
Common Lisp

What is Lisp?

• Designed in 1956 by John McCarthy

• It’s way more than ML with lots of parenthesis

• Became named for what is was good at:• Became named for what is was good at:

– LISt Processing

– Lots of Irritating Superfluous Parenthesis

Two Black Boxes

Most programming languages have a single

“black box” which has three components:

lexical analyzer, parser, evaluator.

Lisp has two black boxes:

1.) Reader: translate text into LISP objects

2.) Evaluator: implements semantics of language

Two Black Boxes (cont.)

Allows you to…

• You can “print” code and “read” it back in

• Semantics of language is defined in terms of

trees of Lisp objects, so generating its easy to trees of Lisp objects, so generating its easy to

generate code within the language

• Generate code by manipulating existing data

S-Expressions

• S-expressions are Lisp objects

• Composed of lists and atoms

• Valid identifiers consist of: A-Z 0-9 + - / & %

and is NOT case sensitive

• Like most languages that support objects, Lisp passes • Like most languages that support objects, Lisp passes
them around by reference

• Some s-expressions are called “forms”

• Not all s-expressions are valid:

(foo 1 2)

(“foo” 1 2)

Atoms

Numbers:

17

1/7

1.71.7

-17

+17

1.7d0

1.7e-4

Atoms (cont.)

Strings:

“foo” => “foo”

“fo\o” => “foo”

“fo\\o” => “fo\o”“fo\\o” => “fo\o”

“fo\”o” => “fo\”o”

Chars:

#\a

#\+

Functions

Normally functions are defined using the DEFUN macro:

(defun name (parameter*)
“optional documentation string”
body-form*)

Definition:Definition:

(defun hello-world ()
“useful documentation”
(print “hello world”))

Invocation:

(hello-world) => “hello world”
(hello-world ()) => ERROR

Lists

Technically, list is a subtype of sequence, which is also

the base type of other common lisp data structures

• ()• ()

• (1 2 3)

• (“foo” “bar”)

• (x y z)

• (foo 1 2 3)

Lists (cont.)

P-lists where :key is a keyword

(this is NOT a hash table!)

(list :a 1 :b 2 :c 3) => (:A 1 :B 2 :C 3)

(getf (list :a 1 :b 2 :c 3) :b) => 2

(setf (getf(list :a 1 :b 2) :b) 3) => (:A 1 :B 3)

cons

Actually, there are no lists in lists

(cons 1 2) => (1 . 2)

(1, 2) => (1, 2)(1, 2) => (1, 2)

(cons 1 (cons 1 2) => (1 . (2 . 3)

(1, (1, 2)) => (1, (2, 3))

cars and cdrs

(car(cons(1 (cons (2, 3))) => 1
hd [1, 2, 3] => 1
(car (list 1 2 3)) => 1

(cdr(cons(1 (cons (2, 3))) => (2 . 3)(cdr(cons(1 (cons (2, 3))) => (2 . 3)
tl [1, 2, 3] => [2, 3]
(cdr (list 1 2 3)) => (2 3)

But Lisp is better:

hd tl tl [1, 2, 3, 4] => 3
(caddr (list 1 2 3 4)) => 3

Variables

Local:

(setf x 10)

Globals:

(defparameter *db* () “documentation”)
(defvar *db* (1 2 3) “documentation”)

Constants:

(defconstant +c+ 11 “documentation”)

Special Parameters

Optional parameters:
(defun foo (a b &optional c d)

(list a b c d))
(defun foo (a b &optional (c 10))

(list a b c)

Rest parameters :Rest parameters :
(defun foo (&rest numbers)

(+ numbers))

Keyword parameters:
(defun foo (&key a b c)

(list a b c))

(foo :a 1 :b 2 :c 3) => (1 2 3)

Cool Stuff

You can return an s-expression instead of evaluating
it! This is done by suppressing evaluation:

(1 2 3) => ERROR

`(1 2 3) = > (1 2 3)`(1 2 3) = > (1 2 3)

``(1 2 3) => `(1 2 3)

You can also “unsuppress” evaluation:

``,(1 2 3) => `(1 2 3)

,(1 2 3)=> ERROR

Some Useful Functions

(first ‘(1 2 3 4 5)) => 1

(rest ‘(1 2 3 4 5)) => (2 3 4 5)

(last ‘(1 2 3 4 5)) => 5

(append ‘(1 2 3) ‘(4 5 6)) => (1 2 3 4 5 6)

[1, 2, 3] @ [4, 5, 6] => [1, 2, 3, 4, 5, 6]

`(1 2 ,@(2 3 4)) => (1 2 3 4)

1::2::[3, 4] => [1, 2, 3, 4]

More Useful Functions

(map `list #`+ `(1 2 3) `(1 1 1)) => (2 3 4)
map (fn x=>x+1) [1, 2, 3] => [2, 3, 4]

(reduce #’+ #(1 2 3)) => 6
foldl op+ 0 [1, 2, 3] => 6foldl op+ 0 [1, 2, 3] => 6

(random 10)
(quote (1 2 3))
(atom `(1 2 3))
(null ())

Sequence Functions

(length s)

(elt s 0)

(setf (elt s 0) 99)

(count 1‘(1 2 3 1)) => 2

(remove 1‘(1 2 3 1)) = (2 3)

(substitute 10 1 ‘(1 2 3 1)) => (10 2 3 10)(substitute 10 1 ‘(1 2 3 1)) => (10 2 3 10)

