) (log)

Total GC time (seconds) (log)

128

= @
Y 5 8

GC time relative to best (log)
IS

64

32

GC time relative to best (log)

GC time relative to best (log)

16

GC time relative to best (log)
IS

Total size (MB) (log)

105 131 158 184 21 262 315 368 42 52.5 63 735 84
T T T T T T T T T T T T 48.92
VG -
VG-MCHW --a
A VG-MC --»- 4 2446
" 1223
-
.
v
" 6.12
)
= 3.06
SR 153
L = X
% 0.76
' o
R = o P
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
Total size (MB) (log)
3 38 45 52 6 75 9 105 12 15 18 21 4
T T T T T T T T T T T T 17.37
" VG -
| VG-MCHW --a
VG-MC --=- - 869
4.34
217
X«
st
. A 1.09
mg
a
L L L L L L L 2
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(d) mpegaudio
Total size (MB) (log)
45 56 68 79 9 112 135 158 18 225 27 315 36
T T T T T T T T T T T T 2121
VG
VG-MCHW --a
VG-MC --»-
10.60
5.30
o \\‘x»x\
L] ~
xfﬁ\ B sy 265
L T N D\i\,x, .
S 133
o
s
. . M . M . 0.66
1 125 15 175 2 25 3 35 4 5
Size relative to max. live size (log)
(f) jack
Total size (MB) (log)
67.5 84.4 101.2 118.1 135 168.8 202.5 236.2 270 3375 405 4725 540
T T ——— T ——— T — 47.03
VG -
VG-MCHW &
VG-MC --=-
. 23.52

1176

125 15 175 2 25 3 35 4
Size relative to max. live size (log)

(h) health

Figure 9: GC times for VG-MC, VG-MCHW, and VG relative to the b est GC time

Total GC time (seconds) (log) Total GC time (seconds) (log) Total GC time (seconds) (log)

Total GC time (seconds) (log)

Total size (MB) (log)
8

4 5 6 7 10 12 14 16 20 24 28 32
2 T T T T T T T T T T T 20.78
. VG e
> | VG-MCHW --a
S VL VG-MC --=-
7 .
2 \
° '
2 N
® 15 L) 15.59
S}
[
£
=4
& 13 1351
5
o
1]
x
o
<
5 11 11.43
F o105 1091
1l L . 1039
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
Total size (MB) (log)
11 138 165 192 22 275 33 385 44 55 66 7 8
2 — T T ——— T — 39.82
: A VG -
3 P i VG-MCHW -8
S | | VG-MC --=-
- L] X
17 i
[{1 i
e i
e i
) |
= "
T 15 u 29.87
® !
) N
£ N
= i
5 13 W v 25.88
3 e
5] LIS Yo
o NN -
o " g d XN
= “a- R ,
g 1 . X 21.90
| e B e
F 105 — y oSN 2091
Py . L . L . 1001
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(c) javac
Total size (MB) (log)
10 125 15 175 20 2! 30 35 40 50 60 70 0
2 T T T T T T T T T T T T 16.30
VG e
> - VG-MCHW --a
s} i X
< I | VG-MC --=-
| %
2 ! 1
8 ! i
2 . %
® 15 v i 1223
[i 4
. 2] i
g ~
= - \
=4 i)
& 13 . ' 10.60
5 5 |
o
g =g
© N,
< ™,
g 1 - 8.97
F o105 “me 856
P - . L 815
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(e) mtrt
Total size (MB) (log)
28 35 42 49 56 70 84 98 112 140 168 196 224
2 T T T T T T T T T T T T 6.16
\ | VG -
=) i VG-MCHW --a
S io VG-MC ~-=-
g :
2 .
i) i
1) i
= i
T 15 L 4212
[4
[} .\
£ 'n
c 13 A 36.50
E=] 3
5
=3
[
<
i
g 11 - 30.89
F 105 o ; - 29.48
L L L Weleeggoy. 28,08
1 125 15 175 2 25 3 35 4 5 6 7 8

Size relative to max. live size (log)

