
Visualising Dynamic Memory Allocators

A.M. Cheadle & A.J. Field,
J.W. Ayres, N. Dunn, R.A. Hayden and J. Nystrom-Persson

Imperial College London
{amc4, ajf}@doc.ic.ac.uk

Abstract
We present generic extensions to the GCspy visualisation frame-
work that make it suitable for tracking the way continuous dy-
namic memory allocators such as dlmalloc or incremental and
concurrent garbage collectors make use of heap memory. These
extensions include sample-driven client-server communication, in-
cremental stream updates and client-controlled stream update fre-
quency. Additional extensions to the current GCspy client are also
described. These include hierarchical driver grouping and hierar-
chical visualisation, zooming, and the ability to define and view
relationships between tiles in different spaces. We also introduce a
heuristics engine that is responsible for flipping GCspy from its de-
coupled ‘observation’ mode to a synchronous ‘single-step’ mode,
and describe a backtrace facility that can trace the server-side call
sequence that led to the triggering of a specified event, such as the
allocation or freeing of a block of memory. This enables aspects of
the allocator (fragmentation, block ordering, splitting and coalesc-
ing policies, etc.) to be understood in the context of a particular ap-
plication and potential optimisations to be identified. The effective-
ness of the enhanced framework is demonstrated with a complete
integration with dlmalloc. The framework is evaluated in terms of
both performance and its ability to explore contrived modifications
to dlmalloc’s coalescing policy.

Categories and Subject Descriptors D.3.4 [Processors]: Mem-
ory management (garbage collection); C.4 [Performance of Sys-
tems]: Measurement techniques; D.2.5 [Software Engineering]:
Testing and Debugging; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces

General Terms Algorithms, Measurement, Performance, Lan-
guages, Human Factors.

Keywords Language implementation, Memory management, Dy-
namic memory allocation, Garbage collection, Visualisation of ob-
jects.

1. Introduction
Dynamic memory allocators are responsible for the efficient allo-
cation of memory from a program’s heap — the area of memory
from which runtime data structures are allocated. Understanding
and tuning the performance characteristics of these allocators is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10–11, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

complex and challenging task. This is usually achieved by exten-
sive instrumentation based profiling of the allocator (and collec-
tor, where there is automatic garbage collection), whilst running a
range of benchmarks. There are, however, behavioural characteris-
tics that are best understood visually, especially when determining
how they vary over time. For example, the object density of areas of
the heap, the extent to which contiguous heap areas have become
fragmented, and the distribution of free blocks among segregated
free lists.

An established tool for visualising heap usage in the context
of garbage-collected systems is GCspy [15]. GCspy provides the
capability to track the evolution of the heap visually, by mapping
blocks in memory to tiles in a graphical user interface.

In principle, GCspy can also be used to visualise more general
memory management systems, e.g. custom allocators and general-
purpose allocators, indeed any system that comprises partitioned
components in a simple hierarchy. However, broadening its appli-
cation proves to be more difficult in practice. GCspy was designed
for visualising the effects of a garbage collector. In this context the
heap state is rendered in response to relatively infrequent garbage
collection events, such as the start and/or end of a minor/major
collection cycle or a mark/sweep phase. When such events occur,
the entire state of one or more heap regions is communicated from
server to client via STREAM commands, each of which reports the
attributes of each block of a given region.

Although the framework can, in principle, be used in a more de-
coupled “asynchronous” mode, there is currently no internal sup-
port for it. For example, asynchronous data capture currently has
to be implemented explicitly, e.g. by building a data capture thread
that runs concurrently with the application. There is also no auto-
matic support for efficiently tracking high-volume, fine-grain mod-
ifications to the heap state. The current stream model supports an
“all or nothing” mode of server-client communication that has been
tailored for the task of visualising relatively coarse-grained garbage
collection events where much of the heap changes between events.
When used to track high-volume fine-grained events the current
communication model can prove to be prohibitively expensive.

There are also other limitations within the framework which be-
come apparent when attempting to generalise its use. For example,
it is presently capable of visualising only two levels of hierarchy,
capturing the notion of region and block. This is completely rea-
sonable in the context of a garbage collector as it neatly captures
the basic heap memory structures as administered by most collec-
tors. In general, however, other aspects of memory management
may involve richer data structures and/or logical connections that
form more general hierarchies. The same is true of other visualisa-
tion problems for which GCspy might in principle be well suited.
When these hierarchies exist, it can be desirable to view different
aspects of them at different times and at different resolutions. This
avoids ‘visual information overload’, helps to target visualisation

115

effort, and can also improve performance by reducing communica-
tion and rendering costs.

Despite its current limitations, GCspy provides an excellent
basis for the realisation of a general-purpose visualisation tool. It
provides a minimally-intrusive client-server framework with many
of the visualisation and communication abstractions required.

In this paper we present enhancements to the GCspy framework
aimed at extending its scope to include a wide range of memory
management systems. This requires significant extensions to the
existing server-side architecture that enable it to track, and report,
fine-grain high-frequency memory management events efficiently,
whilst relieving the software burden associated with instrumenta-
tion. In adapting and applying the new framework, we have also
identified and implemented a number of useful enhancements to
the client-side visualisation, some of which have important impli-
cations for the server architecture. Two significant new features are
the ability to define triggers, that are designed to fire in response
to specific events generated by the application, and the ability to
report backtraces that record the sequence of function calls that
led to the firing of a particular trigger. These new facilities equip
the framework with additional performance debugging capabilities
that can help to correlate observed behaviour with call sites in the
application.

Using GCspy as a starting point avoids ‘reinventing the wheel’
and creates a single integrated tool, rather than another similar, yet
disparate tool. Our hope is that this work will help to promote the
adoption of GCspy as the de facto memory management tool.

This paper serves to document the enhanced framework, and to
evaluate various aspects of its performance and usability. A descrip-
tion of how the new framework can be used to describe and visu-
alise the key structures maintained by Doug Lea’s dlmalloc is also
presented. In order to evaluate qualitative aspects of the enhanced
framework, we also document an experiment aimed at exploring
aspects of dlmalloc’s coalescing policy. This is not intended as a
full-scale investigation, but rather to illustrate potentially useful as-
pects of the new framework.

The paper makes the following contributions:

• We present enhancements to the GCspy framework to facili-
tate the instrumentation of systems with high-frequency events,
such as custom, and general-purpose memory allocators, and
concurrent garbage collectors (Section 3).

• We present a number of general enhancements to the framework
that renders it suitable for visualising structures that form rich
physical and/or logical hierarchies (Section 4).

• We extend the capacity of the framework as a performance de-
bugger with backtrace and event-driven monitoring capabilities
(Section 4.4).

• We present performance results evaluating the enhanced GC-
spy in part using dlmalloc benchmarks designed to stress the
framework (Section 6). Details of the dlmalloc visualisation are
presented in Section 5.

• We explore the utility of the new framework by showing how it
can be used to understand qualitatively the effect of a contrived
modification to dlmalloc’s coalescing policy (Section 7).

The source code for the enhanced GCspy framework and the in-
strumented dlmalloc (version 2.8.3) is freely available and can be
obtained from [3].

