
Christian Grothoff

COMP 3351 Programming Languages1

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1Based on notes by Prof. Jens Palsberg, UCLA

1



Christian Grothoff

Today

• λ-calculus exercises

• Type soundness: definition

• Type system for the λ-calculus

• Type soundness: proof structure

• Type soundness proof for λ-calculus

• Featherweight Java

2



Christian Grothoff

Calculate (execute)

(λa.λb.λc.b) 5 λa.4

3



Christian Grothoff

Calculate (execute)

(λa.λb.λc.a b c)λx.x λa.4 5

4



Christian Grothoff

Calculate (execute)

((λf.λx.fx)(λx.x x))(λx.x)

5



Christian Grothoff

Calculate (execute)

(λz.λt.z t)4 λz.z

6



Christian Grothoff

Type Soundness

• A program is a closed expression. (a b) is not a
program (because it contains free variables).

• A value is either a λ-abstraction (λx.e) or a constant
(c).

• A type system for a programming language is sound if
well-typed programs cannot cause type errors.

• A “type error” generally corresponds to a program that
has not been reduced to a value but still can not
continue to execute.

• The type system must define “well-typed”.

7



Christian Grothoff

A Type Error!

(λz.λt.z t)4 λz.z →∗V 4 λz.z

The program is “stuck”.

8



Christian Grothoff

Types for the λ-Calculus!

For the λ-calculus, we need two kinds of types: function

types and an integer type.

Types are generated from the grammar:

t ::= t1→ t2 | Int

Note that there are infinitely many types. Notice also that

each type can be viewed as a tree. The size of the tree

can be used to define a partial order over types.

9



Christian Grothoff

Type Environments

A type environment Γ is a partial function with finite

domain which maps elements of Var to types:

Γ = [x 7→ Int, y 7→ Int→ Int]

10



Christian Grothoff

Examples: Types for Values

We write Γ ` e : t to denote that expression e has type t

in the type environment Γ:

∅ ` 4 : Int

∅ ` λx.(succx) : Int→ Int

11



Christian Grothoff

Type Rules for the λ-calculus

Γ ` x : t if Γ(x) = t (1)

12



Christian Grothoff

Type Rules for the λ-calculus

Γ[x : s] ` e : t

Γ ` λx.e : s→ t
(2)

13



Christian Grothoff

Type Rules for the λ-calculus

Γ ` e1 : s→ t Γ ` e2 : s
Γ ` e1e2 : t

(3)

14



Christian Grothoff

Type Rules for the λ-calculus

Γ ` c : Int (4)

15



Christian Grothoff

Type Rules for the λ-calculus

Γ ` e : Int

Γ ` succ e : Int
(5)

16



Christian Grothoff

Well-typed expressions

• An expression e is well-typed if there exist Γ and t so
that Γ ` e : t is derivable.

17



Christian Grothoff

Example: Type Derivation

∅[f : s→ t][x : s] ` f : s→ t ∅[f : s→ t][x : s] ` x : s
∅[f : s→ t][x : s] ` fx : t
∅[f : s→ t] ` λx.fx : s→ t

∅ ` λf.λx.fx : (s→ t)→ (s→ t)

18



Christian Grothoff

Example: Failing Type Derivation

∅ ` λx.e : Int
∅ ` succ (λx.e) : Int

19



Christian Grothoff

Type Soundness: Proof Structure

• Preservation
– Substitution (with equal type) preserves type
– Execution preserves type

• Progress

– Certain types correspond to values (base case)
– Closed expressions of other types can make progress
– Progress does not change closedness

⇒ Well-typed programs cannot “go wrong”.

20



Christian Grothoff

Substitution

If Γ[x : s] ` e : t and Γ `M : s then Γ ` e[x := M ] : t.

21



Christian Grothoff

Proof by Induction

• Each term e in the λ-calculus can be associated with a
(finite) “size” based on the syntax tree for the calculus

• We will assume that the substitution lemma holds for a
“smaller” term while we try to show that it holds for a
“larger” term

22



Christian Grothoff

Larger?