(9) pseudojbb

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total size (MB) (log)
105

131 158 184 21 262 315 36.8 42 52.5 63 735 84
T T T T T T T T T T T T 62.48
« VG -
= 50 i VG-MCHW -
< . ; VG-MC -~
B ‘ ;
g l |
2 | :
) i i
o i i
= L] |
® 15 ;- 46.86
[LI
9} |
£ i
=] '
c
8 13 W 40.61
=] N
3 >,
& LN
.g 11 S 34.36
= 105 = 32.80
1 L L L L L 31.24
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
Total size (MB) (log)
3 38 45 52 6 75 9 105 12 15 18 21 4
2 T T T T T T T T T T T 37.70
VG -
=) VG-MCHW &
g VG-MC --=-
P .
o i
Qo i
e |
<]
2 %
T 15 o x 28.28
° 4
> X
2 \
S 13 R 2451
E=]
5 d
3 \
£ E
B "
g 11 = 2074
S) -oX,
1.05 Sl ERTE SN 19.79
Py - . . P . b] : 18.85
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(d) mpegaudio
Total size (MB) (log)
45 56 68 79 9 112 135 158 18 225 27 315 36
2 T T T T T T T T T T T 22.76
= ;
8 i
?
9]
Qo
bS]
[
=
© 15 17.07
[
9]
£
c
8 13 14.79
5
o
9]
x
[
s
3 11 1252
= 105 1195
Py - . P . P . A PPN
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(f) jack
Total size (MB) (log)
67.5 84.4 101.2118.1 135 168.8 202.5 236.2 270 3375 405 472.5 540
15 — T ——— T —— T — 118.69
VG
S VG-MCHW --a
< VG-MC =~
?
(o
Qo
i)
L 13 g 102.87
= :
k<t
[
[}
£
c
E=]
3 %
L 11 N7 87.04
) \Y
k= 5./
B 105 i o tat 83.09
[o B @
o
B S S ro13
1 125 15 175 2 25 3 35 4 5 6 7 8

Size relative to max. live size (log)

(h) health

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Figure 10: Total execution times for VG-MC, VG-MCHW, and VG r elative to the best total execution time

the heap space better and performing less copying. Fuéaodins
for VG-MC typically take 20% more time (per byte copied) than
full collections for VG. However, VG-MC performs full coltgions
much less frequently, thus reducing the copying and GC @zath
considerably in small and moderate size heaps.

The performance of VG-MCHW is usually significantly worse
than VG-MC in tight heaps. In heaps larger than twice the max-
imum live size, it typically performs less than 10% worsed a
usually within a few percent of VG-MC. It does not outperform
VG-MC for a couple of reasons. First, the remembered set-over
head for the benchmarks we experimented with is smallertian
extra word overhead for VG-MCHW. Second, VG-MCHW suffers
from some locality effects because of the extra word addexhob
object in the old generation. VG-MCHW typically outperfam
VG in small and moderate size heaps. However, VG performs bet
ter than VG-MCHW fordb andhealth because of locality effects.

total execution times relative to the best execution timee Tor-
izontal axis in all graphs represents total space and is ritava
logarithmic scale. The vertical axis on the graphs reprssesi-
ative times and is also drawn to a logarithmic scale. We now de
scribe the performance of the three collectors for each ®kight
benchmarks.

javac: In heap sizes between 1.4-3 times the live size, VG-
MS performs slightly worse than VG-MC at a few points due to
slightly higher mutator (program, as opposed to collectiomes.
VG-MS performs 2-5% slower than VG-MC in heaps larger than
3.25 times the live size, due to slightly higher GC times amtiator
times. Mutator times for VG-MS are higher possibly because V
MC compacts the old generation data and hence achieves $@mhew
better locality (both collectors use an identical writeri@). MS is
significantly slower in heaps smaller than three times te dize,
and it eventually performs as well as VG-MS.

We also measured the performance of BG-MC, using a nursery db: In heaps larger than 1.5 times the live size, VG-MC is 5—

that occupied at most 20% of the heap space. However, we tlid no
present the results in this section. We found that BG-MCqrers
quite well when compared with VG-MC. For all benchmarks, ex-
ecution times with BG-MC were less than 10% worse than with
VG-MC at all heap sizes, and usually within a few percent of VG
MC while providing a bound on the nursery pause times.

