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ABSTRACT
Copying garbage collectors have a number of advantages overnon-
copying collectors, including cheap allocation and avoiding frag-
mentation. However, in order to provide completeness (the guar-
antee to reclaim each garbage object eventually), standardcopying
collectors require space equal to twice the size of the maximum
live data for a program. We present amark-copycollection algo-
rithm (MC) that extends generational copying collection and sig-
nificantly reduces the heap space required to run a program. MC
reduces space overhead by 75–85% compared with standard copy-
ing garbage collectors, increasing the range of applications that can
use copying garbage collection. We show that when MC is given
the same amount of space as a generational copying collector, it
improves total execution time of Java benchmarks significantly in
tight heaps, and by 5–10% in moderate size heaps. We also com-
pare the performance of MC with a (non-generational) mark-sweep
collector and a hybrid copying/mark-sweep generational collector.
We find that MC can run in heaps comparable in size to the min-
imum heap space required by mark-sweep. We also find that for
most benchmarks MC is significantly faster than mark-sweep in
small and moderate size heaps. When compared with the hybrid
collector, MC improves total execution time by about 5% for some
benchmarks, partly by increasing the speed of execution of the ap-
plication code.
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1. INTRODUCTION
Java is becoming increasingly popular as a programming language
because of the advantages that it provides, including safety, object
orientation, and portability. Garbage collection, which is an im-
portant feature of Java, relieves programmers from the burden of
explicitly freeing allocated memory, making applicationsmore re-
liable. However, garbage collection does have an overhead,which
can be significant especially when the amount of space available is
small.

Copying garbage collectors operate by occasionally scanning the
application heap (or portions of it) and copying the live (reachable)
objects found into a new area in the heap. Since copying collec-
tors always copy objects into contiguous regions, heaps managed
by copying collectors exhibit little fragmentation. Also,since free
space in the heap is contiguous, allocation is very cheap: itcan
be performed easily by incrementing a pointer across an unused
portion of the heap. Another advantage of copying collectors is
that they are relatively simple to implement. However, mostcopy-
ing collectors have a significant space overhead and cannot run in
heaps smaller than twice the maximum live data size of a program.

Among current copying collectors, generational collectors [12,
20] are the most widely used. Generational copying collectors di-
vide the heap into multiple regions calledgenerations. Generations
segregate objects in the heap by age. A two-generation copying
collector (2G) uses two regions, an allocation region called anurs-
ery, and a promotion region consisting of two semi-spaces called
theold generation. There are two common types of 2G collectors.
A fixed-size nursery collector(FG) maintains a constant size nurs-
ery, while avariable-size nursery collector, e.g., in the manner of
Appel [3] (VG), allows the nursery to consume up to half the avail-
able space in the heap. VG collectors usually perform betterthan
FG collectors, but at the expense of longer average pauses (periods
during which application program execution is suspended inorder
to perform garbage collection).

Figure 1 illustrates the functioning of a generational copying
collector. The collector triggers garbage collection every time the
nursery fills up (Figure 1(a)), and copies reachable nurseryobjects
into a semi-space of the old generation (Semispace 1 in the fig-
ure). When the old generation grows to occupy about half the space
available (Figure 1(b)), the collector copies reachable objects in the
old generation into the other (free) semi-space (Figure 1(c) and (d)).
Generational collection is based on the hypothesis that most objects
live a very short time, while a small percentage live much longer.
The short-lived objects are thus weeded out by frequent nursery
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Figure 1: Generational Copying Collection

collections and the space occupied by dead long-lived objects is
reclaimed by the less frequent older generation collections.

Since a generational copying collector requires an entire semi-
space as a region into which to copy survivors during old genera-
tion collections (full collections), heap occupancy can never exceed
half the heap space. It thus requires space equal to at least twice the
maximum live size of a program to be able to operate. Generational
copying collectors usually achieve good performance only at heap
sizes that are at least 2.5–3 times the maximum live size. This re-
striction can be quite significant for programs that have large live
sizes. Also, the space overhead usually rules out the use of gener-
ational copying collection for embedded systems, where thespace
available is very limited.

Recently, some schemes have been proposed that require less
space than generational copying collectors. The Older First (OF)
collector [19, 17, 18] exploits the fact that generational copying
collectors prematurely copy the very youngest objects in the nurs-
ery. It lays out objects in the heap in order of decreasing ageand
slides a fixed size window across the heap starting from the oldest
objects. At each collection, it copies reachable objects that are in
the window, and then slides the window towards younger objects.
Thus it usually avoids copying the youngest objects. When the win-
dow bumps into the allocation point (i.e., encounters the youngest
objects), it is reset to the oldest end of the heap. OF generally re-
duces the amount of copying and outperforms generational copying
collectors. Also, it requires additional space only equal to the size
of one collection window, not an entire semi-space. However, OF is
not complete: it will never reclaim cycles of garbage that are larger
than the collection window.

The Beltway collectors [5] include two configurations that per-
form significantly better than a generational copying collector. The
Beltway.X.X collector adds incrementality to the generational copy-
ing collector by dividing the generations (calledbelts) into fixed
size increments. It collects only one increment at a time, hence the
additional free space required at any time is equal to the increment
size. However, for any increment value below 100%, the collector

is not complete: it suffers from the same problem as OF. The Belt-
way.X.X.100 collector solves the completeness problem by adding
a third belt with a single increment, performing a full collection
when the third belt grows as large as half the heap space. Since
the Beltway collectors determine the amount of space reserved for
copying dynamically, the Beltway.X.X.100 collector does use more
than half the heap space. However, since the third belt cannot grow
to be larger than half the heap space, the Beltway.X.X.100 collector
has the same problem as the generational copying collector:in the
general case it cannot run in a heap smaller than twice the maxi-
mum live data size for a program.

Our mark-copy (MC) algorithm extends generational copying
collection, and allows control over the maximum size to which the
old generation can grow, while still providing completeness. By
removing the restriction on the usable fraction of the heap space,
MC can run in very tight heaps. By using the available space more
efficiently, MC can provide better execution times than other copy-
ing collectors. The efficient use of space makes MC very useful
for reducing memory requirements, and suitable even for Java ap-
plications on embedded systems (so long as they do not have real
time constraints). A fully incremental version of the MC algorithm
can meet real time constraints. We describe such a collectorin this
paper but leave its implementation and evaluation to futurework.
We have implemented, and here evaluate, non-incremental and par-
tially incremental versions of MC.

2. FIXED VS. BOUNDED NURSERIES
We first take a closer look at the space utilization of the FG collector
compared with the VG collector. VG triggers full collectionwhen
the heap is half full. Although it is usually unlikely that all objects
in the heap will survive (be reachable in the program), the collector
uses this trigger to ensure that there is always enough spaceto copy
surviving objects, even in the worst case. In contrast, while FG can
use up to half the space available in the heap, it usually doesnot. It
triggers a full collection when the heap occupancy exceeds(H=2)�
N whereH is the heap size andN is the nursery size. This is to
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Figure 2: Performance of an FG collector and a BG collector relative to the best performance forjavac

ensure that there is enough space to collect the old generation even
if all objects in the nursery survive collection. Thus, verysmall
nurseries allow better utilization of space but perform collection
more often. They also tend to have high survival rates (percentage
of bytes copied), because in smaller nurseries, the nurseryobjects
have not had as long to die. While larger nurseries have lower
survival rates, they do not utilize space as well. For example, an FG
collector with a nursery whose size is 10% of the total heap space
will generally trigger a full collection when the old generation size
grows to a little over 40% of the total space. This effective loss
of space can be quite significant when the collector is running in a
tight heap. Poor space utilization is one of the primary reasons for
the poor performance of FG in tight heaps, as compared to the VG
collector.

