COMP 3351 Programming Languages¹

Christian Grothoff

christian@grothoff.org

http://grothoff.org/christian/

¹Based on notes by Prof. Jens Palsberg, UCLA

Today

- λ -calculus exercises
- Type soundness: definition
- \bullet Type system for the $\lambda\text{-calculus}$
- Type soundness: proof structure
- \bullet Type soundness proof for $\lambda\text{-calculus}$
- Featherweight Java

$(\lambda a.\lambda b.\lambda c.b)$ 5 $\lambda a.4$

$(\lambda a.\lambda b.\lambda c.a \quad b \quad c)\lambda x.x \quad \lambda a.4 \quad 5$

4

 $((\lambda f.\lambda x.fx)(\lambda x.x \quad x))(\lambda x.x)$

 $(\lambda z.\lambda t.z t)4 \lambda z.z$

Type Soundness

- A program is a closed expression. $(a \ b)$ is not a program (because it contains free variables).
- A value is either a λ -abstraction ($\lambda x.e$) or a constant (c).
- A type system for a programming language is **sound** if *well-typed* programs cannot cause *type errors*.
- A "type error" generally corresponds to a program that has not been reduced to a value but still can not continue to execute.
- The type system must define "well-typed".

A Type Error!

$$(\lambda z.\lambda t.z \quad t)4 \quad \lambda z.z \rightarrow^*_V 4 \quad \lambda z.z$$

The program is "stuck".

Types for the λ **-Calculus!**

For the λ -calculus, we need two kinds of types: function types and an integer type.

Types are generated from the grammar:

$$t ::= t_1 \to t_2 \mid \texttt{Int}$$

Note that there are infinitely many types. Notice also that each type can be viewed as a tree. The size of the tree can be used to define a partial order over types.

Type Environments

A type environment Γ is a partial function with finite domain which maps elements of Var to types:

$$\Gamma = [x \mapsto \texttt{Int}, y \mapsto \texttt{Int} \to \texttt{Int}]$$

Examples: Types for Values

We write $\Gamma \vdash e : t$ to denote that expression e has type t in the type environment Γ :

 $\emptyset \vdash 4 : \texttt{Int}$ $\emptyset \vdash \lambda x.(\texttt{succ} x) : \texttt{Int} \to \texttt{Int}$

Type Rules for the λ -calculus

$$\Gamma \vdash x : t \quad \text{if } \Gamma(x) = t \tag{1}$$

Type Rules for the λ -calculus

$$\frac{\Gamma[x:s] \vdash e: t}{\Gamma \vdash \lambda x.e: s \to t}$$
(2)

(3)

Type Rules for the $\lambda\text{-calculus}$

$$\frac{\Gamma \vdash e_1: \ s \to t \quad \Gamma \vdash e_2:s}{\Gamma \vdash e_1 e_2:t}$$

Christian Grothoff

(4)

Type Rules for the λ -calculus

 $\Gamma \vdash c$: Int

15

(5)

Type Rules for the $\lambda\text{-calculus}$

 $\frac{\Gamma \vdash e : \text{ Int}}{\Gamma \vdash \texttt{succ} e : \text{ Int}}$

Well-typed expressions

• An expression e is well-typed if there exist Γ and t so that $\Gamma \vdash e : t$ is derivable.

Example: Type Derivation

$$\begin{array}{ccc} \emptyset[f:s \to t][x:s] \vdash f:s \to t & \emptyset[f:s \to t][x:s] \vdash x:s \\ & \emptyset[f:s \to t][x:s] \vdash fx:t \\ & \theta[f:s \to t] \vdash \lambda x.fx:s \to t \\ & \emptyset \vdash \lambda f.\lambda x.fx:(s \to t) \to (s \to t) \end{array}$$

Example: Failing Type Derivation

 $\frac{\emptyset \vdash \lambda x.e:\texttt{Int}}{\emptyset \vdash \texttt{succ}\,(\lambda x.e):\texttt{Int}}$

Type Soundness: Proof Structure

- Preservation
 - Substitution (with equal type) preserves type
 - Execution preserves type
- Progress
 - Certain types correspond to values (base case)
 - Closed expressions of other types can make progress
 Progress does not change closedness
- \Rightarrow Well-typed programs cannot "go wrong".

Substitution

If $\Gamma[x:s] \vdash e:t$ and $\Gamma \vdash M:s$ then $\Gamma \vdash e[x:=M]:t$.

Proof by Induction

- Each term e in the λ -calculus can be associated with a (finite) "size" based on the syntax tree for the calculus
- We will assume that the substitution lemma holds for a "smaller" term while we try to show that it holds for a "larger" term

Larger?