4.8 Mark-Copy vs. Mark-Sweep

We now relate MC to mark-sweep collection. We compare the per
formance of a (non-generational) mark-sweep collector) it a
hybrid copying/mark-sweep generational collector (VGM8th
VG-MC. MS collectors can run in much smaller heaps than stan-
dard copying collectors. In the best case, to be able to ruma p
gram, MS requires space that is slightly more than the maximu
live size for a program. However, MS usually suffers from sate-
gree of fragmentation, and the amount of additional spageimred
depends on the degree of fragmentation. MC, on the other, hand
does not suffer from fragmentation. Like other copying eclbrs,

it avoids fragmentation by regularly copying and compagtine
data. However, MC does require space for copying and for neme
bered sets.

The MS collector we use for the comparison comes with the
Jikes RVM 2.2.2 release. The collector uses segregatediste¢o
manage the heap memory, with 51 different size classes éaatep
size class for every 4 bytes for the rarj§g63], every 8 bytes for the
range[64,127), every 16 bytes for rangld28 255, every 32 bytes
for the range256,511], every 256 bytes for the rangg12 2047,
and every 1024 bytes for the ran{04881972). The Jikes RVM
MS collector divides the entire heap into a pool of blocks;heaf
which can be assigned to a free list for any of the size clagses
object is allocated in the free list for the smallest sizesslthat
can accommodate it. After garbage collection, if a blockdpees
empty, it is returned to the free block pool. All objects larghan
8KB are handled by a large object allocator, which roundshjeat
sizes to whole pages(4KB).

The VG-MS collector we use is a two generation collector that
uses a variable size nursery. Nursery survivors are copital i
the old generation, which is managed using the MS colleater d
scribed above. VG-MS has a couple of advantages comparbd wit
MS. First, it exploits the generational hypothesis, fithgrout short
lived objects and performing much less allocation into M&csp
because of which it triggers many fewer full collectionsrthdsS.
Second, it uses bump pointer allocation in the nursery, whic
duces allocation cost significantly.

Figure 11 shows GC times relative to the best GC time for VG-
MC, VG-MS, and MS for the eight benchmarks. Figure 12 shows

10% faster than VG-MS. This happens even though the GC times
for VG-MC and VG-MS are approximately the same, which sug-
gests that VG-MC might be compacting and ordering objects in
manner that improves locality significantly, thus lowerimgitator
time. MS has the lowest GC time in heaps larger than five tifmes t
live size, but it performs 5-10% worse than VG-MC.

jess, jack, mpegaudio: Total execution times for VG-MS are
significantly higher than that for VG-MC in heaps smallentia5
times the live size, and about 1-3% higher than that for VG-MC
in heaps larger than 2.5 times the maximum live size.j&ss and
jack, the performance of MS is significantly worse than the genera
tional collectors at all heap sizes. Fopegaudio, the performance
of MS is consistently within 5% of the generational collestonly
in heaps larger than 3.5 times the live size.

mtrt: In heaps larger than 1.5 times the live size, VG-MS is 5%
slower than VG-MC due to higher GC times and mutator times.
MS performs significantly worse than both generationalexbrs
at all heap sizes.

pseudojbb: VG-MS performs 3-5% worse than VG-MC at most
heap sizes, again due to a combination of higher GC and nnutato
times. The performance of MS is worse than the generatiasial ¢
lectors at all heap sizes. Interestingly, MS has the low&sti@ie
in heaps larger than five times the live size. However, it i8%—
slower than VG-MC due to higher mutator times.

health: VG-MC suffers from large remembered set overheads
in small heaps making the curve noisy. It performs 5-10% w&ors
than VG-MS in some small heaps. However, in heaps larger than
2.5 times the live size, VG-MC performs 5% better than VG-MS.
MS has the lowest GC time of all three collectors in heapselarg
than 4.5 times the live size, but, it has the highest executies.