A simple modification of the FG collector demonstrates the ef-
fect that early triggering of full collections has on collector perfor-
mance. When the available space for FG drops below the nursery
size, instead of triggering a full collection, we reduce thenursery
size similarly to what VG does. We continue to run the collector
with progressively smaller nurseries until either the heapis half full
or the nursery size drops below a threshold. We call this abounded-
size nursery collector(BG). It differs from VG in that the nursery
size never exceeds a predefined bound. Figure 2 shows GC times
and execution times for both BG and FG relative to the best time
either collector achieves for thejavac benchmark (Table 1 details
our benchmark suite). We ran both collectors with nursery sizes
equal to 20% of the total heap space. The BG collector’s nurs-
ery lower bound was 512KB. The graphs show that by using the
available heap space better and performing fewer full collections,
BG can perform significantly better than FG in small and moderate
size heaps. At larger heap sizes, the performance of the two collec-
tors is similar since FG needs to perform very few full collections.
We implemented both BG and VG versions of MC, omitting an FG
version as not being worthwhile to consider.

3. MARK-COPY COLLECTION
We now describe MC collection in more detail. We first look at the
heap layout for MC and the collection algorithm. We then consider
the remembered set overhead and space utilization of MC. Next we
describe a variant of MC that eliminates the need for remembered
sets by using an extra header word per object. Finally we describe
how to make MC partially and fully incremental.

3.1 Heap Layout and Collection Procedure
MC extends generational copying collection. Like generational
copying collection, it can be implemented with a variable-size nurs-
ery (VG-MC), a bounded-size nursery (BG-MC), or a fixed-size
nursery (FG-MC). As previously noted, we do not consider FG-
MC here. While MC collection has no restriction on the numberof
generations, we consider only two generations.

MC divides the heap into two areas: a nursery, and an old gener-
ation that has two regions. The nursery is identical to a generational
collector’s nursery, but the old generation regions are broken down
into a number ofwindows. The windows are of equal size, and
each window corresponds to the smallest increment in the oldgen-
eration that can be collected. The windows are numbered from1
to n, with lower numbered windows collected before higher num-
bered windows. Given a heap of sizeH and an old generation with
n windows, the amount of copy reserve space required isH=n, and
the old generation can grow to sizeH�H=n.

MC performs all allocation in the nursery, and promotes sur-
vivors of nursery collection into the old generation. Like agenera-
tional copying collector, MC uses a write barrier to record pointer
stores that point from the old generation into the nursery. This
is done to avoid having to scan the entire heap to find nursery
survivors. After each nursery collection, the collector checks the
amount of free space remaining in the heap. If it finds that free
space in the heap has dropped to the size of a single window (a lit-
tle more than that in practice), it invokes a full collection. As the
first step in the full collection, the collector performs a full heap
mark starting from the roots (stack(s), statics). While themark-
ing is in progress, the collector calculates the total volume of live
objects in each old generation window. At the same time, it con-
structs remembered sets for each of these windows. These remem-
bered sets are unidirectional: they record slots in higher numbered
windows that point to objects in lower numbered windows. The
point is to record pointers whose target may be copied beforethe
source, a condition that requires updating the source pointer when
the collector copies the target object. At the end of the markphase,
the collector knows the exact amount of live data in each window.
It has also constructed a remembered set for each window. The
remembered set entries for each window have the following prop-
erties: they are live (not an overestimate of the live set); they are
current (i.e., they really point into the window); and they are unique
(i.e., the remembered set does not contain any duplicates).
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Once the old generation mark phase is complete, the collector
performs the copy phase. The copy phase is broken down into a
number ofpasses, each pass copying a subset of the windows in
the old generation. The collector has the option either of copying
the old generation windows one after the other without performing
any allocation in between, or of interleaving copying with nurs-
ery allocation. We focus on the first technique here, as our goal
is increased throughput and not lower pause times, and discuss the
incremental possibilities in Section 3.4. Since the collector knows
the exact volume of live data in each old generation window and
also the total free space available in the heap, it may collect multi-
ple windows in a single pass. However, since the remembered sets
are unidirectional, the windows must be collected strictlyin order
of window number, and not in any arbitrary order. One way to
overcome this restriction is to build bidirectional remembered sets,
which store pointers into each window from objects in all other
windows. However, this would increase the space overhead ofthe
remembered sets and complicate their management. We do not sup-
port bidirectional remembered sets in our current implementation.

Figure 3 shows the virtual memory layout of the collector per-
forming copying in a heap whose old generation regions are di-
vided into nine windows each. Since each old generation region
is divided into nine windows, the old generation can occupy up to
90% of the total heap space. Before copying commences, the nine
windows in the low region are all full and the heap has enough
free space for a single window in the high region (Figure 3(a)). In
this particular case, we assume that the amount of live data in each
low region window is exactly 50%. The first copy pass scans live
objects in the first two windows in the low region and copies them
into the first window of the high region. The roots for the collection
are the stack(s), statics, and remembered set slots. When copying
is complete, the total amount of mapped virtual memory equals the

total heap space. At this point, the space consumed by the first
two windows in the low region is released (unmapped), as shown
in Figure 3(b). This means that the mapped space after the comple-
tion of one copying pass is 80% of the maximum total heap space.
This now allows objects from four windows in the low region to
be copied in the next pass. Finally in the third pass, the objects
from the last three windows are copied, leaving the heap as shown
in Figure 3(c).

Figure 4 shows a detailed example of a full collection using MC.
For this example we assume that all objects allocated in the heap
have the same size, and that the heap can accommodate at most 10
objects. The heap consists of an old generation with 4 windows.
Each of these windows can hold exactly 2 objects. R1 and R2 are
root pointers. Figure 4(a) shows a nursery collection, which re-
sults in objects G and H being copied into the old generation.G
is copied because it is reachable from a root, and H is copied be-
cause it is reachable from an object (E) in the old generation. At
this point, the old generation is full (Figure 4(b)). MC firstper-
forms a full heap mark and finds objects B, C, D, and G to be live.
During the mark phase it builds a unidirectional rememberedset
for each window. After the mark phase (Figure 4(c)), the remem-
bered set for the first window contains a single entry (D!B). All
other remembered sets are empty, since there are no pointersinto
the windows from live objects in higher numbered windows. (If
we used bidirectional remembered sets, the second window would
contain an entry to record the pointer from B to D.) In the firstcopy
pass, there is enough space to copy two objects. Since the first win-
dow contains one live object (B) and the second window contains
two live objects (C, D), only the first window can be processedin
this pass. MC copies B to a high region window and then unmaps
the space occupied by the first window (Figure 4(d)). It also adds a
remembered set entry to the second window, to record the pointer
from B to D (since B is now in a higher numbered window than
D, and B needs to be updated when D is moved). The old genera-
tion now contains enough free space to copy 3 objects. In the next
copying pass, MC copies the other 3 live objects and then frees up
the space occupied by windows 2, 3, and 4 (Figure 4(e)).

The mark phase of the MC collector serves two purposes:� By calculating the free space in each window, the mark phase
minimizes the number of passes the copy phase needs to
make in order to copy all the data. For example, for an old
generation with nine windows and an overall survival rate
of 10%, MC needs only one copying pass. This is because
the copy reserve of 10% is enough to accommodate all the
collection survivors. However, in the worst case, when the
survival rate is over 90%, it will need nine passes to copy the
data. One should, however, note that for survival rates over
50% a standard copying collector would not even be able to
run the program in this space.� By building remembered sets, the mark phase ensures that
the copy phase needs to perform only a single scan over the
old generation objects in spite of having to perform the copy-
ing in multiple passes.