- $\lambda x.e$ is larger than e
- e_1e_2 is larger than e_1 and/or e_2 (individually)
- succ e is larger than e

Substitution

To show:

If $\Gamma[x:s] \vdash e:t$ and $\Gamma \vdash M:s$ then $\Gamma \vdash e[x:=M]:t$. **We have:** Since $\Gamma[x:s] \vdash e:t$, one of our five typerules must have been used in the last step of the type derivation.

Case 1: $e \equiv y$

- Case 1a: $y \equiv x$. Then y[x := M] = M. Since $\Gamma[x:s] \vdash e:t$ we conclude s = t. From $\Gamma \vdash M:s$ and s = t we conclude $\Gamma \vdash M:t$.
- Case 1b: $y \not\equiv x$. Then y[x := M] = y; from $\Gamma[x : s] \vdash y : t$ we conclude $\Gamma(y) = t$ and thus $\Gamma \vdash y : t$.

Case 2: $e \equiv \lambda y.e_1$

- Case 2a: $y \equiv x$. Then $(\lambda y.e_1)[x := M] \equiv \lambda y.e_1$. Since x does not occur free in $\lambda y.e_1$ we can use the derivation from $\Gamma[x : s] \vdash \lambda y.e_1 : t$ to produce a derivation of $\Gamma \vdash \lambda y.e_1 : t$.
- Case 2b: $y \not\equiv x$. Then $(\lambda y.e_1)[x := M] \equiv \lambda z.e_1[y := z][x := M]$ with z fresh. (continued)

Case 2b:
$$e \equiv \lambda y.e_1$$
, $y \not\equiv x$

The last step in the derivation of $\Gamma[x:s] \vdash e:t$ is of the form:

$$\frac{\Gamma[x:s][y:t_2] \vdash e_1:t_1}{\Gamma[x:s] \vdash \lambda y.e_1:t_2 \to t_1}$$

Hence $\Gamma[x : s][z : t_2] \vdash e_1[y := z] : t_1$. Note that e_1 and consequently $e_1[y := z]$ are "smaller" than $\lambda y.e_1$ and hence by induction hypothesis $\Gamma[z : t_2] \vdash e_1[y := z][x := M] : t_1$. With type rule (2) we can derive $\Gamma \vdash \lambda z.e_1[y := z][x := M] : t_2 \to t_1$.

Case 3: $e \equiv e_1 e_2$

The last step in the derivation of $\Gamma[x:s] \vdash e:t$ is of the form:

$$\frac{\Gamma[x:s] \vdash e_1: t_2 \to t \quad \Gamma[x:s] \vdash e_2: t_2}{\Gamma[x:s] \vdash e_1 e_2: t}$$

Using the induction hypothesis we get $\Gamma \vdash e_1[x := M]$: $t_2 \rightarrow t$ and $\Gamma \vdash e_2[x := M] : t_2$; with rule (3) $\Gamma \vdash e_1[x := M] e_2[x := M] : t$ follows.

Case 4: $e \equiv c$

Obviously $c[x := M] \equiv c$. The entire derivation of $\Gamma[x : s] \vdash e : t$ is of the form $\Gamma[x : s] \vdash c :$ Int. From rule (4) we have $\Gamma \vdash c :$ Int.

Christian Grothoff

Case 5: $e \equiv \operatorname{succ} e_1$

Proof is similar to case 3.

30

Type Preservation

If $\Gamma \vdash e : t$ and $e \rightarrow_V e'$, then $\Gamma \vdash e' : t$.

Proof by Induction

- We use induction over the derivation of $\Gamma \vdash e: t$.
- In the proof, we assume that the theorem holds for a derivation of depth n-1 and show it for a derivation of depth n.
- The theorem is obvious for derivations of depth 0 since $e \rightarrow_V e'$ is impossible for those.

Christian Grothoff

Case 1: $e \equiv x$

 $e \rightarrow_V e'$ is not possible.

33

Christian Grothoff

Case 2:
$$e \equiv \lambda x.e_1$$

 $e \rightarrow_V e'$ is not possible.

Case 3: $e \equiv e_1 e_2$

There are three subcases depending on which of the possible ways $e \rightarrow_V e'$ was used to make progress.

If either $e_1e_2 \rightarrow_V e'_1e_2$ or $e_1e_2 \rightarrow_V e_1e'_2$ were used, $\Gamma \vdash e' : t$ follows from the induction hypothesis and rule (3).

Case 3c:
$$e \equiv (\lambda x.e_1)v$$

Suppose

$$(\lambda x.e_1)v \to_V e_1[x := v]$$

was used. Then the last part of the derivation of $\Gamma \vdash e : t$ is of the form:

$$\frac{\Gamma[x:s] \vdash e_1:t}{\Gamma \vdash \lambda x. e_1: s \to t} \quad \Gamma \vdash v:s}{\Gamma \vdash (\lambda x. e_1)v:t}$$

Using the substitution lemma, $\Gamma[x:s] \vdash e_1 : t$ and $\Gamma \vdash v : s$ we get $\Gamma \vdash e_1[x := v] : t$.