Summary: VG-MC can run in space that is comparable to the
minimum required by VG-MS. MS usually has a higher fragmen-
tation overhead than VG-MS and thus requires somewhatrlarge
heaps to be able to run successfully. Both VG-MC and VG-MS
run significantly faster than MS for most benchmarks in sraad
moderate size heaps, affirming the generational hypothé&gie
GC times for VG-MC are slightly lower or about the same as¢hos
for VG-MS. However, fojavac, mtrt, pseudojbb, andhealth the
total execution times for VG-MS are up to 5% higher than those
for VG-MC. For db, execution times are 5-10% higher. Since
both collectors use an identical write barrier, our guegtas this
performance improvement happens because data in the addagen
tion is compacted by VG-MC, because of which it achievesabett
cache locality and/or TLB performance. Heealth, VG-MC suf-
fers from somewhat large remembered sets, which makesrits pe
formance worse than that of VG-MS in small heaps.

Total size (MB) (log)
8 1 14

Total size (MB) (log)

6 7 0 12 16 20 24 28 32 131 158 184 21 262 315 368 42 52.5 63 735 84
T T T T T T T T T T 93.60 T T T T T T T T T T 48.92
MS s
VG-MS =

VG-MC --=- 74680

2
2

o
8

e
5

®

GC time relative to best (log)
N

24.46

Total GC time (seconds) (log)

@
8

"
3

©

GC time relative to best (log)
a

’a ~
2340 2 55
: = 12.23
) D
1170 € 2
=}
9 2 6.12
0 [
-~ =
° =]
£ T“j 3.06
202 °
B g™ o E
B st = 153
e 16 £ 5]
N ° o
[N
0.76
o
P . . . P . M i A 038
15 175 2 25 3 35 4 5 6 7 8 125 15 175 2 25 3 35 4 6 7 8
Size relative to max. live size (log) Size relative to max. live size (log)
(a)jess (b)db
Total size (MB) (log) Total size (MB) (log)
165 192 22 2715 33 385 44 55 66 7 8 38 5.2 6 75 9 105 12 15 18 21 4
—— T ——— T T 11078 T — T ——— — 17.37
MS - . MS -
" VG-MS = Y VG-MS &
L VG-MC --=- 64 ' VG-MC --=- 1 8569
' 5539 W N
5 g g P
“! X = s @ LR 434
2169 8 a \ .
S o
g Q2 16 n 217
2t 13.85 % _:’2:
ht 8 g % 8 1.09
. 6.92 8 E
B = =4 v
ama 8 1%} \
2 o
2 P
. L . L Py . L . .
125 15 175 2 25 3 35 4 5 6 7 8 1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log) Size relative to max. live size (log)
(c) javac (d) mpegaudio
Total size (MB) (log) Total size (MB) (log)
125 15 175 20 25 30 35 40 50 60 70 80 45 56 6.8 112 135 158 18 225 27 315 36
T T T T T T T T T T T 47.69 64 T T T T T T T T T T 42.42
MS - MS -
VG-MS =& VG-MS &
VG-MC --=- 42384 VG-MC --=- n2

@
N

11.92

©
N

10.60

,A

5

-
o
a

-
5

©

N

GC time relative to best (log)
-

Total GC time (seconds) (log)
GC time relative to best (log)
@

@
8

=
5

®

GC time relative to best (log)
A

2
g e R TS S, -
. P . M, SRS D P - . M . M 066
125 15 175 2 25 3 35 4 5 6 7 8 1 125 15 175 2 25 3 35 4 7 8
Size relative to max. live size (log) Size relative to max. live size (log)
(e) mtrt (f) jack
Total size (MB) (log) Total size (MB) (log)
35 42 49 56 70 84 98 112 140 168 196 224 67.5 84.4 101.2 118.1 135 168.8 202.5 236.2 270 3375 405 4725 540
7511 32 8.43
MS - MS -
" VG-MS = VG-MS =
VG-MC =~ 43755 VG-MC --=-
= —~ 16 24.21
j=2}
S g
1878 =
3 =
g 4
S 2 5 1211
939 @ =]
a & g
N Py =1
> 8 X\ 469 E %
- a = L4 6.05
N eox (6] @
e me X o £
235 = = N .
g Q Ame ™ .
2 o, S 303
117 V\‘,
. L . L . L Mg P . M . M VA
125 15 175 2 25 3 35 4 5 6 7 8 1 125 15 175 2 25 3 35 4 5 6 7 8

Total GC time (seconds) (log) Total GC time (seconds) (log)