From the above description, we can see that the amount of space
reserved for copying can be made extremely small by increasing
the number of old generation windows. However, the minimum
copy reserve space needs to be at least as large as the largestobject
allocated in the heap. By allowing control over the copy reserve,
the collector is able to run in very tight heaps. It also makesthe
memory footprint of the collector much more predictable than that
of a typical copying collector. For a heap of sizeH, the footprint of
a generational copying collector varies betweenH=2 andH, i.e., by
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a factor of 2. However, given an old generation that hasn windows,
the footprint of the MC collector varies betweenH�H=n andH,
a factor ofn=(n�1). Since we can control the value ofn, we can
minimize the variation (subject to the maximum object size).

Also, MC defers full collections until the free space drops down
to one window. Standard copying collectors perform full collec-
tions when the heap becomes half full. Hence, when MC and other
copying collectors are given the same amount of space, MC will
perform many fewer full collections. This decreased full collec-
tion frequency gives objects in the old generation a longer time to
die, resulting in much less copying than regular copying collection.
Another way to think of this is that MC increases theeffectiveheap
size.

MC collectors do have some disadvantages compared with gen-
erational copying collectors. Each full collection for MC will scan
every live object in the heap twice, once while marking and once
while copying. The mark phase requires additional space fora
mark stack and there is a copying remembered set overhead. Also,
for an old generation consisting ofn windows, up ton passes (but

generally many fewer) over the stacks and statics may be required.
This could be significant if there are a large number of threads or
the thread stacks are very deep. This overhead could be reduced by
storing these slots in the remembered sets during the mark phase.
However, doing so would require additional space. While we do
not offer details here, we found that scanning stacks and statics did
not make a large contribution to GC time for our benchmark suite.

3.2 Remembered Sets
The MC collector builds remembered sets at two different points
during program execution. While the mutator is running, thewrite
barrier inserts slots into the nursery remembered set. Thisis identi-
cal to what a generational copying collector does and occupies the
same amount of space. During the mark phase of a full collection,
MC constructs unidirectional remembered sets to record pointers
between windows in the old generation. These remembered sets
are not required by a generational copying collector and arean ad-
ditional space overhead for MC. However, the nursery and oldgen-
eration remembered sets do not co-exist in a non-incremental MC
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Figure 5: Effect of the number of old generation windows on the space usage of MC forjavac

collector, since MC performs old generation marking only after a
nursery collection completes. We look at the overhead of oldgen-
eration remembered sets here.

Normally we would expect the remembered set space overhead
to increase as the number of old generation windows increases.
This does not necessarily happen, for a couple of reasons. First,
the set size depends on the locations of the objects in the oldgen-
eration, i.e., if objects that reference each other lie close together
in the old generation, then increasing the number of windowswill
not have a significant impact. Second, an increase in the number
of windows increases the amount of usable space in the heap. This
in turn changes the points at which collection occurs, and hence
the amount of live data in the heap during full collection. Since
the remembered set entries are accurate and depend on the amount
of live data in the heap, a change in the volume of live data could
reduce the remembered set size.

Figure 5(a) shows the variation in the maximum overall remem-
bered set size as one varies the number of windows, for heap sizes
which are 1.2, 3, and 5 times the maximum live size (13MB, 33MB,
55MB), for javac. The horizontal axis represents the number of
windows and is drawn to a logarithmic scale. We look at the re-
membered set sizes for an old generation with number of windows
ranging from 5 to 100. Although we do not use more than 20 win-
dows in the old generation with the non-incremental collector, it is
important to see what the remembered set overhead is with a large
number of windows, since an incremental collector might need to
use 100 or more windows to ensure a low pause time.

The remembered set sizes drop initially in the smaller heaps,
and then generally increase as the number of windows is increased.
The size in the smallest heap is about 1.35MB with 7 windows and
about 1.57MB with 100 windows. The size in the largest heap is
about five times larger with 100 windows than with 5. However,if
we look at the remembered set size as a fraction of the total heap
space, it is not very large even when we use 100 windows (12% in
the smallest heap and 2.6% in the largest heap).

Figure 5(b) shows the space utilization for MC as we increase
the number of old generation windows. We calculate the space
utilization for a given number of windowsn using the formula(H�(H=n)�R)=H, whereH is the heap size,H=n is the copy reserve
size, andR is the maximum remembered set size. For all heap sizes,
we obtain significant gains in space utilization until the number of
old generation windows grows to about 40. This is because the

copy reserve is reduced by a larger amount than the corresponding
increase in remembered set size. Increasing the number of windows
beyond 50 causes the space utilization to improve slightly or even
to deteriorate a little.

3.3 MC without Remembered Sets
Although the remembered set overhead for MC is not usually very
high, in the worst case remembered sets could grow to be as large
as the heap. We describe in this section a variant of MC that uses
an extra header word per object in the old generation (MCHW),
eliminating the need for remembered sets and thus bounding the
worst case space utilization. However, unlike MC, MCHW can be
used only as a non-incremental collector.

The heap layout for MCHW is identical to the layout for MC.
MCHW performs allocation in the nursery and promotes survivors
to the old generation. MCHW adds an extra header word to each
object that is copied into the old generation. When the free space
in the heap drops down to the size of a single window, it invokes a
full collection. Like MC, MCHW performs a full collection intwo
phases.

During the mark phase, MCHW marks all objects reachable from
roots. While performing the marking, it maintains alive offset ar-
ray that stores the sum of the sizes of the live objects found so far in
each window. It also maintains a bitmap that indicates the locations
of the live objects. While marking a reachable object, the collector
computes alogical addressfor the object. The logical address is a
combination of the window to which the object belongs and thelive
offset of the object within the window. The logical address is stored
in the extra header word reserved for the object and it indicates the
location to which the object will be copied in the next phase.Every
time a slot referencing the object is found, the contents of the slot
are replaced with the logical address of the object. Figure 6shows
the logical address layout used for MCHW. The lowest bit is set to
1 to indicate that the value stored is a logical address. (Objects are
word aligned and the machine is byte addressed, so ordinary object
pointers always have zeroes in the two low order bits.) The middle
bits store the live offset, and the high order bits store the window
number.

Once the mark phase is complete, the live offset array contains
the sum of sizes of the live objects in each window. The collec-
tor now calculates a cumulative live offset (CLO), which foreach
window is the sum of the offsets of all preceding windows. Using
this information, the new address for any heap object is calculated
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Figure 6: Logical address layout for MCHW

using the logical address (LA) of the object and the start address of
the copy space (CSA) using the formula:

CSA+CLO[Window(LA)]+LiveOffset(LA)

The MCHW collector requires that the entire copy space be con-
tiguous (in virtual memory). Otherwise it will need to perform an
extra pass over the live objects to determine the correct cumulative
live offset (since objects may span two windows). Once the offsets
are calculated, the collector starts the copy phase. It firstscans the
roots and updates pointers into the heap using the above formula. It
then scans the bitmap, processing one window at a time. For each
live object in the window being processed, it updates any pointers
that the object contains using the above formula, and then copies
the object to the to-space location computed from its logical ad-
dress. After processing all live objects in a window, it unmaps the
space occupied by the window and then processes the next. The
copy phase terminates when all windows have been processed.

As can be seen from the description, MCHW does bound the
worst case space utilization. It requires one additional word per
object plus space for a bitmap. The size of the bitmap is approx-
imately 3% of the heap space when objects are word aligned (one
bit per 32-bit word). However, since it adds an extra word to each
object, the layout of the old generation is not as compact as that for
MC, which could cause negative locality effects and also reduce the
effective heap size.