2. Background
Most modern programming languages support some notion of dy-
namic memory management in which memory can be claimed and
released when required at run time. Memory is acquired from the

allocator either by an explicit request for a contiguous block of a
specified size (e.g. malloc) or by a request to build a new object
of a specified type (e.g. new). Previously allocated memory that is
no longer required by the program can be released to the memory
manager either implicitly (and automatically) by a garbage collec-
tor or explicitly by calling a general-purpose deallocation function
(e.g. free).

2.1 Garbage Collection

A comprehensive review of garbage collection techniques can be
found in [2]. Most collectors fall under the heading of “stop the
world”, in which program execution is halted whilst the collector
runs. However, where there are real-time constraints, the execution
of the program and collector can be interleaved in such a way as
to bound the inherent pauses that arise in program execution and
ensure a minimum level of useful progress [12, 13, 14]. From the
point of view of this paper the distinction is potentially of some
importance: stop-the-world collectors induce coarse-grained mem-
ory management events relatively infrequently; concurrent collec-
tors induce fine-grained events which occur with much higher fre-
quency. In some contexts it may be desirable to monitor fine-
grained collection events as they occur.

2.2 General-purpose Allocators

The distinguishing feature of a general-purpose allocator (we drop
the word ‘deallocator’ although the allocator and deallocator go
hand-in-hand) is the use of explicit function calls to allocate and
deallocate memory, for example malloc/new and free/delete in
C/C++ respectively. Explicit deallocation involves releasing the
space occupied by an object so that it can be used to satisfy a sub-
sequent allocation request. This typically involves returning the ob-
ject to a free list/bin which in turn may result in its associated block
being coalesced with its adjacent free blocks, if they themselves
are free. Details of specific general-purpose allocator/deallocator
architectures can be found in [1, 4, 5, 6].

In order to clarify some of the issues involved in allocator
design, and to set the scene for the rest of the paper, we now
highlight the internal structure of Doug Lea’s dlmalloc, which is
a popular implementation of malloc() and free() used in nearly
all C programs for dynamic memory allocation. Section 5 describes
a visualisation of dlmalloc using our enhanced GCspy framework.

2.2.1 dlmalloc

dlmalloc, and allocators derived directly from it, are included in
a number of Linux distributions as the native user-space allocator
and are also included in a number of software packages as an
implementation of malloc(), overriding the standard C library’s
native malloc. Full details of dlmalloc can be found in [1] and the
associated source code.

dlmalloc

smallbins Contiguous

smallbin 1 smallbin 2 smallbin n...

treebins

treebin 1 treebin 2 treebin n...

key

space

group

(with zoom capability)

indexed space
space

mspaces

Figure 1. dlmalloc architecture in GCspy group hierarchy form

116

Allocation within dlmalloc initially proceeds using a bump-
pointer allocator with a set of empty free lists. When a chunk of
n bytes is requested, it is satisfied by returning the next sequence
of n contiguous unallocated bytes, by splitting the top chunk which
represents all of the currently available memory. When a free oc-
curs the freed chunk is added to a free list because chunks are not
generally freed in the same order as they are allocated. Future al-
location requests are serviced first by free list chunks and, failing
that, bump-pointer allocation resumes.

dlmalloc segregates its set of free lists into smallbins, that con-
tain blocks capable of servicing allocation requests of up to 256
bytes. There are currently 30 smallbins; a maximum of 32 may be
used depending on the machine architecture and the minimum per-
mitted size of a chunk. Each smallbin contains same-sized chunks,
i.e. implementing a strict size segregation policy. Sizes start at 16
bytes, increasing in 8 byte increments up to the 256 byte maximum.
A request for a memory block in the range [8, 256] is rounded up to
the nearest 8-byte multiple. If the corresponding smallbin is non-
empty then a chunk is removed from it and returned. If it is empty
the next largest smallbin is consulted likewise. If that too is empty
then an attempt to service the allocation is made using the desig-
nated victim.

The designated victim, dv, is a pointer to the chunk resulting
from the last split operation of an oversized (treebin) chunk. Its
role is to maintain spatial locality of reference which increases
performance by optimising cache misses. If the size of the dv is
greater than that of the request, the dv is split and used. If it isn’t,
then an allocation attempt is made from the smallbin that contains a
large enough chunk, which is then split if necessary. If the request
cannot be serviced from the set of smallbins treebin allocation is
attempted.

A treebin is a collection of all chunks larger than 256 bytes
organised into bitwise digital trees (tries for short) that are keyed
by chunk size. There are 32 such tries and these are segregated in
power-of-2 ranges, with two equally spaced treebins for each power
of two. For each trie, its power-of-2 range is split in half at each
node level with the strictly smaller value as the left child. Same
sized chunks reside in a FIFO doubly linked-list within the nodes.

If a request cannot be satisfied by a chunk from a treebin, bump-
pointer allocation resumes — the top chunk is split in order to
satisfy the request. If there is insufficient free memory available
in the top chunk, then a request to the operating system is made to
expand the user’s memory space into the top chunk.

The structure of dlmalloc has been explained in the context of
servicing a small allocation request. The logic for servicing a large
request is broadly similar, although there are some differences —
see [1] and the associated source code for full details.

In addition to implementing the standard malloc interface, cor-
responding operations are provided for allocation into segregated
user-requested regions known as mspaces. Not only does this pro-
vide regions which effectively have their own local dlmalloc allo-
cator, but if compiled correctly, a program can use these regions
for dlmalloc based allocation without overriding the native malloc
implementation of the system.

2.3 GCspy

GCspy [15] was developed for visualising heap memory and, more
specifically, the effect of the garbage collector on heap layout. It has
been used to analyse a number of production garbage collectors and
the way in which the collector interacts with an executing applica-
tion. Specific execution environments that have been studied using
GCspy include Sun’s Java HotSpot and ResearchVM (previously
known as the ‘Exact VM’) virtual machines. In addition drivers
also exist for systems that serve primarily as research platforms,

such as Jikes RVM’s MMTk memory management toolkit and the
.NET Shared Source Common Language Infrastructure, ROTOR.

The GCspy framework adopts a client-server architecture, the
memory manager being visualised acts as the server and the GCspy
visualisation tool as the client connecting to it.

The GCspy client is a generic visualiser for incoming server
data. At connection time the client receives bootstrapping data
which describes the information that the connected server will pro-
vide. The user interface adapts to this bootstrap information to dis-
play the data being transmitted from the server. An important aspect
of the design is that an application can be left largely undisturbed
when a client is not connected to it.

A space represents a component of the memory management
system to be visualised. This could be an area of a heap but may
also represent a free list or some other relevant structure. A GCspy
server can advertise any number of spaces. The server side imple-
mentation of a space, the component that allows communication
between a memory manager and the visualisation framework, is
known as a driver.

A space is partitioned into a number of blocks. Blocks allow
some visual granularity to be adopted for a specific space. For
example each block could represent a specific object or a node in
a free list. A contiguous view of memory will typically consist of
address-ordered blocks representing some arbitrary sized chunk of
memory.