Christian Grothoff

Case 4: $e \equiv c$

 $e \rightarrow_V e'$ is not possible.

37

Case 5: $e \equiv \operatorname{succ} e_1$

Again we look at two subcases depending on how $e \rightarrow_V e'$ happened.

If $e \equiv \operatorname{succ} c_1$ and $e' \equiv c_2$ (where $\langle c_2 \rangle = \langle c_1 \rangle + 1$) then the type derivation of $\Gamma \vdash e : t$ was of the form $\Gamma \vdash \operatorname{succ} c_1 :$ Int and from rule (4) we have $\Gamma \vdash c_2 :$ Int.

Case 5b: $e \equiv \operatorname{succ} e_1$ and $e_1 \rightarrow_V e_2$

The last part of the derivation of $\Gamma \vdash e : t$ is then of the form:

$$\frac{\Gamma \vdash e_1 : \texttt{Int}}{\Gamma \vdash \texttt{succ} \, e_1 : \texttt{Int}}$$

From the induction hypothesis we have $\Gamma \vdash e_2$: Int, so using rule (5) we derive $\Gamma \vdash \text{succ} e_2$: Int.

Typable Value

- If $\Gamma \vdash v : Int$, then v is of the form c.
- If $\Gamma \vdash v : s \to t$ then v is of the form $\lambda x.e.$
- **Proof:** Obvious from type rules 2 and 4.

Progress

If e is a closed expression, and $\Gamma \vdash e : t$ then either e is a value, or there exists e' such that $e \rightarrow_V e'$.

Proof by Induction

- \bullet Since $\Gamma \vdash e: t$ there must exist a type deriviation for the term e
- We will assume that the progress lemma holds for a type deriviation of size n-1 while we try to show that it holds for a type deriviation of size n
- There are now five subcases depending on which of the type rules was the last one used in the deriviation

Christian Grothoff

Case 1: $e \equiv x$

The term is not closed.

Christian Grothoff

Case 2: $e \equiv \lambda x.e$

The term is a value.

Case 3:
$$e \equiv e_1 e_2$$

Since e is closed, e_1 and e_2 must be closed. The last step in the derivation of $\Gamma \vdash e_1e_2 : t$ must be of the form

$$\frac{\Gamma \vdash e_1 : s \to t \qquad \Gamma \vdash e_2 : s}{\Gamma \vdash e_1 e_2 : t}$$

From the induction hypothesis we have that either e_1 is a value or there exists e'_1 such that $e_1 \rightarrow_V e'_1$ (in which case we can make progress to e'_1e_2). Also, either e_2 is a value, or there exists e'_2 such that $e_2 \rightarrow_V e'_2$ (in which case we can make progress to $e_1e'_2$.

Christian Grothoff

Case 3c:
$$e \equiv (\lambda x.e_3)e_2$$

If both e_1 and e_2 are values, then according to the typeable value theorem e_1 must be of the form $\lambda x.e_3$ and hence

$$e_1 e_2 \to_V e_3[x := e_2]$$

Christian Grothoff

Case 4: $e \equiv c$

The term is a value.

Case 5: $e \equiv \operatorname{succ} e_1$

Since e is closed, e_1 is also closed. The last step in the derivation of $\Gamma \vdash e : t$ must be of the form

 $\frac{\Gamma \vdash e_1: \texttt{Int}}{\Gamma \vdash \texttt{succ} \, e_1: \texttt{Int}}$

From the induction hypothesis we have that either e_1 is a value or there exists e'_1 such that $e_1 \rightarrow_V e'_1$.

Case 5: $e \equiv \operatorname{succ} e_1$ (continued)

If e_1 is a value, then from $\Gamma \vdash e_1$: Int and the typeable value lemma we have that e_1 is of the form c_1 and hence $\operatorname{succ} c_1 \to c_2$ (where $\langle c_2 \rangle = \langle c_1 \rangle + 1$).

Otherwise, if there exists e'_1 such that $e_1 \rightarrow_V e'_1$, then we can make progress using succ $e_1 \rightarrow_V \operatorname{succ} e'_1$.

Closedness Preservation

If e is closed, and $e \rightarrow_V e'$, then e' is closed.

Proof: Obvious.

Conclusion

Well-typed programs cannot go wrong.

Proof: Suppose we have a well-typed program e that is stuck at an expression e' with $e \to_V^* e'$. We know that e' is closed (closendess preservation) and well-typed (type preservation). But then there exists e'' so that $e' \to_V e''$ (progress), a contradiction (e' can not be stuck).

Questions

Question!

Can Java programs go wrong?