3.4 Incremental Collection
Until now we have dealt only with batched collection of windows in
the old generation. Although the collector performs the copying in
increments, it performs multiple passes one after the otheruntil all
the copying is finished. This scheme is meant to optimize through-
put and does not necessarily give good maximum pause times. The
maximum pause time is typically close to that of the generational
copying collectors. A fully incremental version of BG-MC trades
some loss in throughput for reduced maximum pause times. We
now describe how we can construct a fully incremental version,
MCI, of the BG-MC collector, describing a partially incremental
version along the way.

BG-MC consists of three different collection phases: nursery
collection, old generation marking, and old generation copying. In
order to make the collector fully incremental, we need to bound
the amount of copying and marking work done in each phase. The
amount of copying performed during nursery collection is bounded
because the size of the nursery is bounded. The copying and mark-
ing work done in the other two phases can also be bounded. We
first describe how the collector can perform incremental copying
while using a non-incremental mark phase (MCIC, IC forincre-
mental copying). We then describe how to make the mark phase
incremental (MCI).

Incremental old generation copying:When the marking of the
old generation is complete, we know the exact amount of data that
will be copied out of each of the old generation windows. Using
this information, we divide the old generation copying workacross
one or more nursery collections. We first group the old generation
windows based on the amount of live data in each window. Each
group consists of one or more adjacent old generation windows,
with the condition that the total amount of live data in a group is
less than or equal to the size of a single old generation window.

Once the grouping is done, we copy objects within the first group
and give the freed memory (less one window) to the nursery alloca-
tor (i.e., we can use up to half of those windows for nursery alloca-
tion, subject also to the BG bound on nursery size). We then resume
program execution and the program runs until the nursery fills up,
which we then collect. At this point, we copy the next group of
windows in the old generation. We repeat this process of alter-
nating program execution with nursery then old generation group
collection until the entire old generation is copied, thus spreading
the old generation copying work across several nursery collections.
In the case that an old generation collection does not free enough
space, we repeatedly collect old generation groups until wefree
enough memory for the nursery. A problem MCIC can run into is
that a large number of full windows may lie next to each other in
the heap. This causes the collector to perform a large numberof
consecutive copy passes, resulting in a longer pause. One solution
for this problem is to use bidirectional remembered sets, which al-
low MCIC to collect windows in any order, so that it can collect
windows that are mostly full along with windows that are mostly
empty. Bidirectional remembered sets, however, have additional
space overhead and increase write barrier cost.

We can also extend the incremental copying so that it does not
perform old generation copying immediately after nursery collec-
tion. We call this thesplit-phaseapproach. In the split-phase ap-
proach, after we copy the first group of windows in the old gener-
ation, we allow the program to run until the nursery becomeshalf
full. At this point, we copy the next old generation window group.
We then allow the program to run until the nursery becomes (en-
tirely) full, at which point we perform a nursery collection. This
approach tends to spread out the copying pauses better.

There are some policy considerations in MCIC collection. One
is when to trigger old generation marking. We should mark some-
what in advance of filling the old generation, to reduce the possibil-
ity of the collector’s needing to collect several groups immediately
after one nursery collection. However, if we mark too much inad-
vance, then there are two negative effects: old objects havenot had
as much time to die, so we reclaim fewer dead ones; and mean-
while we have more objects promoted from the nursery, which we
cannot reclaim until thenextold generation collection. It is clear
that in general MCIC will need more space than MC to perform
reasonably, and will likely do more total work than MC. This is an
expected tradeoff for incrementality in collection.

A second policy consideration is how often to collect old gen-
eration groups. The policy we gave above is to collect one group
after each nursery collection (or, in split-phase, betweeneach nurs-
ery collection and the next one). However, we could wait for more
than one nursery collection, e.g., until nursery collection does not
leave enough blocks for nursery allocation. We would then collect
one group, hoping to free enough memory for nursery allocation
to proceed. Doing group collection as rarely as possible defers
reclaiming old generation memory, so we expect it will put more
pressure on the nursery and cause more frequent nursery collec-
tions. It might also require anearlier marking trigger.

A third policy variation is to allow collection of more than one
group at (or between) nursery collections. Since the goal isto
bound maximum pause time, if the maximum nursery size is more
than one window, sayk windows, then, since a nursery collection
could copyk windows of objects, we could allow MCIC to collect
up to k groups (or, enough from-space windows to fillk to-space
windows), if there is space available. Collecting groups sooner re-
claims their free space sooner, allowing larger nurseries,etc. The
point is that once we have marked, the only reason to wait to re-
claim dead objects is to spread pauses out: even if more old gener-



ation objects die, we will not reclaim them until thenextold gener-
ation marking and copying.

The MCIC collector has additional overhead compared with the
MC collector. First, it performs a larger number of garbage col-
lections. Second, it must use a more complex write barrier. MC
needs to track pointers into only the nursery, whereas MCIC needs
to track pointers into both the nursery and the uncollected portion
of the old generation. This means that a simple directional write
barrier cannot be used with the incremental copying collector (un-
less one runs the algorithm in a large address space, e.g., 64bits, as
has been proposed for OF). Remembered set sizes also tend to be
larger for MCIC.

Incremental marking:MCIC performs non-incremental mark-
ing when it triggers old generation collection. We can boundthe
amount of marking work by replacing the non-incremental mark
phase with incremental marking. Incremental marking can perform
small amounts of marking work along with each collection, oreven
during allocation. In order to support incremental marking, the col-
lector requires a more complex write barrier: it must log anypointer
assignment whose target is an unmarked object in the region being
marked. This will ensure that all reachable old generation objects
are marked.

Replacing non-incremental marking with incremental marking
will affect performance. Incremental marking must be started much
sooner than a non-incremental mark phase, to ensure that marking
completes before the collector runs out of space. As a consequence,
the set of objects marked at the end of the mark phase will be an
overestimate (larger, compared with MCIC) of the true set ofreach-
able objects in the old generation. This in turn will increase the
amount of copying work. The more complex write barrier will also
reduce the performance of the collector.

Implementation:We have implemented a version of MCIC that
performs incremental copying and uses unidirectional remembered
sets. We describe some of the results from this collector andleave
the implementation of MCI to future work.

4. RESULTS
We describe in this section our experimental setup, detailsof the
collector implementation, the benchmarks we used, and experi-
mental results comparing the collectors. We compare space over-
heads, copying costs, GC times, and total execution times for the
VG, VG-MC, and VG-MCHW collectors. We also compare GC
times and total execution times of VG-MC with a (non-generational)
mark-sweep collector (MS) and a hybrid copying/mark-sweepgen-
erational collector that uses a variable size nursery (VG-MS). For
the MC collectors, we use 20 windows in the old generation. For
each benchmark, we ran the collectors in heaps ranging from the
minimum space required to run the benchmark to 8 times the max-
imum live size.

4.1 Experimental Setup
We implemented our collector in Jikes RVM 2.2.2 [1, 2]. Jikes
RVM does not have an interpreter: it compiles all bytecode to
native code before execution. Jikes RVM has two compilers, a
baseline compiler that essentially macro-expands each bytecode
into non-optimized machine code, and an optimizing compiler. It
also has an adaptive run-time system that first baseline compiles
all methods and later optimizes methods that execute frequently.
Methods can be optimized at three different levels depending on
the execution frequency. However, the adaptive system doesnot
produce reproducible results, since it uses timers and may optimize
different methods in different runs.