Total GC time (seconds) (log)

Size relative to max. live size (log)

(9) pseudojbb

Figure 11: GC times for VG-MC, VG-MS, and MS relative to the best GC time

Size relative to max. live size (log)

(h) health

Total execution time relative to best (log) Total execution time relative to best (log) Total execution time relative to best (log)

Total execution time relative to best (log)

Total size (MB) (log)
8

4 5 6 7 10 12 14 16 20 24 28 32
4 T T T T T T, T T T T T T 41.56
MS -
VG-MS =&
VG-MC --»-
a
.
" o x
2 3 - 20.78
\ x,
15 B 15.59
13 .- 1351
11 G 1143
B R —— TR s g g] 0%
1 125 15 175 2 25 3 35 4 5 6 7
Size relative to max. live size (log)
(a)jess
Total size (MB) (log)
11 138 165 192 22 275 33 385 44 55 66 7 8
2 — T T T ——— T — 39.82
: ! MS -
i i VG-MS -8
”\. 4 VG-MC --=-
va
u
15 u 20.87
\a
13 A 25.88
L3 <
XX,
11 S— 21.90
. am
1.05 =8 20.91
Py . L . L 1001
1 125 15 175 2 25 3 35 4 8
Size relative to max. live size (log)
(c) javac
Total size (MB) (log)
10 125 15 175 20 25 30 35 40 50 60 70 0
2 T T T T T T T T T T 16.30
? MS -
. VG-MS o
| VG-MC --=-
15 . 1223
13 10.60
P
8 o
11 8.97
1.05 8.56
1 L 8.15
1 8
Size relative to max. live size (log)
(e) mtrt
Total size (MB) (log)
28 35 42 49 56 70 84 98 112 140 168 196 224
2 ——— T ——— T — 6.1
i MS -
i VG-MS =
H VG-MC --=-
Lo
X
15 b 4y 42.12
"
W
13 L > 36.50
W o N
\
w
11 L 30.89
1.05] 29.48
Py . P i 2508
1 125 15 175 2 25 3 35 4 5 6 7 8

Size relative to max. live size (log)

(9) pseudojbb

Total execution time (seconds) (log) Total execution time (seconds) (log) Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total execution time relative to best (log) Total execution time relative to best (log) Total execution time relative to best (log)

Total execution time relative to best (log)

11
1.05

11
1.05

11
1.05

Total size (MB) (log)

105 131 158 184 21 262 315 36.8 42 52.5 63 735 84
T T T T T T T T T T T T 2.48
46.86
40.61
3436
5y 32.80
. . P B T o 3124
1 125 15 175 2 25 3 35 4 5 8
Size relative to max. live size (log)
Total size (MB) (log)
3 38 4. 52 6 75 9 105 12 15 18 21 4
T T —— T —— T — 37.70
MS -
VG-MS =
% VG-MC --=-
28.28
2451
20.74
S 19.79
N e ——
. . P g ggge g U g 00
1 125 15 175 2 25 3 35 4 5 6 7 8
Size relative to max. live size (log)
(d) mpegaudio
Total size (MB) (log)
45 56 6.8 9 9 112 135 158 18 225 27 315 36
T T T T T T T T T T T T 5.52
\ MS -
\ VG-MS &
VG-MC --»-
& 2276
17.07
- 14.79
a
12.52
x # 11.95
. . P . F— A il S5 i+
1 125 15 175 2 25 3 35 4 5 6 7
Size relative to max. live size (log)
(f) jack
Total size (MB) (log)
67.5 84.4 101.2118.1 135 168.8 202.5 236.2 270 3375 405 472.5 540
T T T T T T T T T T T T 158.42
MS -
VG-MS =
VG-MC --=-
118.81
102.97
“*"x"x*x.*rx»x—x;\
A & 87.13
D//D\DD,—‘DDD”DDH 83.17
. - FRSSRIS N e S, SRS Y
1 125 15 175 2 25 3 35 4 5 6 7 8

Size relative to max. live size (log)

(h) health

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Total execution time (seconds) (log)

Figure 12: Total execution times for VG-MC, VG-MS, and MS relative to the best total execution time

