COMP 3351 Programming Languages

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

\footnote{Based on notes by Prof. Jens Palsberg, UCLA}
Today

• \(\lambda\)-calculus exercises
• Type soundness: definition
• Type system for the \(\lambda\)-calculus
• Type soundness: proof structure
• Type soundness proof for \(\lambda\)-calculus
• Featherweight Java
Calculate (execute)

\((\lambda a.\lambda b.\lambda c. b) \ 5 \ \lambda a.4\)
Calculate (execute)

\((\lambda a.\lambda b.\lambda c. a \ b \ c)\lambda x. x \ \ \lambda a.4 \ 5\)
Calculate (execute)

\[
((\lambda f. \lambda x. fx)(\lambda x. x \ x))(\lambda x. x)
\]
Calculate (execute)

\[(\lambda z. \lambda t. z \ t)\ 4 \ \lambda z. z\]
Type Soundness

• A program is a closed expression. \((a \ b)\) is not a program (because it contains free variables).

• A value is either a \(\lambda\)-abstraction \((\lambda x. e)\) or a constant \((c)\).

• A type system for a programming language is **sound** if well-typed programs cannot cause type errors.

• A “type error” generally corresponds to a program that has not been reduced to a value but still cannot continue to execute.

• The type system must define “well-typed”.
A Type Error!

\[(\lambda z. \lambda t. z \ t)4 \quad \lambda z. z \rightarrow^* 4 \quad \lambda z. z\]

The program is “stuck”.
Types for the λ-Calculus!

For the λ-calculus, we need two kinds of types: function types and an integer type.

Types are generated from the grammar:

$$t ::= t_1 \rightarrow t_2 \mid \text{Int}$$

Note that there are infinitely many types. Notice also that each type can be viewed as a tree. The size of the tree can be used to define a partial order over types.
Type Environments

A type environment Γ is a partial function with finite domain which maps elements of Var to types:

$$\Gamma = [x \mapsto \text{Int}, y \mapsto \text{Int} \to \text{Int}]$$
Examples: Types for Values

We write $\Gamma \vdash e : t$ to denote that expression e has type t in the type environment Γ:

\[
\emptyset \vdash 4 : \text{Int}
\]
\[
\emptyset \vdash \lambda x. (\text{succ } x) : \text{Int} \rightarrow \text{Int}
\]
Type Rules for the λ-calculus

\[\Gamma \vdash x : t \quad \text{if} \quad \Gamma(x) = t \quad (1) \]
Type Rules for the λ-calculus

$$
\frac{
\Gamma[x:s] \vdash e : t
}{
\Gamma \vdash \lambda x. e : s \rightarrow t
} \quad (2)
$$
Type Rules for the λ-calculus

\[\Gamma \vdash e_1 : s \rightarrow t \quad \Gamma \vdash e_2 : s \]
\[\Gamma \vdash e_1 e_2 : t \]
Type Rules for the λ-calculus

$$\Gamma \vdash c : \text{Int}$$ (4)
Type Rules for the λ-calculus

\[
\Gamma \vdash e : \text{Int} \\
\Gamma \vdash \text{succ } e : \text{Int}
\]
Well-typed expressions

- An expression e is well-typed if there exist Γ and t so that $\Gamma \vdash e : t$ is derivable.
Example: Type Derivation

\[
\begin{align*}
\emptyset[f : s \to t][x : s] & \vdash f : s \to t \\
\emptyset[f : s \to t][x : s] & \vdash x : s \\
\emptyset & \vdash \lambda x. fx : s \to t \\
\emptyset & \vdash \lambda f. \lambda x. fx : (s \to t) \to (s \to t)
\end{align*}
\]
Example: Failing Type Derivation

$$\emptyset \vdash \lambda x. e : \text{Int}$$

$$\emptyset \vdash \text{succ} (\lambda x. e) : \text{Int}$$
Type Soundness: Proof Structure

• Preservation
 – Substitution (with equal type) preserves type
 – Execution preserves type

• Progress
 – Certain types correspond to values (base case)
 – Closed expressions of other types can make progress
 – Progress does not change closedness

⇒ Well-typed programs cannot “go wrong”.
Substitution

If $\Gamma[x : s] \vdash e : t$ and $\Gamma \vdash M : s$ then $\Gamma \vdash e[x := M] : t$.
Proof by Induction

- Each term e in the λ-calculus can be associated with a (finite) “size” based on the syntax tree for the calculus.
- We will assume that the substitution lemma holds for a “smaller” term while we try to show that it holds for a “larger” term.
Larger?

- $\lambda x. e$ is larger than e
- $e_1 e_2$ is larger than e_1 and/or e_2 (individually)
- $\text{succ } e$ is larger than e
Substitution

To show:

If $\Gamma[x : s] \vdash e : t$ and $\Gamma \vdash M : s$ then $\Gamma \vdash e[x := M] : t$.