We used apseudo-adaptiveconfiguration to run our experiments

with reproducible results. We first ran each benchmark 7 times with
the adaptive run-time system, logging the names of methods that
were optimized and their optimization levels. We then determined
the methods that were optimized in a majority of the runs, andthe
highest level to which each of these methods was optimized ina
majority of runs. We ran our experiments with only these methods
always optimized (to that optimization level) and all othermeth-
ods always baseline compiled. The resulting system behavior is
repeatable, and does very nearly the same total allocation as a typi-
cal adaptive system run; it differs from adaptive system behavior in
that it tends to invoke the optimizing compiler before the applica-
tion has built up its live data set, whereas adaptive runs tend to in-
voke the (memory-hungry) optimizing compiler in the thick of the
application. Thus, adaptive system maximum live size tendsto be
bigger (and unpredictable). However, the pseudo-adaptivesystem,
since its average and peak live sizes are closer to one another, tends
to run closer to its peak. Thus, when scaled by live size, pseudo-
adaptive is consistently closer to its peak memory usage more of
the time.

Jikes RVM is itself written in Java, and some system classes can
be compiled either at run time or at system build time. We compiled
all the system classes at build time to avoid any non-application
compilation at run time. The system classes are stored in a re-
gion called theboot image, that is separate from the program heap.
We used the Java memory management toolkit (JMTk), standard
with Jikes RVM 2.2.2, as the base collector framework. JMTk al-
ready supplied the generational collector and mark-sweep collec-
tors. JMTk also provided us with most of the generic functionality
required by a copying collector, so it aided rapid deployment of our
two new collectors.

We ran our experiments on a Macintosh PowerPC with two 533
MHz G4 7410 processors (though the system uses only one of
them), 32 KB on-chip L1 data and instruction caches, 1 MB unified
L2 cache and 640 MB of memory, running PPC Linux 2.4.10. We
performed our experiments with the machine in single user mode.

4.2 Implementation Details
We first describe the implementation of the non-incrementalver-
sion of MC. The collector divides the entire usable virtual address
space into a number ofregions. The lowest region stores boot im-
age objects, the next region stores immortal objects, and a third
region stores large objects. All these regions come by default in the
JMTk framework, for any collector. MC allocates objects larger
than 8KB into the large object region, and this region is managed
by the JMTk mark-sweep collector (the size threshold for alloca-
tion into this region is 8KB for all collectors that we compared MC
against). JMTk rounds up the size of large objects to whole pages
(4KB), and allocates and frees them in page-grained units.

The type information block (TIB) objects, which include thevir-
tual method dispatch vectors, etc., and which are pointed tofrom
the header of each object of their type, are allocated by JMTkinto
immortal space. This has a couple of benefits for the MC collector.
First, the TIB objects do not have to be copied when performing
collection. Second, the remembered set overhead is reducedsig-
nificantly since we do not store pointers into immortal spacein the
remembered sets.

MC creates two more regions, one for the old generation and
one for the nursery. The old generation is divided into a number
of fixed sizeframes. A frame is the largest contiguous chunk of
memory into which allocation can be performed. The frame size
in our implementation is 8MB. Each frame accommodates at most
one old generation window. Old generation windows can, however,
span multiple frames. The portion of the address space within a



Benchmark Description Maximum Total
live size (MB) Allocation (MB)

202 jess a Java expert system shell 4.0 291
209 db a small data management program 10.5 85
213 javac a Java compiler 11.0 285
222 mpegaudio an MPEG audio decoder 3.0 27
227 mtrt a dual-threaded ray tracer 10.0 145
228 jack a parser generator 4.5 329

pseudojbb SPEC JBB200 with a fixed number of transactions 28.0 334
health simulation of a health care system 67.5 552

Table 1: Description of the benchmarks used in the experiments

frame that is not occupied by a window is left unused. Since the
frames are power-of-two aligned, only a single shift is required to
find the frame number of a heap object during garbage collection.

MC uses a fast write barrier that records only pointer storesthat
cross the boundary separating the nursery region from the rest of
the heap; this is the same barrier used by the generational copying
collectors. The write barrier is partially inlined [6]: thecode that
tests for a store of an interesting pointer is inlined, and the code that
inserts interesting slots into a remembered set is out of line. Each
frame has an associated remembered set. The remembered set is
implemented as a sequential store buffer [9]. Remembered sets are
used to store the addresses of slots that reside in the heap and the
boot image and that contain interesting pointers.

The MCHW implementation uses the same memory layout as
MC, except for the layout of the old generation. The old genera-
tion for MCHW is not divided into power-of-two aligned frames.
Instead, it is divided into page-size aligned windows when afull
collection is performed. This ensures that objects are allocated con-
tiguously in the old generation (which avoids an extra pass over the
heap to calculate addresses). This condition does not necessarily
hold true when frames are used since the window size and frame
size are usually not equal.

We also implemented the MCIC collector. The write barrier for
MCIC is slower than the one used for MC, since simple boundary
crossing checks are not adequate. The full heap mark for MCICis
triggered sooner than it is for MC (when the heap is 85% full).This
is because delaying the marking until the heap is almost fulltends
to cause multiple copying passes to be clustered together, causing
long copying pauses in addition to the marking pause.

4.3 Benchmarks
We compare results from eight benchmarks, six from the SPEC
JVM98 suite [15], pluspseudojbb, andhealth. pseudojbb is a
modified version of the SPEC JBB2000 benchmark [16].pseu-
dojbb executes a fixed number of transactions (70000), which al-
lows better comparison of the performance of the different col-
lectors. health is an object oriented Java version of the Olden C
benchmark [14]. We do not present results from two SPEC JVM98
benchmarks,201 compress and 205 raytrace. 201 compress
mostly allocates large objects, which are placed in large object
space. Since the large object space for all the collectors ismanaged
using mark-sweep, this benchmark is not interesting for ourstudy.
227 mtrt is a dual threaded version of205 raytrace. Since the

results for the two benchmarks are very similar, we present results
only for 227 mtrt. We ran all SPEC benchmarks using the default
parameters, and ignoring explicit GC requests. Forhealth, we set
the number of levels to 8 and maximum time to 200.

Table 1 describes each of the benchmarks we used. We calcu-
lated the live size for a benchmark by finding the smallest heap in

which it ran (rounding up to the next MB) with a VG collector that
did not use a large object space (except for the thread stacks), and
dividing the result by 2.

4.4 Space Accounting
In all the experiments we ran, the VG collector used the specified
heap space to allocate heap objects and nursery remembered set
entries. The nursery remembered set space was not accountedfor
separately. MC also used the heap space in the same manner. How-
ever, the old generation remembered sets were accounted forafter
each run completed, by adding the maximum space occupied by
the remembered sets to the heap space. MCHW used the specified
heap space to store heap objects (along with an extra header word),
the nursery remembered set, and a bitmap.

4.5 Mark-Copy Space Overheads
Table 2 shows the remembered set space overhead for all eight
benchmarks, for an MC collector that has 20 windows in the old
generation. For each benchmark, the table shows the remembered
set size for heap sizes ranging from 1.1 to 6 times the live size. The
heap sizes do not include the remembered set size. They do how-
ever include a 7.5% copy reserve (we trigger a full collection when
the free space drops down to 1.5 windows, so that the collector does
not use nurseries smaller than 2.5% of the heap space). Each en-
try in the table represents the remembered set size as a percent of
the heap size. An entry with a ’–’ indicates that MC did not per-
form a full collection for the heap size, and hence did not construct
remembered sets.

For four of the eight benchmarks, the remembered set overhead
for MC is always less than 5% of the maximum live size. Forjavac
the overhead is about 11% of the live size, and forhealth the over-
head is about 15%. The total minimum space overhead for MC
varies between 12% and 25% of the maximum live size.

The header word overhead for MCHW is higher than the remem-
bered set overhead for MC. Table 3 shows the overhead for the eight
benchmarks. We calculate the overhead by dividing the header
word size (4 bytes) by the average old generation object size(ex-
cluding the header word). This is because the header word is added
only to old generation objects. The space overhead for MCHW is
about 5–10% higher than the overhead for MC, still considerably
lower than the generational copying overhead.