At the client, blocks are rendered as small rectangles called tiles,
typically coloured according to the intensity of some attribute of the
block; example attributes include the number of used/free bytes,
number of objects, etc, within the block, and are defined by the
driver implementer. Each block of a space can be associated with
an arbitrary number of attributes.

A stream represents the values of some attribute for each block
of a space at a point of transmission from the server to the client.
Each space can have any number of streams (and thus each block
any number of attributes) and different spaces can have different
streams.

Streams have an associated textual descriptor which the driver
implementer can use to provide extra summary information about
a stream that cannot be derived from the values contained within
the stream. To allow the visualiser to represent correctly the tiles’
values (e.g. by shading them), the set of permissible attribute values
is also sent by the server to the client.

The client generates a representation of the tiles in an area of the
display window corresponding to a space, with one rectangular box
per tile (block) rendered according to a currently selected attribute
associated with the stream.

2.3.1 Data Capture

GCspy does not define a data collection method – this is left to
the system implementer. When visualising a garbage collector, data
is typically gathered by sweeping over each collector component
(heap space, region, etc.) at specified garbage collection events.
Stream data is then assembled from scratch and the entire stream is
sent to the client. This constitutes a synchronous mode of operation
where the application is essentially “paused” whilst the informa-
tion that is to be sent to the client is assembled. For a “stop-the-
world” tracing collector, events are typically associated with each
phase of a collection cycle (e.g. start collection, end collection).
In a more complex collector, such as the incremental train collec-
tor [16], events are associated with the start and end of young gen-
eration and each train collection cycles [17]. It is worth noting that
although [17] visualises an incremental collector, each collection
cycle appears instantaneous — a cycle is the finest granularity of
heap visualisation.

117

This synchronous mode of operation is inappropriate when vi-
sualising general-purpose allocators where the events (e.g. malloc
and free) occur at substantially higher frequencies than, for exam-
ple, garbage collection events and result in very small changes to
the heap state. For example, if the naive streaming model is used to
visualise a dlmalloc application, where event rates of the order of
100,000 per second are not unusual, the data capture and commu-
nication overheads invariably render the tool unusable.

As an alternative, the implementer is at liberty to perform data
capture asynchronously, for example using a separate thread to per-
form data capture concurrently with the application. It is also pos-
sible to arrange for communication with the client to be performed
periodically, e.g. after specified intervals of time, in order to main-
tain a satisfactory client update rate whilst reducing overall com-
munication.

This “manual” approach to handling asynchronous data cap-
ture has three drawbacks: Firstly, there is no internal support for
it, so the development effort, which is substantial, would need to
be replicated each time a similar asynchronous mode of operation
is required. Secondly, the framework does not support the notion
of incremental stream updates: only whole streams can be trans-
mitted to the client. This is potentially expensive when performing
periodic client updates as only a small proportion of the stream
values may have changed since the previous update. The imple-
menter could choose to partition streams into smaller ones so as
to reduce communication costs, but this has to be done manually
and may lead to a less-than-ideal client-side “model” of the actual
heap layout. Thirdly, external data capture complicates and poten-
tially hinders the interaction of the server, its drivers, and the client
when detecting undesirable behaviour and pausing the application
within close proximity. This interaction is heavily utilised in equip-
ping GCspy with the trigger functionality that allows it to be used
as an effective performance debugger.

The first set of enhancements we now describe are designed
to overcome these problems and to provide more control over the
coupling between server and client. In Section 4 we document a
range of additional features that enhance GCspy’s visualisation and
performance debugging capabilities.

3. Enhancing GCspy I: Sample-based
Visualisation

Improving GCspy’s ability to visualise dynamic memory alloca-
tors, in terms of both efficiency and productivity, involves modi-
fying the server-side architecture and server-client communication
models, as we now describe. Enhancements to the client-side visu-
alisation features are considered separately in Section 4.

3.1 Stream Control

To provide efficient support for fine-grained high-frequency event
handling within the GCspy framework, we have modified the
stream control mechanisms in two important ways.

Firstly, we have added a new command (INCR_STREAM) that
enables the server to report incremental updates to a stream, rather
than specifying the complete set of block (tile) attributes associ-
ated with the stream. Secondly, we have added support for sample-
driven stream control in which stream updates are reported period-
ically to the client at intervals (the sampling interval) controlled by
a slider in the client GUI. Together these provide an asynchronous
mode of operation that is internal to the framework.

In order for the client to be updated correctly, incremen-
tal stream updates that occur between client updates need to be
buffered at the server. One buffer is required for each stream and
server-side buffer management code keeps track of which streams,
and which blocks within each stream, have been ‘dirtied’ since the

last client communication. At each client update only dirtied blocks
are flushed to the client.

The sampling interval controls two factors simultaneously.
Firstly, it influences the visualisation “frame rate” since, in princi-
ple, the smaller the interval between successive updates the higher
the frame rate that can be achieved. At the same time it also con-
trols the amount of ‘decoupling’ between client and server. The
longer the time between updates the further the application can get
ahead of the client, in terms of the current state of the client-side
visualisation.

Notice that the sampling rate also influences the volume of com-
munication required to update the client because increasing the
time between updates increases the average number of blocks that
will have been dirtied by the application in the intervening time.
There is thus a performance tradeoff between update communica-
tion overheads and frame rate which we evaluate in more detail in
Section 6.

3.2 Server Thread Model

Application
thread

Network
thread

Stream update

thread

Network
thread

b. Enhanced GCspy server

Network (TCP/IP)

buffers

...

Update

Ack

Application
thread

update
Client

rate
Sample

Commands

a. Original GCspy Server

Network (TCP/IP)

Commands

Non−incremental Non−incremental
CommandsCommands

Figure 2. Server Architecture

The extensions described above require a number of changes
to the thread model in the existing GCspy server. Currently, the
server has just two threads: an application thread that controls pro-
gram execution and all server-client communication, and a network
thread that is responsible for processing commands sent from the
client to the server, e.g. connect, disconnect, etc. This is shown in
Figure 2(a).

The enhanced server architecture is shown in Figure 2(b). Com-
mands sent from the client to the server are handled by the Network
thread as before and GCspy’s existing (non-incremental) com-
mands are sent from the server to the client as originally prescribed.

3.2.1 Events

In the current version of GCspy an event causes the state of each
space’s stream to be transmitted to the client. This is no longer the
case. The default behaviour is that an event causes the server-side
buffers to be updated. These are then flushed to the client, at the
specified interval, by an Update thread. The Update thread keeps
a count of the number of occurrences of each such event, which
it reports to the client at the update instances. The client is thus
able to display event counts that are both accurate and consistent
with respect to the current visualisation, even though the counts
themselves are only issued from the server periodically.

118

Note that events generated by the application thread do some-
times need to be reported to the client as they occur. A specific
example arises when handling triggers, which are the subject of
Section 4.4. We will defer discussion of this event reporting mech-
anism until then as it requires an understanding of the notion of
event attributes, described later (Section 4.4.1).