MCl ——
MCIC
VG-MC -

0.8 -

0.6 -

0.4

Bounded Mutator Utilization (BMU)

02+

L L
100000 1e+06 1e+07

Window Size (useconds) (log)

(a)javac 22MB

0
10000

MCl ——
MCIC
VG-MC -~

Bounded Mutator Utilization (BMU)

L L L
100000 1e+06 1e+07

Window Size (useconds) (log)

(b) javac 33MB

0
10000

Figure 13: BMU curves for javac

5. PAUSE TIME

We now look at the pause time characteristics of MC. We camsid
more than just the maximum pause times that occurred, sheset
do not indicate how the collection pauses are distributest tve
running of the program. For example, a collector might cause-
ries of short pauses whose effect is similar to a long paukehwv
cannot be detected by looking only at the maximum pause time o
the collector. Instead, we look at theutator utilizationcurves for
the collectors, following the methodology of Cheng and Bieh
[7]. They define theutilization for any time window to be the frac-
tion of the time that the mutator (the program, as opposedhao t
collector) executes within the window. The minimum utitios
across all windows of the same size is calledrttirimum mutator
utilization (MMU) for that window size. An interesting property of
this definition is that a larger window can actually hdower uti-
lization than a smaller one. To avoid this, we extend the difin

of MMU to what we call thebounded minimum mutator utilization
(BMU). The BMU for a given window size is the minimum mutator
utilization for all windows of that sizer greater.

Figure 13 shows BMU curves fgavac for heap sizes equal to
two and three times the maximum live size (22MB, 33MB). The x-
intercept of the curves indicates the maximum pause tincbttz
asymptotic y-value indicates the fraction of the total tinsed for
mutator execution (average utilization). The three cuinesach
graph are for VG-MC, MCIC, and a speculative fully incremen-
tal MC collector (MCI). Since it is difficult to factor out therite
barrier cost, the VG-MC curve actually represents utilzatin-
clusive of the write barrier. The real mutator utilizatiorillvbe a
little lower. For MCIC, however, we factor in the additionabst
of the complex write barrier by apportioning the additionmaltator
time (difference between mutator time for MCIC and VG-MC) to
the GC time. This does assume that the write barrier oveshae
spread uniformly over the execution.

To predict the performance of MCI, we take each mark pause for
MCIC and distribute it equally among the copy pauses prigh&
mark. We charge the mark an additional 20% before we dig&ibu
it. A real collector with an incremental mark would probalulg
worse. This is because the amount of live data found by aatolie
with an incremental mark is usually larger than the amounhéb
by a collector with a non-incremental mark. However, theveur
does give an idea of the expected collector performance.

VG-MC has the highest y-intercept value, since it has the bes

overall mutator utilization, but it also has the largestiercept
value since it performs non-incremental marking and capyirhe
slope of the curve is also steep, showing that for windowsmath
larger than the maximum pause time, the utilization is highe
x-intercept for MCIC is much smaller, because of the increme
tality of copying, but this incrementality also lowers theecall
throughput (asymptotic y-value). MCIC is about 5% slowearth
VG-MC. The speculative MCI collector has a maximum pausetim
of around 150ms. It allows a minimum utilization of about 2536

a window slightly larger than the maximum pause time. Thea-ove
all utilization (asymptotic y-value) for the MCI collectas only
slightly lower than that for MCIC. In practice, we expect tthié
ference to be somewhat larger. These results show that the MC
collector can be made completely incremental while stitbating
good throughput. With more tuning we expect to get lower paus
than the values we show here.

6. OTHER RELATED WORK

In the introduction we discussed copying collectors mosatly
related to our work. We now consider other similar copyinghte
nigues.

Lang and Dupont [11] describe a collector that performsancr
mental compaction in a heap managed by a mark-sweep collec-
tor. Ben-Yitzhak et al. [4] propose a collector similar torigaand
Dupont’s, but that is also parallel. Lang and Dupont divideheap
into equal size segments. At each collection, the collectarks
the entire heap, and then compacts one segment. Thus the col-
lector is primarily mark-sweep, but the compaction helpsver-
coming fragmentation. MC is primarily a copying collectand
its incremental copying (whether batched or distributedrdime)
reduces copy reserve overhead. For a heap consistimgsefy-
ments, the Lang and Dupont collector performiull heap marks
in order to compact each segment once. MC occasionally mesfo
onefull heap mark, but then compacts the entire heap with no fur-
ther marking. Further, MC can compact multiple segmentsni@ o
pass, thus minimizing the number of passes required to compa
the heap. MC does have a remembered set overhead that the Lang
and Dupont collector does not have.