4.6 Copying Costs
We examine here the copying characteristics of VG-MC and VG.
Although the performance of copying collectors is influenced by
factors such as locality, the total amount of data copied is agood
performance indicator and can explain differences in overall per-
formance. For generational collectors, the amount of copying is
strongly related to the number of full collections. We first look



Heap size relative to maximum live size
Benchmark 1.1 1.2 1.5 2 3 4 6

202 jess 8.8% 8.3% 5.1% 1.4% – – –
209 db 1.6% 1.5% 1.0% 0.8% 0.3% – –
213 javac 10.3% 9.2% 7.1% 4.8% 3.7% 2.8% –
222 mpegaudio 4.4% 3.7% 2.9% 2.0% – – –
227 mtrt 2.9% 2.1% 1.6% – – – –
228 jack 5.1% 2.7% 2.6% 0.9% 0.6% – –

pseudojbb 1.7% 1.6% 1.2% 0.8% – – –
health 14.2% 11.9% – – – – –

Table 2: Remembered set size as a percent of the heap size, forMC using 20
windows in the old generation

Header Word
Benchmark overhead

202 jess 9.0–10.7%
209 db 13.5–13.7%
213 javac 13.9–14.1%
222 mpegaudio 9.7–11.0%
227 mtrt 14.5–15.9%
228 jack 11.3–11.6%

pseudojbb 5.2–6.6%
health 18.2–18.5%

Table 3: Average header word space
overhead for MCHW

at the full collection behavior of VG-MC and VG for two bench-
marks, and then see how this affects the amount of data copied.

Figure 7 shows the number of full heap collections performed
by VG-MC and VG forjavac andpseudojbb. The horizontal axis
represents the total space used relative to the maximum livesize,
and is drawn to a logarithmic scale. The vertical axis represents the
total number of full collections performed. Forjavac, VG-MC has
a significant advantage until the heap has grown to 4.5 times the
maximum live size. In space that is about 2.3 times the maximum
live size, VG-MC performs as few as three full collections. VG
performs approximately five times as many full collections at this
point. The performance forpseudojbb is even better, with VG-
MC performing only one full collection in space that is abouttwo
times the maximum live size. VG catches up with VG-MC only
when the space grows to five times the maximum live size.

VG-MC performs many fewer full collections because it defers
full collection until the heap is almost full, while VG has toperform
them when the heap is half full. The survival rate of objects in the
old generation is much higher than nursery objects, since the old
generation typically contains long lived objects. For example, for
VG running javac in a heap that is 2.3 times the live size, 66% of
old generation data survives on average, while only 21% of data in
the nursery survives. By deferring full collections, VG-MCgives
the old generation objects a longer time to die, thus significantly
reducing the survival rate, which in turn reduces the total amount
of copying work. Therefore, even though VG-MC potentially does
more work at each full collection, the lower frequency allows it to
do much less work overall.

Figure 8 shows the effect of the number of full collections onthe
amount of copying performed by the collectors. The graphs show
the relativemark/consratio, the ratio of total bytes marked and
copied (“marked”) to total bytes allocated (“cons’ed”), for VG-MC
and VG, forjavac andpseudojbb. For javac, VG copies approx-
imately two times more data than VG-MC in space that is about
2.3 times the maximum live size. At four times the live size, VG
copies 30% more data than VG-MC. In heaps that are six times the
live size or larger, VG-MC does not perform full collectionsand
the copying cost for VG is 20-25% higher. Forpseudojbb, the
copying cost for VG is twice as much as that for VG-MC, in space
that is about 2.5 times the maximum live size. In heaps between
2.5–4.5 times the live size, the cost is at least 50% higher. Eventu-
ally, at six times the live size, the collectors perform roughly equal
amounts of copying. We look at the effect this reduced copying has
on overall performance of the collectors in the next section.

4.7 Mark-Copy vs. Copying Collection
Figure 9 shows GC times for VG-MC, VG-MCHW, and VG, rela-
tive to the best GC time for the eight benchmarks. Figure 10 shows

the total execution times for the collectors relative to thebest total
execution time. Although we measured the performance of BG-
MC, we omit the results in the graphs in order to make them leg-
ible. We briefly discuss the results for BG-MC at the end of the
section. In the graphs, the vertical axis represents relative times,
and is drawn to a logarithmic scale. The horizontal axis represents
total space relative to the maximum live size, and is also drawn to
a logarithmic scale, so as to show greater detail for smallerheap
sizes.

For all eight benchmarks, the MC collectors clearly run in much
smaller space than VG. Since VG uses a large object space (which
is managed by a mark-sweep collector), it can run in heaps slightly
smaller than twice the maximum live size (it does not have to re-
serve any space for copying large objects). For all of the bench-
marks, the VG collector does much worse than the MC collectors
when the space available is around twice the maximum live size.

javac: When the space available is about 2.3 times the maximum
live size, the GC time for VG is twice as high as that for VG-MC.
In space that is about four times the maximum live size, the GC
time for VG is 1.5 times higher. When the total space grows to
about five times the live size, the GC time for VG is 15% higher
than that for VG-MC. The GC time for VG-MC drops sharply at
this point because it does not perform any full collections.The GC
time for VG is 50–60% higher than that for VG-MC in space that
is six times the maximum live size or larger.

The shapes of the curves for the relative execution times aresim-
ilar. In space that is about 2.3 times the maximum live size, total
execution time with VG is 40% higher than with VG-MC. VG con-
sistently performs within 10% of VG-MC only in heaps larger than
4.5 times the live size. At eight times the live size, the total ex-
ecution time for VG is 5% worse than that for VG-MC. The GC
and total execution time curves for VG-MC and VG are very sim-
ilar in shape to the curves for the copying costs, which showsthat
VG-MC obtains the performance improvement by reducing copy-
ing cost significantly.

VG-MCHW, which uses an extra word per object in the old gen-
eration, has a slightly higher space overhead than VG-MC. Intight
heaps, it is significantly slower than VG-MC. When the space avail-
able is larger than twice the live size, it performs at most 7%worse
than VG-MC, and is typically within a few percent of VG-MC. It
outperforms VG at most heap sizes.

db: This benchmark builds a large linked list, which it repeatedly
traverses during execution. This leads to locality issues.VG-MC
performs better than VG until the space grows to about three times
the maximum live size. The performance of all collectors degrades
in large heaps (possibly due to locality effects on TLB misses).
VG-MCHW is significantly slower than VG-MC in small heaps
and about 5–8% worse than VG and VG-MC in heaps that are 2.25
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Figure 7: Number of full heap collections performed for javac and pseudojbb
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Figure 8: Relative Mark/Cons ratio for javac and pseudojbb

times the live size or larger. This is possibly because of theeffect
the header word has on the cache.

jess, mpegaudio, mtrt, and jack: The results for these bench-
marks are similar. VG starts off with total execution times about
25–50% worse than VG-MC. Its performance is typically within
10% of VG-MC only in heaps that are 2.5–3 times the live size
or larger, and it performs almost as well as VG-MC at eight times
the maximum live size. VG-MCHW generally performs within a
few percent of VG-MC in heaps larger than twice the live size,and
outperforms VG in heaps that are 3–4 times the live size or smaller.

pseudojbb: The total execution time for VG at 2.25 times the
live size is 30% worse than that for VG-MC. VG comes within 10%
of VG-MC in space that is 2.75 times the live size. VG performs
almost as well as VG-MC in space that is five times the live sizeor
larger. VG-MCHW is 5–20% slower than VG-MC in tight heaps.
In heaps larger than twice the live size, its performance is about the
same as VG-MC.

health: Here, the curve for VG-MC is noisy in the smaller heap
sizes. This is because, for some of the small heap sizes, the re-
membered set overhead for VG-MC is very large (up to 14MB).
This overhead causes configurations that use less heap spaceto use
up a large amount of total space.