3.2.2 Updates

The Update thread periodically locks and flushes the server-side
buffers to the client (by sending INCR_STREAM commands) at a
rate specified by the sampling interval. Importantly, the Update
thread waits to receive an acknowledgement from the client before
allowing the application access to the stream buffers, by releasing a
buffer lock. This acknowledgement is sent by the client when it has
completed the redrawing of the GUI – this ensures that the client-
side visualisation at that point reflects accurately the current state
of the heap within the application.

Note that a separate semaphore ensures that client updates are
not issued until there is at least one item within the stream update
buffers. Thus, the actual update rate may also be affected by the
application event rate in extreme cases (the Update thread may have
to wait for the next event). When the sampling interval is zero, each
update may report as little as one block attribute to the client.

An important feature of the enhanced server is that synchronous
non-incremental event handling is identical to that of the current
GCspy. Therefore, the performance of the new framework differs
almost insignificantly from that of GCspy when used to visualise
garbage collectors in the conventional manner. The new framework
can thus straightforwardly replace the current GCspy without suf-
fering a performance hit, even though the additional features may
not be required or exploited.

3.3 Space Management

In the current version of GCspy, the number of blocks in a space
can be modified at runtime. However, this requires the associated
driver to be re-serialised, which results in its entire configuration
to be re-sent to the client, even though only the number of tiles
has changed. On the client side, the associated space, its data-
structures and its widgets are discarded, which creates garbage and
regenerates objects unnecessarily.

Our experience with dlmalloc (Section 5) shows that tile addi-
tion and removal are very frequent operations in dynamic mem-
ory allocators. In particular, the number of nodes in a free list may
change at every allocation/deallocation.

To remove the need to re-serialise the drivers on each space
modification, we have implemented commands for adding (ADD_TILES)
and removing (REMOVE_TILES) a specified number of tiles from a
space. For sample-driven streams these commands are issued to
the Update thread (see above) and have the effect of modifying
the structure of the stream update buffers (Figure 2). When these
buffers are flushed during a client update the change in structure
must also be related to the client in order that the associated stream
can be rendered correctly in the GUI.

4. Enhancing GCspy II: Client Functionality
4.1 Driver Grouping

When modelling an allocator it is intuitive to map each free list
to its own individual GCspy space and also highly desirable to
group related spaces. We have therefore added the capability to
group drivers/spaces hierarchically, so that the visualisation reflects
accurately the conceptual components of a system. For example,
free lists can be grouped into smallbin and treebin sets. We allow
spaces to be collapsed so that uninteresting ones maybe hidden
from display, thus eliminating ‘visual overload’ and increasing both

client and server throughput. A vertical scrollbar has also been
added to address the problem of rendering large numbers of spaces
simultaneously. This, together with the ability to collapse drivers
provides an element of user control over the volume of data that is
in view at any time.

Note that when a space is collapsed, updates to the associated
stream are not reported to the client. The server-side stream buffers
described in Section 3.1 naturally support these collapsible drivers
as they serve to cache changes to the associated spaces even though
those changes are not being reported to the client. To facilitate this
we have implemented a new stream command, COLLAPSE, which
the client uses to notify the server when a space has been collapsed
or uncollapsed. A space is reported as being collapsed either if it is
itself collapsed, or if any of its parent groups has been collapsed. A
space is reported as being uncollapsed if it is uncollapsed and all of
its parent groups are uncollapsed.

4.2 Ranges

We have added a feature that allows relationships between spaces
to be expressed through tile ranges, which define the start and end
“addresses” of the items contained in the associated block. The ad-
dresses are simply identifiers associated with the smallest data units
(e.g. bytes, table entries, etc.) of interest. This feature allows the
GUI to highlight tiles rendered in different spaces that correspond
to the same block of memory. As an example, an allocator may be
visualised with a space displaying a contiguous memory view and
separate spaces for each free list — the free list display contains
memory blocks that also reside in the contiguous memory display.

To support these inter-space relationships we have introduced a
tile range stream to carry range update information from the server
to the client. The tile range stream and GCspy’s existing control
stream are actually implemented as instances of a generic system
stream, which has also been added to the framework. Such streams
(optionally) capitalise on the performance benefits of sample-
driven stream transmission, incremental updates and driver col-
lapsing, as for user-defined streams.

4.3 Zooming

A visualised heap maybe on the order of 4GB in size, and with a
limited number of tiles that can be displayed on the client, each tile
must represent blocks of many (hundreds of) kilobytes. The inten-
sity of the colour of the tile is a general indicator of its population.
However, at this grain of resolution it is practically impossible to
resolve fine-grained aspects of the heap structure, such as fragmen-
tation. We have therefore incorporated a facility that allows the user
to zoom in on specified regions of memory, enabling more detailed
analysis of such characteristics to be explored.

To support zooming we maintain the address range and block-
ing factor of a space. The blocking factor determines how many ad-
dressable data units each block (on the server) and each tile (on the
client) represents. The associated driver uses the blocking factor to
determine the range of data that needs to be streamed to the client.
Thus, although zooming is controlled at the client side, required
changes to the data transmission are handled by the server. Succes-
sive zoom operations are stacked so that it is possible to zoom-out
to the previous zoom level.

4.4 A Heuristics-based Trigger Engine

GCspy was conceived purely as a visualisation tool. However,
it is often invaluable to be able to focus visualisation effort in
response to particular phenomena observed within the application.
For example, the user may be interested in tracking unusually
large allocations or in identifying points during execution where
fragmentation starts to occur.

119

To facilitate this we have introduced a trigger mechanism,
which has the effect of pausing program execution and sending
a FIRE_TRIGGER command to the client when a specific activity is
observed at the server. These commands are processed at the client
by invoking code specific to the trigger that has fired.

4.4.1 Event Attributes

The triggering mechanism works by associating attributes with
each event type. Event attributes are simply named integer values
that are registered by the server, in a similar manner to the way
events are registered in the current framework. For example, in
the case of dlmalloc the server-side application may associate the
attributes “Location” and “Size” (new block location and size) with
a memory allocation event. Information about the various events
and event attributes are registered at the server and are reported to
the client during initialisation.

Note that in the original GCspy framework the “elapsed time”
and the “compensation time” [15] were transmitted explicitly with
each event. These are now simply event attributes; an example of
how they can be used is given below.

4.4.2 Triggers

Triggers are specified by the user on the client. A trigger comprises
five components: an event e, an attribute a, a comparison operation
op, an integer threshold t, and an action act. Informally this means:
If, at the server, event e occurs and a op t then pause the application
and perform action act on the client. In practice, if both the event
and attribute tests succeed the FIRE_TRIGGER command is sent to
the client and the client-side action is performed as a bi-product
of processing that command. Currently, the comparison operations
supported are >, = and <. Thus, for example, e=Allocation,
a=Size, op=<, t=2048 causes a trigger to fire whenever an alloca-
tion of less than 2048 bytes occurs. Furthermore, attributes can be
associated with parameterised callbacks that deliver the attributes’
value at the server. It is therefore possible for the attribute, as spec-
ified at the client, to have additional parameters that are used when
computing the attribute value. An example is given in the next sec-
tion.

4.4.3 Actions and Plugins

Plugins are part of the current GCspy framework and we have
used this mechanism to define the client-side trigger actions. Indeed
actions and plugins are synonymous in the new framework: when
you specify a trigger action you are actually identifying which
plugin to invoke.