We have: Since $\Gamma[x : s] \vdash e : t$, one of our five type-rules must have been used in the last step of the type derivation.
Case 1: \(e \equiv y \)

- Case 1a: \(y \equiv x \). Then \(y[x := M] = M \). Since \(\Gamma[x : s] \vdash e : t \) we conclude \(s = t \). From \(\Gamma \vdash M : s \) and \(s = t \) we conclude \(\Gamma \vdash M : t \).

- Case 1b: \(y \not\equiv x \). Then \(y[x := M] = y \); from \(\Gamma[x : s] \vdash y : t \) we conclude \(\Gamma(y) = t \) and thus \(\Gamma \vdash y : t \).
Case 2: $e \equiv \lambda y.e_1$

• Case 2a: $y \equiv x$. Then $(\lambda y.e_1)[x := M] \equiv \lambda y.e_1$. Since x does not occur free in $\lambda y.e_1$ we can use the derivation from $\Gamma[x : s] \vdash \lambda y.e_1 : t$ to produce a derivation of $\Gamma \vdash \lambda y.e_1 : t$.

• Case 2b: $y \not\equiv x$. Then $(\lambda y.e_1)[x := M] \equiv \lambda z.e_1[y := z][x := M]$ with z fresh. (continued)
Case 2b: $e \equiv \lambda y. e_1$, $y \neq x$

The last step in the derivation of $\Gamma[x : s] \vdash e : t$ is of the form:

$$
\Gamma[x : s][y : t_2] \vdash e_1 : t_1
$$

$$
\frac{
\Gamma[x : s] \vdash \lambda y. e_1 : t_2 \to t_1
}{
\Gamma[x : s] \vdash e_1[\lambda y. e_1][y := z] : t_1.
}
$$

Hence $\Gamma[x : s][z : t_2] \vdash e_1[y := z] : t_1$. Note that e_1 and consequently $e_1[y := z]$ are “smaller” than $\lambda y. e_1$ and hence by induction hypothesis $\Gamma[z : t_2] \vdash e_1[y := z][x := M] : t_1$. With type rule (2) we can derive $\Gamma \vdash \lambda z. e_1[y := z][x := M] : t_2 \to t_1$.

Case 3: $e \equiv e_1 e_2$

The last step in the derivation of $\Gamma[x : s] \vdash e : t$ is of the form:

$$
\begin{align*}
\Gamma[x : s] &\vdash e_1 : t_2 \rightarrow t \\
\Gamma[x : s] &\vdash e_2 : t_2 \\
\hline
\Gamma[x : s] &\vdash e_1 \; e_2 : t
\end{align*}
$$

Using the induction hypothesis we get $\Gamma \vdash e_1[x := M] : t_2 \rightarrow t$ and $\Gamma \vdash e_2[x := M] : t_2$; with rule $\textbf{(3)} \; \Gamma \vdash e_1[x := M] \; e_2[x := M] : t$ follows.
Case 4: $e \equiv c$

Obviously $c[x := M] \equiv c$. The entire derivation of $\Gamma[x : s] \vdash e : t$ is of the form $\Gamma[x : s] \vdash c : \text{Int}$. From rule (4) we have $\Gamma \vdash c : \text{Int}$.
Case 5: $e \equiv \text{succ } e_1$

Proof is similar to case 3.
Type Preservation

If $\Gamma \vdash e : t$ and $e \rightarrow_V e'$, then $\Gamma \vdash e' : t$.
Proof by Induction

- We use induction over the derivation of $\Gamma \vdash e : t$.
- In the proof, we assume that the theorem holds for a derivation of depth $n - 1$ and show it for a derivation of depth n.
- The theorem is obvious for derivations of depth 0 since $e \rightarrow_v e'$ is impossible for those.
Case 1: $e \equiv x$

$e \rightarrow_V e'$ is not possible.
Case 2: \(e \equiv \lambda x. e_1 \)

\(e \rightarrow_V e' \) is not possible.
Case 3: $e \equiv e_1 e_2$

There are three subcases depending on which of the possible ways $e \rightarrow_V e'$ was used to make progress.

If either $e_1 e_2 \rightarrow_V e'_1 e_2$ or $e_1 e_2 \rightarrow_V e_1 e'_2$ were used, $\Gamma \vdash e' : t$ follows from the induction hypothesis and rule (3).
Case 3c: $e \equiv (\lambda x.e_1)v$

Suppose

$$(\lambda x.e_1)v \rightarrow_V e_1[x := v]$$

was used. Then the last part of the derivation of $\Gamma \vdash e : t$ is of the form:

$$
\frac{
\frac{
\Gamma[x:s] \vdash e_1 : t
}{
\Gamma \vdash \lambda x.e_1 : s \rightarrow t
}
\Gamma \vdash v : s
}{
\Gamma \vdash (\lambda x.e_1)v : t
}
$$

Using the substitution lemma, $\Gamma[x : s] \vdash e_1 : t$ and $\Gamma \vdash v : s$ we get $\Gamma \vdash e_1[x := v] : t$.
Case 4: $e \equiv c$

$e \rightarrow_V e'$ is not possible.
Case 5: \(e \equiv \text{succ } e_1 \)

Again we look at two subcases depending on how \(e \rightarrow_V e' \) happened.