The execution time of VG converges much more quickly for

health than for the other benchmarks. At about 2.25 times the live
size, VG performs 5% better than VG-MC, and in heaps larger than
three times the live size, VG performs as well as VG-MC. How-
ever, since the live size is quite large, the actual additional memory
required by VG to perform as well as VG-MC is approximately
67MB. VG-MCHW performs about 3–5% worse than VG-MC and
VG in heaps that are 2.5 times the live size or larger, again possibly
due to locality effects caused by the additional word per object.

Summary: VG-MC and VG-MCHW are capable of running in
much smaller heaps than VG. The minimum space overhead for
VG-MC is between 1.12–1.25 times the maximum live size, and
5–10% higher for VG-MCHW. The space advantage is clear in the
plots forpseudojbb andhealth. The minimum space required to
run pseudojbb using VG is 25MB higher than the space required
by MC. The additional space required by VG forhealth is 50MB.

VG-MC consistently performs better than VG in small and mod-
erate size heaps. For VG, garbage collection is up to eight times
slower in small heaps and is 1.2–2 times slower in moderate size
heaps. Overall execution time is significantly higher in small heaps,
and is typically 5–10% higher in moderate size heaps. For fiveof
the eight benchmarks, VG-MC performs within 6% of the best exe-
cution time, in space that is slightly larger than twice the maximum
live size. VG-MC achieves the improved performance by utilizing
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Figure 9: GC times for VG-MC, VG-MCHW, and VG relative to the b est GC time
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Figure 10: Total execution times for VG-MC, VG-MCHW, and VG r elative to the best total execution time



the heap space better and performing less copying. Full collections
for VG-MC typically take 20% more time (per byte copied) than
full collections for VG. However, VG-MC performs full collections
much less frequently, thus reducing the copying and GC overheads
considerably in small and moderate size heaps.

The performance of VG-MCHW is usually significantly worse
than VG-MC in tight heaps. In heaps larger than twice the max-
imum live size, it typically performs less than 10% worse, and is
usually within a few percent of VG-MC. It does not outperform
VG-MC for a couple of reasons. First, the remembered set over-
head for the benchmarks we experimented with is smaller thanthe
extra word overhead for VG-MCHW. Second, VG-MCHW suffers
from some locality effects because of the extra word added toeach
object in the old generation. VG-MCHW typically outperforms
VG in small and moderate size heaps. However, VG performs bet-
ter than VG-MCHW fordb andhealth because of locality effects.

We also measured the performance of BG-MC, using a nursery
that occupied at most 20% of the heap space. However, we did not
present the results in this section. We found that BG-MC performs
quite well when compared with VG-MC. For all benchmarks, ex-
ecution times with BG-MC were less than 10% worse than with
VG-MC at all heap sizes, and usually within a few percent of VG-
MC while providing a bound on the nursery pause times.

4.8 Mark-Copy vs. Mark-Sweep
We now relate MC to mark-sweep collection. We compare the per-
formance of a (non-generational) mark-sweep collector (MS) and a
hybrid copying/mark-sweep generational collector (VG-MS) with
VG-MC. MS collectors can run in much smaller heaps than stan-
dard copying collectors. In the best case, to be able to run a pro-
gram, MS requires space that is slightly more than the maximum
live size for a program. However, MS usually suffers from some de-
gree of fragmentation, and the amount of additional space required
depends on the degree of fragmentation. MC, on the other hand,
does not suffer from fragmentation. Like other copying collectors,
it avoids fragmentation by regularly copying and compacting live
data. However, MC does require space for copying and for remem-
bered sets.

The MS collector we use for the comparison comes with the
Jikes RVM 2.2.2 release. The collector uses segregated freelists to
manage the heap memory, with 51 different size classes (a separate
size class for every 4 bytes for the range[8;63℄, every 8 bytes for the
range[64;127℄, every 16 bytes for range[128;255℄, every 32 bytes
for the range[256;511℄, every 256 bytes for the range[512;2047℄,
and every 1024 bytes for the range[2048;8192℄). The Jikes RVM
MS collector divides the entire heap into a pool of blocks, each of
which can be assigned to a free list for any of the size classes. An
object is allocated in the free list for the smallest size class that
can accommodate it. After garbage collection, if a block becomes
empty, it is returned to the free block pool. All objects larger than
8KB are handled by a large object allocator, which rounds up object
sizes to whole pages(4KB).

The VG-MS collector we use is a two generation collector that
uses a variable size nursery. Nursery survivors are copied into
the old generation, which is managed using the MS collector de-
scribed above. VG-MS has a couple of advantages compared with
MS. First, it exploits the generational hypothesis, filtering out short
lived objects and performing much less allocation into MS space,
because of which it triggers many fewer full collections than MS.
Second, it uses bump pointer allocation in the nursery, which re-
duces allocation cost significantly.

Figure 11 shows GC times relative to the best GC time for VG-
MC, VG-MS, and MS for the eight benchmarks. Figure 12 shows

total execution times relative to the best execution time. The hor-
izontal axis in all graphs represents total space and is drawn to a
logarithmic scale. The vertical axis on the graphs represents rel-
ative times and is also drawn to a logarithmic scale. We now de-
scribe the performance of the three collectors for each of the eight
benchmarks.

javac: In heap sizes between 1.4–3 times the live size, VG-
MS performs slightly worse than VG-MC at a few points due to
slightly higher mutator (program, as opposed to collector)times.
VG-MS performs 2–5% slower than VG-MC in heaps larger than
3.25 times the live size, due to slightly higher GC times and mutator
times. Mutator times for VG-MS are higher possibly because VG-
MC compacts the old generation data and hence achieves somewhat
better locality (both collectors use an identical write barrier). MS is
significantly slower in heaps smaller than three times the live size,
and it eventually performs as well as VG-MS.

db: In heaps larger than 1.5 times the live size, VG-MC is 5–
10% faster than VG-MS. This happens even though the GC times
for VG-MC and VG-MS are approximately the same, which sug-
gests that VG-MC might be compacting and ordering objects ina
manner that improves locality significantly, thus loweringmutator
time. MS has the lowest GC time in heaps larger than five times the
live size, but it performs 5–10% worse than VG-MC.

jess, jack, mpegaudio:Total execution times for VG-MS are
significantly higher than that for VG-MC in heaps smaller than 1.5
times the live size, and about 1–3% higher than that for VG-MC
in heaps larger than 2.5 times the maximum live size. Forjess and
jack, the performance of MS is significantly worse than the genera-
tional collectors at all heap sizes. Formpegaudio, the performance
of MS is consistently within 5% of the generational collectors only
in heaps larger than 3.5 times the live size.

mtrt: In heaps larger than 1.5 times the live size, VG-MS is 5%
slower than VG-MC due to higher GC times and mutator times.
MS performs significantly worse than both generational collectors
at all heap sizes.

pseudojbb: VG-MS performs 3–5% worse than VG-MC at most
heap sizes, again due to a combination of higher GC and mutator
times. The performance of MS is worse than the generational col-
lectors at all heap sizes. Interestingly, MS has the lowest GC time
in heaps larger than five times the live size. However, it is 6–8%
slower than VG-MC due to higher mutator times.

health: VG-MC suffers from large remembered set overheads
in small heaps making the curve noisy. It performs 5–10% worse
than VG-MS in some small heaps. However, in heaps larger than
2.5 times the live size, VG-MC performs 5% better than VG-MS.
MS has the lowest GC time of all three collectors in heaps larger
than 4.5 times the live size, but, it has the highest execution times.