Trigger action plugins are composed of both server- and client-
side execution logic that extend the GCspy framework. Server-side,
plugins provide the functionality to extract attribute values from the
host application, such as the size of an allocation or the contents
of arbitrary memory locations. On the client-side, plugins contain
the logic that executes as a result of processing the FIRE_TRIGGER
command.

We have defined three trigger action plugins:

Backtrace Plugin The backtrace plugin opens a window on the
client, in which it displays a summary of all events generated by
the application since the trigger fired. Associated with each event
is a summary of the state of the stack at that execution point. The
number of stack frames included in the backtrace is a parameter
of the plugin. An example is illustrated in Figure 3 showing six
frames per backtrace. We now provide details of how the plugin
mechanism works, using the backtrace as an example.

Recall from Section 3.2.1 that events generated by the applica-
tion are not, by default, sent to the client. So, how did the events
shown in Figure 3 reach the client? The answer is that the action

Figure 3. The backtrace plugin

plugin associated with the trigger registers an “interest” in one or
more event attributes. The complete list of attributes is known by
the server, as explained in Section 4.4.1 above. Typically, the in-
terest list contains those attributes that the plugin needs to perform
some client-side activity, for example populating a client window.
In the case of the backtrace plugin of Figure 3, the attributes are the
location of each allocation/free, the size of each allocation, and the
set of six function address strings summarising the call sequence
defined by the six frames at the top of the stack.

Before a trigger fires, its associated plugin (trigger action) is
disabled. Plugins can however be enabled manually (see below).
Although the server is aware of the interest list of each trigger plu-
gin, these interests are essentially disabled at the server. Conse-
quently, events are not sent to the client. As soon as the trigger fires,
the associated client-side plugin is enabled, and its plugin window
opened, by virtue of receiving the corresponding FIRE_TRIGGER
command. Opening a plugin window causes its attributes of interest
to be enabled at the server1. All subsequent events are then reported
to the client together with the values of the attributes of interest to
the plugin. Closing the plugin window has the opposite effect.

As an example, Figure 4 shows the interface through which
new triggers are defined. It illustrates four triggers, one of which
is set to fire when an allocation of less than 128 bytes occurs;
one when an allocation greater than 64KB occurs; one when the
memory at heap location 0x5E800000 is modified; and the last
when fragmentation thresholds are exceeded (see Section 7). All
are enabled, as indicated by the checkboxes. The backtrace plugin
illustrated in Figure 3 shows both Allocation and Free events,
even though the backtrace trigger itself was fired by the allocation
at location 0x8112a70 (this fired the trigger as less than 128 bytes
were allocated).

At the server, the backtrace information is collected using the
portable open-source library, libunwind [19]. To limit the perfor-
mance hit in gathering this information and the size of the data
streamed to the client, the symbols and addresses of functions

1 Actually, the plugin increments a counter for each such attribute and the
client automatically reports non-zero counter attributes to the server.

120

Figure 4. The trigger interface

within the host application, and its shared libraries, are gathered
by the server-side plugin at initialisation. The plugin creates a hash
table mapping call site addresses to their function names and sends
it to the client. Backtrace attributes simply specify the address of
the function that generated the associated event and the client uses
the hash table to resolve the function name.

Note that when a backtrace window is open a substantial per-
formance penalty is incurred with each event, primarily as a result
of the required calls to libunwind. It is possible to open the plugin
window independently of any trigger, but this is only recommended
when the client is in single-step mode. This is, of course, the case
when the plugin is enabled via a trigger as the server is paused when
a trigger fires (Section 4.4.2).

Memory Display Plugin In a similar vein to the display of back-
trace information, the memory display plugin displays the contents
of user-specified memory locations on occurrence of an event. It
is worth noting that this event may itself be a watchpoint on the
contents of a memory location specified during trigger definition.

Memory Fragmentation Plugin Triggers can be specified that
fire when an n byte contiguous piece of memory, is segmented
in to x chunks of which the largest chunk is at most y bytes in
size. This provides a rudimentary mechanism for the monitoring
and diagnosis of excessive fragmentation — Wilson et al. [20]
discuss the difficulty in defining a metric that accurately quantifies
the amount of fragmentation.

In practice (Section 7) we find that the functionality provided by
the trigger-based heuristics engine to be both flexible and effective
in achieving our stated goals of performance analysis and problem
diagnosis. We define events that “watch” for specific undesired or
uncharacteristic behaviour. We use the displayed event count since
the program started as a checkpoint and then replay execution to
a point several hundred events before the start of this behaviour.
We then advance using single-step execution and the backtrace and
memory display plugins to assist in more detailed analysis.

4.5 Histories

An important feature of GCspy is the ability to display the evolution
of an attribute over time. These history graphs are maintained
by the client and are updated each time an attribute update is
reported to the client. In the original GCspy framework, these were
controlled by event commands; in the new framework these updates
are reported periodically, at a rate controlled by the client slider.

Note that if the client is disconnected from the server the history
trace is interrupted for the duration. We do not log the history
within the server as this would require an unbounded amount of
memory at the server. Note that, at the time of writing, the same

applies when a driver is collapsed. If a history of one of the driver’s
attributes is being displayed when the driver is collapsed, a similar
pause in the history is seen. There is actually no reason why the
server could not optionally2 continue to report attribute values after
the driver has been collapsed, but this is currently not supported.

5. Visualising dlmalloc
We have, where necessary, described and motivated many of the
features and enhancements we have added, with passing reference
to allocator visualisation. In the following section we complete the
picture by summarising our integration of GCspy with dlmalloc.

The public set of allocation and deallocation routines of dlmal-
loc (e.g. malloc() and free()) have been augmented with GC-
spy instrumentation. The events are streamed to the client, along
with attributes for the size of the (de)allocation request and the ad-
dress of the block (de)allocated. All streams employ incremental,
sample-driven data transmission. The majority of the remaining at-
tributes are defined and managed by the trigger action plugins that
have already been discussed.

The GCspy server must initialise (at least under the various
versions of Unix) when the dlmalloc shared library is loaded into
memory. This is achieved using the library’s .init section, which
is invoked by the dynamic linker after all shared libraries have been
loaded into memory and before the host application is allowed to
run. Prior to this point, it is possible, though unlikely, for the .init
sections of other libraries to call malloc(). It is therefore neces-
sary for our drivers to initially traverse dlmalloc’s data structures
in order to accurately reflect the true state of the heap.

The GCspy driver/server framework, uses the dynamic alloca-
tion routines malloc and free for the allocation of its internal data
structures. This is a problem if it is the allocator that provides
these functions that is also undergoing visualisation — the allo-
cation events from GCspy will be registered as if they came from
the host application. We have therefore modified the server with
gcspy_allocator hooks that allow registration of a malloc style al-
locator that services GCspy’s own allocation requests — the dl-
malloc integration uses a segregated mspace allocator for this gc-
spy_allocator.

Figure 1 depicts the hierarchical composition of dlmalloc and
the (collapsible) GCspy group and space mappings we apply. Fig-
ure 5 shows how this group hierarchy is represented on the client-
side user interface. Note that we have configured dlmalloc with
only three smallbins and three treebins in order to be able to show
the mapping of each of the various entities in a confined space.