• λx.e is larger than e

• e1e2 is larger than e1 and/or e2 (individually)

• succ e is larger than e

23



Christian Grothoff

Substitution

To show:

If Γ[x : s] ` e : t and Γ `M : s then Γ ` e[x := M ] : t.

We have: Since Γ[x : s] ` e : t, one of our five type-

rules must have been used in the last step of the type

derivation.

24



Christian Grothoff

Case 1: e ≡ y

• Case 1a: y ≡ x. Then y[x := M ] = M . Since

Γ[x : s] ` e : t we conclude s = t. From Γ `M : s and

s = t we conclude Γ `M : t.

• Case 1b: y 6≡ x. Then y[x := M ] = y; from Γ[x : s] `
y : t we conclude Γ(y) = t and thus Γ ` y : t.

25



Christian Grothoff

Case 2: e ≡ λy.e1

• Case 2a: y ≡ x. Then (λy.e1)[x := M ] ≡ λy.e1. Since

x does not occur free in λy.e1 we can use the derivation

from Γ[x : s] ` λy.e1 : t to produce a derivation of

Γ ` λy.e1 : t.

• Case 2b: y 6≡ x. Then (λy.e1)[x := M ] ≡ λz.e1[y :=
z][x := M ] with z fresh. (continued)

26



Christian Grothoff

Case 2b: e ≡ λy.e1, y 6≡ x

The last step in the derivation of Γ[x : s] ` e : t is of the

form:
Γ[x : s][y : t2] ` e1 : t1

Γ[x : s] ` λy.e1 : t2→ t1
Hence Γ[x : s][z : t2] ` e1[y := z] : t1. Note that e1

and consequently e1[y := z] are “smaller” than λy.e1

and hence by induction hypothesis Γ[z : t2] ` e1[y :=
z][x := M ] : t1. With type rule (2) we can derive

Γ ` λz.e1[y := z][x := M ] : t2→ t1.

27



Christian Grothoff

Case 3: e ≡ e1e2

The last step in the derivation of Γ[x : s] ` e : t is of the

form:

Γ[x : s] ` e1 : t2→ t Γ[x : s] ` e2 : t2
Γ[x : s] ` e1 e2 : t

Using the induction hypothesis we get Γ ` e1[x := M ] :
t2→ t and Γ ` e2[x := M ] : t2; with rule (3) Γ ` e1[x :=
M ] e2[x := M ] : t follows.

28



Christian Grothoff

Case 4: e ≡ c

Obviously c[x := M ] ≡ c. The entire derivation of

Γ[x : s] ` e : t is of the form Γ[x : s] ` c : Int. From

rule (4) we have Γ ` c : Int.

29



Christian Grothoff

Case 5: e ≡ succ e1

Proof is similar to case 3.

30



Christian Grothoff

Type Preservation

If Γ ` e : t and e→V e
′, then Γ ` e′ : t.

31



Christian Grothoff

Proof by Induction

• We use induction over the derivation of Γ ` e : t.

• In the proof, we assume that the theorem holds for a
derivation of depth n − 1 and show it for a derivation
of depth n.

• The theorem is obvious for derivations of depth 0 since
e→V e

′ is impossible for those.

32



Christian Grothoff

Case 1: e ≡ x

e→V e
′ is not possible.

33



Christian Grothoff

Case 2: e ≡ λx.e1

e→V e
′ is not possible.

34



Christian Grothoff

Case 3: e ≡ e1e2

There are three subcases depending on which of the

possible ways e→V e
′ was used to make progress.

If either e1e2→V e
′
1e2 or e1e2→V e1e

′
2 were used, Γ ` e′ : t

follows from the induction hypothesis and rule (3).

35



Christian Grothoff

Case 3c: e ≡ (λx.e1)v

Suppose

(λx.e1)v →V e1[x := v]

was used. Then the last part of the derivation of Γ ` e : t is of the

form:
Γ[x:s]`e1:t

Γ`λx.e1:s→t Γ ` v : s
Γ ` (λx.e1)v : t

Using the substitution lemma, Γ[x : s] ` e1 : t and Γ ` v : s we get

Γ ` e1[x := v] : t.