Summary: VG-MC can run in space that is comparable to the
minimum required by VG-MS. MS usually has a higher fragmen-
tation overhead than VG-MS and thus requires somewhat larger
heaps to be able to run successfully. Both VG-MC and VG-MS
run significantly faster than MS for most benchmarks in smalland
moderate size heaps, affirming the generational hypothesis. The
GC times for VG-MC are slightly lower or about the same as those
for VG-MS. However, forjavac, mtrt, pseudojbb, andhealth the
total execution times for VG-MS are up to 5% higher than those
for VG-MC. For db, execution times are 5–10% higher. Since
both collectors use an identical write barrier, our guess isthat this
performance improvement happens because data in the old genera-
tion is compacted by VG-MC, because of which it achieves better
cache locality and/or TLB performance. Forhealth, VG-MC suf-
fers from somewhat large remembered sets, which makes its per-
formance worse than that of VG-MS in small heaps.
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Figure 11: GC times for VG-MC, VG-MS, and MS relative to the best GC time
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Figure 12: Total execution times for VG-MC, VG-MS, and MS relative to the best total execution time
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Figure 13: BMU curves for javac

5. PAUSE TIME
We now look at the pause time characteristics of MC. We consider
more than just the maximum pause times that occurred, since these
do not indicate how the collection pauses are distributed over the
running of the program. For example, a collector might causea se-
ries of short pauses whose effect is similar to a long pause, which
cannot be detected by looking only at the maximum pause time of
the collector. Instead, we look at themutator utilizationcurves for
the collectors, following the methodology of Cheng and Blelloch
[7]. They define theutilization for any time window to be the frac-
tion of the time that the mutator (the program, as opposed to the
collector) executes within the window. The minimum utilization
across all windows of the same size is called theminimum mutator
utilization (MMU) for that window size. An interesting property of
this definition is that a larger window can actually havelower uti-
lization than a smaller one. To avoid this, we extend the definition
of MMU to what we call thebounded minimum mutator utilization
(BMU). The BMU for a given window size is the minimum mutator
utilization for all windows of that sizeor greater.

Figure 13 shows BMU curves forjavac for heap sizes equal to
two and three times the maximum live size (22MB, 33MB). The x-
intercept of the curves indicates the maximum pause time, and the
asymptotic y-value indicates the fraction of the total timeused for
mutator execution (average utilization). The three curvesin each
graph are for VG-MC, MCIC, and a speculative fully incremen-
tal MC collector (MCI). Since it is difficult to factor out thewrite
barrier cost, the VG-MC curve actually represents utilization in-
clusive of the write barrier. The real mutator utilization will be a
little lower. For MCIC, however, we factor in the additionalcost
of the complex write barrier by apportioning the additionalmutator
time (difference between mutator time for MCIC and VG-MC) to
the GC time. This does assume that the write barrier overheads are
spread uniformly over the execution.

To predict the performance of MCI, we take each mark pause for
MCIC and distribute it equally among the copy pauses prior tothe
mark. We charge the mark an additional 20% before we distribute
it. A real collector with an incremental mark would probablydo
worse. This is because the amount of live data found by a collector
with an incremental mark is usually larger than the amount found
by a collector with a non-incremental mark. However, the curve
does give an idea of the expected collector performance.

VG-MC has the highest y-intercept value, since it has the best

overall mutator utilization, but it also has the largest x-intercept
value since it performs non-incremental marking and copying. The
slope of the curve is also steep, showing that for windows notmuch
larger than the maximum pause time, the utilization is high.The
x-intercept for MCIC is much smaller, because of the incremen-
tality of copying, but this incrementality also lowers the overall
throughput (asymptotic y-value). MCIC is about 5% slower than
VG-MC. The speculative MCI collector has a maximum pause time
of around 150ms. It allows a minimum utilization of about 25%for
a window slightly larger than the maximum pause time. The over-
all utilization (asymptotic y-value) for the MCI collectoris only
slightly lower than that for MCIC. In practice, we expect thedif-
ference to be somewhat larger. These results show that the MC
collector can be made completely incremental while still obtaining
good throughput. With more tuning we expect to get lower pauses
than the values we show here.

6. OTHER RELATED WORK
In the introduction we discussed copying collectors most directly
related to our work. We now consider other similar copying tech-
niques.

Lang and Dupont [11] describe a collector that performs incre-
mental compaction in a heap managed by a mark-sweep collec-
tor. Ben-Yitzhak et al. [4] propose a collector similar to Lang and
Dupont’s, but that is also parallel. Lang and Dupont divide the heap
into equal size segments. At each collection, the collectormarks
the entire heap, and then compacts one segment. Thus the col-
lector is primarily mark-sweep, but the compaction helps inover-
coming fragmentation. MC is primarily a copying collector,and
its incremental copying (whether batched or distributed over time)
reduces copy reserve overhead. For a heap consisting ofn seg-
ments, the Lang and Dupont collector performsn full heap marks
in order to compact each segment once. MC occasionally performs
onefull heap mark, but then compacts the entire heap with no fur-
ther marking. Further, MC can compact multiple segments in one
pass, thus minimizing the number of passes required to compact
the heap. MC does have a remembered set overhead that the Lang
and Dupont collector does not have.

The MCI collector is similar to the Mature Object Space (MOS,
or Train) collector [8]. MOS divides the old generation intoequal
sized windows calledcars. In MOS, cars bound the amount of
copying performed in each collection. The difference between MOS



and MCI is in the manner in which they provide completeness. For
MCI, the full heap mark ensures completeness. MOS groups cars
into logical units calledtrains, and performs copying in a manner
that moves any large cycle of garbage into a single train, which
can then be reclaimed in its entirety. Our experiments with MOS
(not detailed here) indicate that it tends to copy a large amount of
unreachable data before the data is moved to a separate trainand
reclaimed. We expect that the full heap mark performed by MCI
operates with significantly reduced overhead. Detailed comparison
of MCI with MOS is beyond the scope of this paper.

One might also compare MC with mark-sweep-compact (MSC),
using compaction of the entire old generation. This differsfrom
the Lang and Dupont collector in that it compacts the entire heap,
and differs from MC in that it uses sliding compaction ratherthan
copying. MSC has a space advantage over MC, namely the one
window copy reserve space plus the old generation remembered
sets of MC. However, MSC is more difficult to implement, and
inherently makes more passes over the compacted objects. Thus,
we expect MSC to run substantially slower than MC, even givenits
(modest) space advantage.

7. CONCLUSIONS
We have presented a new style of copying collector, MC, that sig-
nificantly reduces space requirements compared to standardcopy-
ing collectors. We showed that MC collectors can run in space
that is as small as 1.12–1.25 times the maximum live size of a pro-
gram, while standard copying collectors usually require two times
the maximum live size. This increases the range of applications that
can use copying garbage collection. We have shown that MC col-
lectors outperform generational copying collectors in equal sized
heaps; they do so by significantly reducing the amount of copying.
Overall performance with MC is significantly better in tightheaps,
and is typically around 5–10% better in moderate size heaps.We
compared MC against a mark-sweep (MS) collector and a hybrid
copying/mark-sweep generational collector (VG-MS); we showed
that MC can run in heaps that are comparable in size to the min-
imum for MS and VG-MS. For most benchmarks, MC is signifi-
cantly faster than MS in small and moderate size heaps. When com-
pared with VG-MS, MC improves total execution time by about 5%
for some benchmarks. The improvements are caused both by lower
GC times and by better locality. We also described partiallyand
fully incremental versions of MC, which better bound pause time
and offer improved mutator utilization for shorter time scales.
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