If \(e \equiv \text{succ } c_1 \) and \(e' \equiv c_2 \) (where \(\langle c_2 \rangle = \langle c_1 \rangle + 1 \)) then the type derivation of \(\Gamma \vdash e : t \) was of the form \(\Gamma \vdash \text{succ } c_1 : \text{Int} \) and from rule (4) we have \(\Gamma \vdash c_2 : \text{Int} \).
Case 5b: \(e \equiv \text{succ} \ e_1 \text{ and } e_1 \rightarrow_V e_2 \)

The last part of the derivation of \(\Gamma \vdash e : t \) is then of the form:

\[
\frac{\Gamma \vdash e_1 : \text{Int}}{\Gamma \vdash \text{succ} \ e_1 : \text{Int}}
\]

From the induction hypothesis we have \(\Gamma \vdash e_2 : \text{Int} \), so using rule (5) we derive \(\Gamma \vdash \text{succ} \ e_2 : \text{Int} \).
Typable Value

If $\Gamma \vdash v : Int$, then v is of the form c.

If $\Gamma \vdash v : s \rightarrow t$ then v is of the form $\lambda x.e$.

Proof: Obvious from type rules 2 and 4.
Progress

If e is a closed expression, and $\Gamma \vdash e : t$ then either e is a value, or there exists e' such that $e \rightarrow_V e'$.
Proof by Induction

- Since $\Gamma \vdash e : t$ there must exist a type derivation for the term e

- We will assume that the progress lemma holds for a type derivation of size $n - 1$ while we try to show that it holds for a type derivation of size n

- There are now five subcases depending on which of the type rules was the last one used in the derivation
Case 1: $e \equiv x$

The term is not closed.
Case 2: \(e \equiv \lambda x. e \)

The term is a value.
Case 3: $e \equiv e_1 e_2$

Since e is closed, e_1 and e_2 must be closed. The last step in the derivation of $\Gamma \vdash e_1 e_2 : t$ must be of the form

$$\frac{\Gamma \vdash e_1 : s \rightarrow t \quad \Gamma \vdash e_2 : s}{\Gamma \vdash e_1 e_2 : t}$$

From the induction hypothesis we have that either e_1 is a value or there exists e'_1 such that $e_1 \rightarrow_V e'_1$ (in which case we can make progress to $e'_1 e_2$). Also, either e_2 is a value, or there exists e'_2 such that $e_2 \rightarrow_V e'_2$ (in which case we can make progress to $e_1 e'_2$).
Case 3c: \[e \equiv (\lambda x. e_3) e_2 \]

If both \(e_1 \) and \(e_2 \) are values, then according to the typeable value theorem \(e_1 \) must be of the form \(\lambda x. e_3 \) and hence

\[e_1 e_2 \rightarrow_V e_3[x := e_2] \]
Case 4: $e \equiv c$

The term is a value.
Case 5: \(e \equiv \text{succ} \; e_1 \)

Since \(e \) is closed, \(e_1 \) is also closed. The last step in the derivation of \(\Gamma \vdash e : t \) must be of the form

\[
\Gamma \vdash e_1 : \text{Int} \\
\frac{}{\Gamma \vdash \text{succ} \; e_1 : \text{Int}}
\]

From the induction hypothesis we have that either \(e_1 \) is a value or there exists \(e'_1 \) such that \(e_1 \rightarrow_V e'_1 \).
Case 5: \(e \equiv \text{succ } e_1 \) (continued)

If \(e_1 \) is a value, then from \(\Gamma \vdash e_1 : \text{Int} \) and the typeable value lemma we have that \(e_1 \) is of the form \(c_1 \) and hence \(\text{succ } c_1 \rightarrow c_2 \) (where \(\langle c_2 \rangle = \langle c_1 \rangle + 1 \)).

Otherwise, if there exists \(e'_1 \) such that \(e_1 \rightarrow V e'_1 \), then we can make progress using \(\text{succ } e_1 \rightarrow V \text{succ } e'_1 \).
Closedness Preservation

If \(e \) is closed, and \(e \rightarrow_{V} e' \), then \(e' \) is closed.

Proof: Obvious.
Conclusion

Well-typed programs cannot go wrong.

Proof: Suppose we have a well-typed program e that is stuck at an expression e' with $e \rightarrow^* e'$. We know that e' is closed (closedness preservation) and well-typed (type preservation). But then there exists e'' so that $e' \rightarrow_V e''$ (progress), a contradiction (e' can not be stuck).
Questions

?
Question!

Can Java programs go wrong?