The MCI collector is similar to the Mature Object Space (MOS,
or Train) collector [8]. MOS divides the old generation irgqual
sized windows calledars In MOS, cars bound the amount of
copying performed in each collection. The difference bem#&OS

and MCl is in the manner in which they provide completeness. F
MCI, the full heap mark ensures completeness. MOS grous car
into logical units calledrains, and performs copying in a manner
that moves any large cycle of garbage into a single trainclwhi
can then be reclaimed in its entirety. Our experiments witB3/
(not detailed here) indicate that it tends to copy a largelarhof
unreachable data before the data is moved to a separateatradin
reclaimed. We expect that the full heap mark performed by MCI
operates with significantly reduced overhead. Detailedpzotaon
of MCI with MOS is beyond the scope of this paper.

One might also compare MC with mark-sweep-compact (MSC),
using compaction of the entire old generation. This diffieesn
the Lang and Dupont collector in that it compacts the entaaph
and differs from MC in that it uses sliding compaction rattiean
copying. MSC has a space advantage over MC, namely the one
window copy reserve space plus the old generation remembere
sets of MC. However, MSC is more difficult to implement, and
inherently makes more passes over the compacted objectss, Th
we expect MSC to run substantially slower than MC, even giteen
(modest) space advantage.

7. CONCLUSIONS

We have presented a new style of copying collector, MC, tigat s
nificantly reduces space requirements compared to stacdasd

ing collectors. We showed that MC collectors can run in space
that is as small as 1.12—1.25 times the maximum live size oba p
gram, while standard copying collectors usually require tines
the maximum live size. This increases the range of apptinatihat
can use copying garbage collection. We have shown that MC col
lectors outperform generational copying collectors inacgized
heaps; they do so by significantly reducing the amount of icgpy
Overall performance with MC is significantly better in tigheaps,
and is typically around 5-10% better in moderate size hedyss.

(31
(4]

(5]

(6]

(8]

El

[20]

(11]

compared MC against a mark-sweep (MS) collector and a hybrid [12]

copying/mark-sweep generational collector (VG-MS); wevsad

that MC can run in heaps that are comparable in size to the min-
imum for MS and VG-MS. For most benchmarks, MC is signifi-
cantly faster than MS in small and moderate size heaps. Wiman ¢
pared with VG-MS, MC improves total execution time by abdit 5
for some benchmarks. The improvements are caused both ley low
GC times and by better locality. We also described partiatid
fully incremental versions of MC, which better bound pauiseet

and offer improved mutator utilization for shorter time k=

8. ACKNOWLEDGMENTS

We thank Rick Hudson for the initial idea that sparked thekwor
for this paper. We also thank IBM Research for providing ughwi
Jikes RVM, and Steve Blackburn and Perry Cheng for writirgy th
JMTk garbage collection toolkit. Thanks to Kathryn McKinle
and Emery Berger for helpful discussions and comments, and t
Chris Hoffmann for providing us with the pseudo-adaptiveteyn

in Jikes RVM. We thank the anonymous reviewers for their many
suggestions for improving the paper.

9. REFERENCES

[1] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek lhég,
Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel,
Janice C. Sheperd, and Mark Mergen. Implementing Jalajrefio
Java. In OOPSLA '99 [13], pages 314-324.

Bowen Alpern, Dick Attanasio, John J. Barton, M. G. Burke

P. Cheng, J.-D. Choi, Anthony Cocchi, Stephen J. Fink, David
Grove, Michael Hind, Susan Flynn Hummel, D. Lieber, V. Litov,
Mark Mergen, Ton Ngo, J. R. Russell, Vivek Sarkar, Manuel J.

(2]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Serrano, Janice Shepherd, S. Smith, V. C. Sreedhar, Hv&sam,
and J. Whaley. The Jalapefio virtual machiM System Journal
39(1), February 2000.