(find 1‘(1 2 3 1)) => T

(find 10‘(1 2 3 1)) => NIL

(position 1‘(1 2 3 1)) => 0

(concatenate‘vector‘(1 2 3)‘(4 5 6)) => #(1 2 3 4 5 6)

(sort ‘(4 1 2 3) #’<) => (1 2 3 4)

(merge ‘vector #(1 3 5) #(2 4 6) #’<) => #(1 2 3 4 5 6)

Sequence Predicates

(every #'evenp '(1 2 3 4 5)) => NIL

(some #'oddp '(1 2 3 4 5)) => T

(notany #'> '(1 2 3) '(1 2 3)) => T

(notevery #'> '(1 2 3) '(1 2 3)) => T

Math Stuffs

(+ 1 2) => 3

(* 1 2) => 2

(- 1 2) => -1

(/ 1 2) => 1/2

(= 1 1) = > T

(< 2 3) => T

(>= 2 3) => NIL

Math Stuffs (cont.)

(log x)

(exp x)

(sin x)

(floor x)

(max 1 2 3)

(min a b c)

Control Constructs

(if condition then-form [else-form])
(if t (print “Yup”) (print “Nope”))

(when condition &rest body)
(when t (print “Hello”) (print “World”))

(unless condition &rest body)
(unless t (print “Hello”) (print “World”))

(let (variable*) body-form*)
(let ((x 1) (y 2) z) (list x y z))

(not condition), (and condition*), (or condition *)

Loops

(dolist (x `(1 2 3)) (print x))

(dotimes (x 5) (print x))

(do (variable-definition*)(do (variable-definition*)
(end-test-form result-form*)
statement*)

(do ((i 0 (+ 1 i)))

((= i 5))

(print i))

Loops (cont.)

(loop body-form*)

(loop for i from 1 to 5 collecting i) => (1 2 3 4 5)

(loop for i from 1 to 5 summing i) => 15

(loop
(when (> (get-universal-time) *some-future-date*)

(return))
(print “waiting...”)
(sleep 100))

Vectors

Vectors default to a fixed size, but you can

provide keywords to change how its working

:initial-element 5:initial-element 5

:element-type NUMBER

:fill-pointer 0

:adjustable t

Vectors (cont.)

(vector) => #()

(vector 1 2 3 => #(1 2 3)

(vector-pop v)

(vector-push ‘c v)

(make-array 5 :initial-element nil) => #(nil, nil, nil, nil, nil)

(make-array 5 :fill-pointer 0) => #()

(make-array 5 :fill-pointer 0 :adjustable t) => #()

All the sequence functions work for vectors too!

Hash Tables

(defparameter *h* (make-hash-table))

(gethash ‘foo *h*) => NIL

(setf (gethash ‘foo *h*) ‘bar)(setf (gethash ‘foo *h*) ‘bar)

(gethash ‘foo *h*) => BAR

I/O

Input:

(read-line)
(parse-integer (read-line))

Output:Output:

(print “hello”)
(write-line “hello”)
(format t “hello”)
(format t “hello ~a” “world”)

Anonymous Functions

(lambda (parameters) body)

((lambda (x) x+1) 11) => 12

(fn x ==> x+1) 11 => 12

Macros

At first, LISP had no macros. And then it did.

(defmacro name (parameter*)

“Optional documentation string.”“Optional documentation string.”

body-form*)

Macros accept and return ASTs. This means you can

write macros with macros!

Macros (cont.)

(if condition then-form [else-form])
(if (< 2 3) “Yup”)
(if (< 2 3)

(progn
(“Yup”)(“Yup”)
(“Yup, again”)))

(defmacro if2 (condition &rest body))
`(if ,condition (progn ,@body)))

(if2 (< 2 3) (“Yup”) (“Yup, again”))

Classes
A simple class:

(defclass name (direct-superclass-name*)

(slot-specifier*))

(defclass bank-account ()

(customer-name

balance))

(make-instance ‘bank-account)

Another class:

(defclass bank-account()

((customer-name

:initarg :customer-name)

(balance

:initarg :balance))

(make-instance ‘bank-account

:customer-name “John Doe”

:balance 1000)

Generics

Accessors:
(defun balance (account)

(slot-value account ‘balance))

To support subclasses you want:
(defgeneric balance (account))

(defmethod balance ((account bank-account))
(slot-value account ‘balance))

Mutators:
(defgeneric (setf balance) (value account))

(defmethod (setf balance) (value (account bank-account))
(setf (slot-value account ‘balance) value))

Inheritance

All members of a class and functions that operate on that
class are usable in subclasses.

(def class foo()
..)

(def class bar (foo)
..)

…can have multiple, direct superclasses!

CALL-NEXT-METHOD makes a call “up” to the next most
specific function.

call-with-current-continuation

Although only supported by other dialects of lisp, the call-
with-current-continuation function (or call/cc) provides
users with a totally new way of doing things.

Scheme Example:

(define (f return) (define (f return)

(return 2)

3)

(display (f (lambda (x) x)))

(display (call-with-current-continuation f))

So Why Lisp?

• Emacs (which almost as good as [gk]edit)

• A LISP ninja can code faster than a C++ ninja

• C++ doesn’t even have hash tables in the STL

• It’s better than ML• It’s better than ML

• Macros make everything cleaner, shorter, and easier

• Writing code that writes code is better than writing

code that doesn’t write code

Dialect of Lisp

• Common Lisp

• Emacs Lisp

• Scheme

• Arc• Arc

• Dylan

References

• Practical Common Lisp by Peter Seibel

• Wikipedia• Wikipedia
http://en.wikipedia.org/wiki/Lisp_programming_language