2 A space may be collapsed for reasons of performance — to reduce render
times and increase throughput.

121

dlmalloc

smallbins

Contiguous

smallbin 1 smallbin 2 ...

treebins

treebin 1 treebin 2 treebin n...

key

space

group

(with zoom capability)

indexed space
space

mspaces

smallbin n

Figure 5. Mapping of dlmalloc’s GCspy group hierarchy to client-side user interface widgets

Like previous integrations of GCspy with garbage collected
environments, the main space provides a contiguous view of the
heap. This facilitates a view of both allocated and free chunks of
memory and the zoom capability (Section 4.2) allows us to focus
on both densely populated areas and also highly fragmented areas
of memory. In addition to this contiguous view, we provide two
groups and one further summary space:

Smallbin group A set of spaces, one for each free list, where each
(same sized) free chunk on the list is represented by a tile and the
order of the list is displayed in the ordering of the tiles. The effect of
each smallbin allocation and free event is reflected in the addition
and removal of tiles.

Treebin group A set of spaces, one for each trie, where each tile
represents a node in the tree and its colour intensity and summary
information reflect the size of the block and the length of the free
list (of same-sized chunks) at the associated node. The view is that
of a flattened tree — the reasons for the choice of this visualisation
as opposed to one that shows the complete structure of the tree
is explained in Section 8.1. We believe that the most important
information is the number of different sized blocks in the tree and
the number of same sized blocks at each node, and this is clearly
visualised. The effect of each treebin allocation and free event is
reflected in the addition or removal of tiles, or by a change in the
tiles’ colour intensity.

Mspace summary A single space where each tile represents each
individual segregated mspace. Selecting a tile displays the sum-
mary information about the mspace. Recall that each mspace ef-
fectively has its own local dlmalloc allocator. While it is cer-
tainly possible to recursively display contiguous, smallbin, treebin,
etc. spaces for each mspace, we have left this unimplemented —
mspaces are seldom used in practice, are used for specialised al-
location tasks and their characteristics should be better understood
in comparison to the heap. Furthermore, we feel that adding what
amounts to an individual GCspy server and client to each mspace

merely adds to ‘visual clutter’. The correct way to perform a de-
tailed mspace visualisation is to substitute the mspace itself for the
main dlmalloc heap while the remaining allocations use the na-
tive malloc implementation. The allocation or deallocation of an
mspace results in the addition or removal of a tile from this space.

Section 4.4.3 has already introduced the additional plugins, and
in particular, the memory fragmentation plugin which is arguably
one of the most important plugins for the tuning of dynamic mem-
ory allocators. In addition, we have added trigger conditions that
can be used to “watch” a change in the rate at which events are
generated. In the context of dlmalloc, this is most useful in trapping
sharp changes in the rate of (de)allocation. The backtrace and mem-
ory display plugins can then be employed to help determine where
and why the rate has changed so sharply and whether or not it is
acceptable behaviour. The history graphing plugin provides graphs
of how the spaces change over time, most usefully reflecting the
bin lengths throughout execution.

Finally, all the spaces make use of the tile range streams dis-
cussed in Section 4.2, in order to relate, via highlights, smallbin
and treebin free blocks and mspace regions to the contiguous space
and to facilitate zooming.

6. Performance Evaluation
We compared the original and enhanced GCspy performance when
visualising the Jikes RVM’s MMTk garbage collector, reflected in
the experiment reported in [15]. We considered a range of appli-
cations from the DaCapo benchmark suite [21]. All applications
were run with a 30MB heap with the client and server connected
throughout. The client-side visualisation was the same for both GC-
spy platforms, modulo small differences in the screen layout.

In all benchmarks the client machine was a 2.6 GHz Pentium IV
with 1GB RAM, a 4-way set associative 512KB level-2 cache with
64-byte lines, and an 8KB level-1 data and 12KB level-1 instruction
cache. The system ran Mandrake Linux 10.2 with a 2.6.13 kernel
in single-user mode. Similarly, the server machine was a 2.8 GHz

122

Pentium IV with 1GB RAM, a 4-way set associative 512KB level-2
cache with 64-byte lines, and an 8KB level-1 data and 12KB level-
1 instruction cache. The system ran Mandrake Linux 10.2 with a
2.6.13 kernel in single-user mode.

In each case the execution times differed negligibly (less than
2% for each) confirming that the enhanced server architecture has
little or no impact on performance when the framework is used to
duplicate “traditional” GCspy visualisations.

6.1 Stream Control

We now consider performance aspects of the sample-based visual-
isation. Recall that the slider in the client GUI enables the user to
control the length of the sampling interval between client updates,
as described in Section 3.1.

The sampling interval in part influences the “frame rate” of the
visualisation. For example, if the slider is set at 100ms the peak
frame rate achievable will be 10 frames per second. Of course, there
is a cost associated with issuing an update to the client that includes
the communication cost associated with flushing the server-side
update buffers to the client, the time taken to render the updates on
the client and the time taken to acknowledge the server. In practice,
therefore, the achieved frame rate will be less than that suggested
by the slider, often substantially.

Increasing the sampling interval allows the server-side applica-
tion to get ahead of the client-side visualisation. The two can be
brought into lock-step, at the event level, by setting the sampling
interval to zero. In this case the application will pause at each event
for the time it takes to update the client. Although the volume of
communication will be very small (typically only one tile will be
affected) a full cycle of communication, rendering and acknowl-
edgement must be incurred. As the sampling interval is lengthened,
the relative cost of communication and rendering decreases. The
average communication volume will increase because the longer
the time between updates, the more blocks will have been dirtied in
the intervening time. However, the trend will not be linear, as sev-
eral events may affect the same tile. The communication volume
will also be affected by the rate at which the application generates
events.

In order to evaluate the performance of the enhanced framework
we have developed a custom benchmark that allows us to control
the event rate, event mixture, etc. straightforwardly by varying a
small number of benchmark parameters. The benchmark produces
events (calls to malloc() and free()) in a tight loop, optionally
delaying between each event. At each allocation it mallocs a
random-sized block of memory up to some specified maximum.
The benchmark is parameterised by a random number seed that
enables the same random sequence of mallocs to be reproduced
over different runs. The various results presented were generated
using the same random seed.

We vary three parameters during the benchmarking exercise: the
sampling interval, the length of the delay between successive allo-
cation/deallocation events in the application and the number of tiles
in the client-side visualisation. In each case the maximum amount
of memory allocated at each (random) allocation was 50KB. Note
that with this parameterisation a tight loop (no delay) equates to a
sustained average request rate of around 116,000 events/s, when
executed independently of GCspy; with a 50µs delay between
requests the rate drops to around 24,000 events/s. We could, of
course, achieve higher rates by reducing the average size of each
malloc request.

Note that in real applications (we explored selected standard
KDE applications) the allocation/deallocation rates vary signifi-
cantly from the order of a few hundred per second (e.g. around
400/s for xcalc) to a few hundred thousand per second (e.g. around

100,000/s for Konqueror); typically the event rate peaks at start-up
(e.g. to around 300,000/s for Konqueror) before settling.