Andrew W. Appel. Simple generational garbage collectamnd fast
allocation.Software Practice and ExperiencE9(2):171-183, 1989.
Ori Ben-Yitzhak, Irit Goft, Elliot Kolodner, Kean Kuipeand Victor
Leikehman. An algorithm for parallel incremental compawtiln
ISMM '02 [10], pages 100-105.

Stephen M. Blackburn, Richard Jones, Kathryn S. McKinsnd

J. Eliot B. Moss. Beltway: Getting around garbage collgttio
gridlock. InProceedings of SIGPLAN 2002 Conference on
Programming Languages Design and ImplementataGM
SIGPLAN Notices, pages 153-164, Berlin, June 2002. ACM$res
Stephen M. Blackburn and Kathryn S. McKinley. In or out®tihg
write barriers in their place. In ISMM '02 [10], pages 175418
Perry Cheng and Guy Blelloch. A parallel, real-time gegb
collector. InProceedings of SIGPLAN 2001 Conference on
Programming Languages Design and Implementata@M
SIGPLAN Notices, pages 125-136, Snowbird, Utah, June 2001.
ACM Press.

Richard L. Hudson and J. Eliot B. Moss. Incremental ggeba
collection for mature objects. In Yves Bekkers and Jacque®a,
editors,Proceedings of International Workshop on Memory
Managementvolume 637 olLecture Notes in Computer Science
pages 388-403, University of Massachusetts, USA,

16-18 September 1992. Springer-Verlag.

Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and
Christopher F. Weight. A language-independent garbadeatot
toolkit. Technical Report COINS 91-47, University of Maskasetts
at Amherst, Department of Computer and Information Science
September 1991.

ISMM’02 Proceedings of the Third International Symposium o
Memory ManagemenACM SIGPLAN Notices, Berlin, June 2002.
ACM Press.

Bernard Lang and Francis Dupont. Incremental increaibn
compacting garbage collection. 8iGPLAN’87 Symposium on
Interpreters and Interpretive Technique®lume 22(7) ofACM
SIGPLAN Noticespages 253—-263. ACM Press, 1987.

Henry Lieberman and Carl E. Hewitt. A real-time garbagdector
based on the lifetimes of objectSommunications of the ACM
26(6):419-429, 1983. Also report TM—184, Laboratory for
Computer Science, MIT, Cambridge, MA, July 1980 and Al Lab
Memo 569, 1981.

OOPSLA'99 ACM Conference on Object-Oriented Systems,
Languages, and Applicationsolume 34(10) oACM SIGPLAN
Notices Denver, CO, October 1999. ACM Press.

Anne Rogers, Martin C. Carlisle, John H. Reppy, and isadr
Hendren. Supporting dynamic data structures on distribatemory
machinesACM Transactions on Programming Languages and
Systems (TOPLAS)7(2):233-263, March 1995.

Standard Performance Evaluation Corporati®RECjvm98
Documentationrelease 1.03 edition, March 1999.

Standard Performance Evaluation Corporati®RECjbb2000 (Java
Business Benchmark) Documentatioglease 1.01 edition, 2001.
Darko StefanovicProperties of Age-Based Automatic Memory
Reclamation AlgorithmsPh.d. thesis, University of Massachusetts,
Department of Computer Science, Amherst, MA, 1999.

Darko Stefanovi¢, Matthew Hertz, Stephen M. Blackhur

Kathryn S. McKinley, and J. Eliot B. Moss. Older-first garbag
collection in practice: Evaluation in a Java virtual maehim
Proceedings of the ACM SIGPLAN Workshop on Memory System
Performance (MSP 2002Berlin, Germany, June 2002.

Darko Stefanovi¢, Kathryn S. McKinley, and J. Eliot Boss.
Age-based garbage collection. In OOPSLA '99 [13], pages-330Q.
David M. Ungar. Generation scavenging: A non-disrupthigh
performance storage reclamation algoritth@M SIGPLAN
Notices 19(5):157-167, April 1984. Also published as ACM
Software Engineering Notes 9, 3 (May 1984) — Proceedingbef t
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, 157-167il Ap
1984.