36



Christian Grothoff

Case 4: e ≡ c

e→V e
′ is not possible.

37



Christian Grothoff

Case 5: e ≡ succ e1

Again we look at two subcases depending on how e→V e
′

happened.

If e ≡ succ c1 and e′ ≡ c2 (where 〈c2〉 = 〈c1〉 + 1)

then the type derivation of Γ ` e : t was of the form

Γ ` succ c1 : Int and from rule (4) we have Γ ` c2 : Int.

38



Christian Grothoff

Case 5b: e ≡ succ e1 and e1→V e2

The last part of the derivation of Γ ` e : t is then of the

form:
Γ ` e1 : Int

Γ ` succ e1 : Int

From the induction hypothesis we have Γ ` e2 : Int, so

using rule (5) we derive Γ ` succ e2 : Int.

39



Christian Grothoff

Typable Value

If Γ ` v : Int, then v is of the form c.

If Γ ` v : s→ t then v is of the form λx.e.

Proof: Obvious from type rules 2 and 4.

40



Christian Grothoff

Progress

If e is a closed expression, and Γ ` e : t then either e is a

value, or there exists e′ such that e→V e
′.

41



Christian Grothoff

Proof by Induction

• Since Γ ` e : t there must exist a type deriviation for
the term e

• We will assume that the progress lemma holds for a
type deriviation of size n− 1 while we try to show that
it holds for a type deriviation of size n

• There are now five subcases depending on which of the
type rules was the last one used in the deriviation

42



Christian Grothoff

Case 1: e ≡ x

The term is not closed.

43



Christian Grothoff

Case 2: e ≡ λx.e

The term is a value.

44



Christian Grothoff

Case 3: e ≡ e1e2

Since e is closed, e1 and e2 must be closed. The last step

in the derivation of Γ ` e1e2 : t must be of the form

Γ ` e1 : s→ t Γ ` e2 : s
Γ ` e1e2 : t

From the induction hypothesis we have that either e1 is a

value or there exists e′1 such that e1→V e
′
1 (in which case

we can make progress to e′1e2). Also, either e2 is a value,

or there exists e′2 such that e2 →V e
′
2 (in which case we

can make progress to e1e
′
2.

45



Christian Grothoff

Case 3c: e ≡ (λx.e3)e2

If both e1 and e2 are values, then according to the typeable

value theorem e1 must be of the form λx.e3 and hence

e1e2→V e3[x := e2]

46



Christian Grothoff

Case 4: e ≡ c

The term is a value.

47



Christian Grothoff

Case 5: e ≡ succ e1

Since e is closed, e1 is also closed. The last step in the

derivation of Γ ` e : t must be of the form

Γ ` e1 : Int
Γ ` succ e1 : Int

From the induction hypothesis we have that either e1 is a

value or there exists e′1 such that e1→V e
′
1.

48



Christian Grothoff

Case 5: e ≡ succ e1 (continued)

If e1 is a value, then from Γ ` e1 : Int and the typeable

value lemma we have that e1 is of the form c1 and hence

succc1→ c2 (where 〈c2〉 = 〈c1〉+ 1).

Otherwise, if there exists e′1 such that e1 →V e
′
1, then

we can make progress using succ e1→V succ e′1.

49



Christian Grothoff

Closedness Preservation

If e is closed, and e→V e
′, then e′ is closed.

Proof: Obvious.

50



Christian Grothoff

Conclusion

Well-typed programs cannot go wrong.

Proof: Suppose we have a well-typed program e that is

stuck at an expression e′ with e →∗V e′. We know that

e′ is closed (closendess preservation) and well-typed (type

preservation). But then there exists e′′ so that e′ →V e
′′

(progress), a contradiction (e′ can not be stuck).

51



Christian Grothoff

Questions

?

52



Christian Grothoff

Question!

Can Java programs go wrong?

53