The results for 2000 and 8000 tiles are shown in Table 1. It
should be noted that the 8000 tile experiment is essentially the
same as that for 2000 tiles except that the tiles have effectively been
split into four. The heap size in each case was 512MB. An initial
delay was introduced before commencing instrumentation to allow
the client to be bootstrapped by the server and for the Java virtual
machine, etc. to initialise itself.

Within each table and for each tile set we consider sampling
intervals of 100, 200 and 500 ms and we explore inter-event delays
of 0, 50 and 100 µs. In each experiment we measured the average
number of tiles that were dirtied between updates and the total
time taken to communicate those updates to the client. We also
measured the effective frame rate achieved, which is computed as
the reciprocal of the average time between successive renderings of
the client GUI.

The sampling rates represent an upper bound on the frame rate
that can be achieved in each case and thus vary from 2 to 10 fps. Of
course, these rates could only be achieved in practice if the update
costs were zero.

The figures show that, for these parameterisations, the perfor-
mance of the framework is dominated by the GUI rendering times.
Currently, the rendering cost is dominated by the total number
of tiles, rather than the number that have been dirtied. For 2000
tiles, the rendering time is approximately 270ms across all param-
eterisations; for 8000 tiles it is around 2s, although there is some
variability–the minimum time was around 1.8s. Thus, the peak
frame rate achievable is around 2.7fps (1000/(270 + 100), assum-
ing zero communication cost) for 2000 tiles and 0.52 for 8000 tiles.
In the experiments performed, the peak rates achieved were 2.63
and 0.52 respectively, both with the shortest sampling interval of
100ms, as would be expected.

Although we are achieving acceptable performance in terms of
frame rate, the figures show that we could do substantially better
if the rendering could be performed incrementally. For example in
the experiment with 8000 tiles, a sampling interval of 100ms and a
mean of 50µs between events, the number of tiles that need to be
updated is 1601 on average – approximately one fifth of the total. If
the GUI could be rendered in approximately one fifth of the current
time the frame rate could be increased to around 1.9fps from the
current value of 0.49 (the mean rendering time in this experiment
was around 1.9s). Incremental rendering is thus a priority for future
work.

6.2 Driver Collapsing

Recall from Section 4.1 that the effect of collapsing a driver is to
eliminate the need to report updates to tiles that are hidden by virtue
of being part of a collapsed space. More significantly, perhaps, as
we have just seen, is the fact that the components of a collapsed
driver do not need to be rendered on the client GUI. As the renderer
constitutes the bottleneck in many cases, collapsing drivers (spaces)
will invariably serve to boost the frame rate.

7. Enhanced GCspy in Practice
7.1 Deferring dlmalloc’s Coalescing Policy

In order to evaluate qualitatively the usability of GCspy for per-
formance analysis we have synthesised an experiment that aims to
explore two possible coalescing strategies in dlmalloc. dlmalloc at-
tempts to coalesce all freed blocks as soon as they are deallocated
by inspecting the boundary tags [22] of the block’s predecessor and
successor. This “eager” strategy enables coalescing to be performed
in constant-time.

123

Update 2000 tiles 8000 tiles
interval Measurement Mean inter-event time (µs) Mean inter-event time (µs)

(ms) 0 50 100 0 50 100
Mean no. of dirty tiles 1347 566 354 4932 1601 978

100 Mean communication time (ms) 14.62 5.04 3.33 151.09 39.87 24.01
Effective frame rate 2.59 2.65 2.63 0.43 0.49 0.52
Mean no. of dirty tiles 1585 938 629 6953 2897 1836

200 Mean communication time (ms) 22.62 9.14 5.89 200.81 78.03 44.42
Effective frame rate 2.07 2.08 2.10 0.40 0.42 0.47
Mean no. of dirty tiles 1893 1643 1229 7784 5770 3926

500 Mean communication time (ms) 38.17 17.74 10.81 292.20 153.45 102.30
Effective frame rate 1.32 1.28 1.29 0.35 0.42 0.39

Table 1. Enhanced GCspy performance

Another approach is to defer coalescing, instead returning the
block to a free list of the appropriate size. It might then be real-
located from that free list, thus saving on the coalescing time, the
time to seek a suitable block and most likely split it. The idea is to
perform coalescing later, according to some heuristic — here we
choose the proportion of contiguous free space. Coalescing is then
performed by iterating over all smallbin and treebin structures.

Which strategy is best for a given benchmark? We would expect
dlmalloc to get this right, of course. The objective is not so much
to prove or disprove this here (a big task!), but rather to show how
our framework might be useful in analysing the two competing
strategies.

Figure 6. Deferred coalescing results in greater fragmentation

Figure 7. Eager coalescing minimises fragmentation

Figures 6 and 7 show GCspy visualising a benchmark running
dlmalloc with and without deferred coalescing.

We use the trigger provided by the memory fragmentation plu-
gin to trigger a transition to single-step mode (displaying backtrace
information) whenever a 512KB contiguous block of memory is
segmented into strictly more than 2000 chunks of which the largest
is at most 512 bytes in size (see Section 4.4.3 to recall the plugin
parameters). Figure 4 displays this. We find that the trigger fires
soon after execution begins, confirming the presence of at least one
highly fragmented block. We record the event count at which the
trigger fired. Figure 6 shows a visualisation of this block where we
see graphically a high proportion of unused tiles.

We then repeat the experiment with the original dlmalloc (eager
coalescing), placing a watchpoint on the previous event count.
Figure 7 shows a visualisation of the same block of memory at
the same point in the program, as determined by the event count,
where we see graphically a much higher proportion of used tiles.
Rather unsurprisingly, perhaps, the fragmentation trigger does not

fire at all during execution. Deferred coalescing may not always be
a bad strategy but for this benchmark it is seen to exhibit a degree
of fragmentation that eager coalescing appears to avoid.

8. Conclusions and Future Work
We have demonstrated that the original GCspy framework can be
adapted to visualise the behaviour of a general-purpose allocator
and have detailed the important enhancements to the GCspy client
and server that facilitate this.

The event rates generated by a dlmalloc application can be sev-
eral orders of magnitude higher than those generated by a garbage
collector. Tracking heap updates in anything approaching real time
is therefore predicated on the use of incremental sample-driven up-
dates from server to client and on providing client-side visualisa-
tion facilities that help reduce communication. We have described
an enhanced server architecture which supports such a communi-
cation model by locally caching stream updates and reporting them
in batches via a difference list, to the client at a user-controllable
rate. We have found that this provides satisfactory and “smooth”
visualisations with little loss of precision.

Performance evaluation studies have shown that the enhanced
framework runs equivalently to the original GCspy when used
to visualise a garbage collector in the manner initially intended.
Furthermore, using a contrived benchmark, we have explored the
effect of sample-driven streams on server-client communication
and visualisation frame rate. These experiments have shown that,
for a realistic number of tiles, the performance of the framework is
limited by the GUI rendering times.

We believe that this work furthers GCspy’s promise as a frame-
work for visualising any memory management system — a claim
made in the original GCspy paper [15] but arguably not fully sub-
stantiated at the time. Indeed, other potential applications of the
framework hinted at in [3], for example, may now be practical.

8.1 Future Work

At the inception of this work we set out to integrate GCspy with two
declarative programming environments: the ECLiPSe Constraint
Logic Programming System and GHC, the Glasgow Haskell Com-
piler. Both these systems have relatively complex allocators and
advanced (incremental) garbage collectors. We now believe that
GCspy has the necessary functionality required to perform such
integrations and, furthermore, to provide useful insights into both
memory subsystem and application behaviour.

GCspy could benefit from further enhancement in two specific
areas. We struggled for sometime over how to usefully visualise
dlmalloc’s treebins. Ideally GCspy should visualise each individ-
ual trie structure and its internal nodes, and track its structural
changes due to each allocation and free event, and rotations result-

124

ing from tree re-balancing operations. Not only is the visualisation
of such tree structures challenging, especially in confined screen
real-estate, but the degradation in client-server performance and
event throughput is also an issue. Many different types of (hybrid)
data-structure may be employed by an allocator in its free list rep-
resentation. GCspy could benefit from generalised graph visualisa-
tion and layout capabilities for the visualisation of such structures.
However, this is a complex problem, indeed it has its own dedicated
research area and while such projects as AT&T’s Graphviz [23]
attempt to address many of the issues, it is still not clear the ex-
tent to which it is successful. Our experience with Graphviz raises
concerns over its scalability and capability in handling online al-
gorithms and incrementally updating graph structures. It is our be-
lief, that treemaps, H-trees and bubble trees, as discussed in [24],
provide promising tree visualisation techniques — all satisfacto-
rily perform the visualisation in restricted space. For example, a
treemap is contained within a rectangular drawing area. Tree visu-
alisation is performed by cutting the tree at each node depth. The
drawing area is then partitioned into rectangles, where the number
of rectangles is equal to the number of nodes at that depth, and
the area of each rectangle is proportional to the number of children
the associated node has. Each rectangle in turn is then recursively
partitioned by applying the same method at each individual node.
The downside to such approaches is that they are less intuitive than
standard two dimensional tree representations — the structure of
the tree is not so immediately obvious.

GCspy’s heuristics engine is a candidate for significant devel-
opment. It is obvious that it can benefit from the addition of more
complex trigger rules and composition primitives than we have ini-
tially provided. Furthermore, over time, it could be backed by a
database of past characteristics that have led to, or have been diag-
nosed as, performance bottlenecks, thus enabling the formation of
a primitive expert system.

We have shown here that the critical performance bottleneck
in many situations is the client-side renderer. Any improvements in
this respect, e.g. by incremental redrawing, would help significantly
for very large tile sets. At the same time, however, we remark that
driver collapsing goes some way toward alleviating these problems.

Acknowledgments
The authors are grateful to the anonymous reviewers for their com-
ments during the review process.

References
[1] Doug Lea. A memory allocator.

http://gee.cs.oswego.edu/dl/html/malloc.html.

[2] Richard E. Jones. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Chichester, July 1996. With
a chapter on Distributed Garbage Collection by R. Lins.

[3] GCspy Team. Enhanced GCspy source code.
http://www.experimentalstuff.com/Technologies/GCspy/

[4] Emery D. Berger and Robert D. Blumofe. Hoard: A fast, scalable,
and memory-efficient allocator for shared-memory multiprocessors.
Technical Report UTCS TR99-22, University of Texas at Austin,
November 1999.

[5] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley.
Composing high-performance memory allocators. In Proceedings
of SIGPLAN 2001 Conference on Programming Languages Design
and Implementation, ACM SIGPLAN Notices, Snowbird, Utah, June
2001. ACM Press.

[6] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley.
Reconsidering custom memory allocation. In OOPSLA [25].

[7] Henry Lieberman and Carl E. Hewitt. A real-time garbage collector
based on the lifetimes of objects. AI Memo 569a, MIT, April 1981.

[8] David M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. ACM SIGPLAN
Notices, 19(5):157–167, April 1984. Also published as ACM
Software Engineering Notes 9, 3 (May 1984) — Proceedings of
the ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, 157–167, April 1984.

[9] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based
garbage collection. In OOPSLA’03 ACM Conference on Object-
Oriented Systems, Languages and Applications, ACM SIGPLAN
Notices, Anaheim, CA, November 2003. ACM Press.

[10] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine. Communications of the ACM, 3:184–
195, 1960.

[11] C. J. Cheney. A non-recursive list compacting algorithm. Communi-
cations of the ACM, 13(11):677–8, November 1970.

[12] Henry G. Baker. List processing in real-time on a serial computer.
Communications of the ACM, 21(4):280–94, 1978. Also AI
Laboratory Working Paper 139, 1977.

[13] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Conference
Record of the Thirtieth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices, New Orleans,
LA, January 2003. ACM Press.

[14] Andrew M. Cheadle, Anthony J. Field, Marlow Simon, Simon L.
Peyton-Jones, and Lyndon While. Exploring the barrier to entry —
incremental generational garbage collection for Haskell. In Amer
Diwan, editor, ISMM’04 Proceedings of the Third International
Symposium on Memory Management, ACM SIGPLAN Notices,
Vancouver, October 2004. ACM Press.

[15] Tony Printezis and Richard Jones. GCspy: An adaptable heap
visualisation framework. In OOPSLA [25], pages 343–358.

[16] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage
collection for mature objects. In Yves Bekkers and Jacques
Cohen, editors, Proceedings of International Workshop on Memory
Management, volume 637 of Lecture Notes in Computer Science,
University of Massachusetts, USA, 16–18 September 1992. Springer-
Verlag.

[17] Tony Printezis and Alex Garthwaite. Visualising the Train garbage
collector. In David Detlefs, editor, ISMM’02 Proceedings of the Third
International Symposium on Memory Management, ACM SIGPLAN
Notices, pages 100–105, Berlin, June 2002. ACM Press.

[18] Imperial College GCspy Team. I Spy with my GCspy.
http://www.doc.ic.ac.uk/~ajf/Research/publications.html

[19] HP Labs. The libunwind project.
http://www.hpl.hp.com/research/linux/libunwind/.

[20] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
Dynamic storage allocation: A survey and critical review. In Henry
Baker, editor, Proceedings of International Workshop on Memory
Management, volume 986 of Lecture Notes in Computer Science,
Kinross, Scotland, September 1995. Springer-Verlag.

[21] DaCapo Project. The DaCapo benchmark suite (version beta051009).
http://osl-www.cs.umass.edu/DaCapo/gcbm.html.

[22] Donald E. Knuth. The Art of Computer Programming, volume I:
Fundamental Algorithms, chapter 2. Addison-Wesley, second edition,
1973.

[23] AT&T Research. Graphviz - graph visualization software.
http://www.graphviz.org/.

[24] Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 6(1):24–43, /2000.

[25] OOPSLA’02 ACM Conference on Object-Oriented Systems, Lan-
guages and Applications, ACM SIGPLAN Notices, Seattle, WA,
November 2002. ACM Press.

125

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

