Christian Grothoff

COMP 3351 Programming Languages’

Christian Grothoff

christian@grothoff.org

http://grothoff.org/christian/

IBased on notes by Prof. Jens Palsberg, UCLA
D

DENVER

Today

e)\-calculus exercises

e Type soundness: definition

e Type system for the A-calculus

e Type soundness: proof structure
e Type soundness proof for A-calculus

e Featherweight Java

DENVER

Christian Grothoff

Christian Grothoff

Calculate (execute)

(Aa.Ab.Xec.b) 5 Aad

DENVER

Christian Grothoff

Calculate (execute)

(Aa.Ab.Xc.a b c)dz.x Aad 5

DENVER

Christian Grothoff

Calculate (execute)

(Af 2 x.fz)dr.x z))(Az.x)

DENVER

Christian Grothoff

Calculate (execute)

(Az. Atz t)d Az.z

DENVER

Christian Grothoff

Type Soundness

e A program is a closed expression. (a b) is not a
program (because it contains free variables).

e A value is either a A-abstraction (Az.e) or a constant
(c).

e A type system for a programming language is sound if
well-typed programs cannot cause type errors.

e A “type error’ generally corresponds to a program that

has not been reduced to a value but still can not
continue to execute.

e [he type system must define “well-typed”.
D

DENVER

Christian Grothoff

A Type Error!

(Az Atz)4 Az.z —3 4 Az.z

The program is “stuck”.

DENVER

Christian Grothoff

Types for the \-Calculus!

For the A-calculus, we need two kinds of types: function
types and an integer type.

Types are generated from the grammar:

t :==11 — ty | Int

Note that there are infinitely many types. Notice also that
each type can be viewed as a tree. The size of the tree
can be used to define a partial order over types.

D

DENVER)

Christian Grothoff

Type Environments

A type environment I' is a partial function with finite
domain which maps elements of Var to types:

['= |z — Int,y — Int — Int]

DENVER 10

Christian Grothoff

Examples: Types for Values

We write I' - e : t to denote that expression e has type ¢
In the type environment I

DF4:Int
) F Azx.(succx) : Int — Int

DENVER 11

Christian Grothoff

Type Rules for the A\-calculus

F'Fx:t fl(x)=t (1)

ul.lhlvkll.\ll\' OF
DENVER 12

Christian Grothoff

Type Rules for the A\-calculus

[x:s|Fe: t
I'FMAx.e: s—t

(2)

DENVER 13

Christian Grothoff

Type Rules for the A\-calculus

F|—6128—>t Fl—GQZS
F|‘€1€22t

(3)

B
14

Christian Grothoff

Type Rules for the A\-calculus

I'Fc: Int (4)

DENVER 15

Christian Grothoff

Type Rules for the A\-calculus

I'Fe: Int
' succe: Int

(5)

DENVER 16

Christian Grothoff

Well-typed expressions

e An expression e is well-typed if there exist I' and ¢ so
that I' - e : t Is derivable.

DENVER 17

Christian Grothoff

Example: Type Derivation

O[f :s—t]lx:s]k f:s—t O[f :s—tllx:s]kFxz:s
Of :s —tllx:s]t fx:t
O[f :s = tlFAe.fo:s—t
DEXfAz.fo:(s—1t)— (s—1)

ul.JIhIVkR.\IIY OF
DENVER 18

Christian Grothoff

Example: Failing Type Derivation

D F Ax.e: Int
0 F succ (Ax.e) : Int

DENVER 19

Christian Grothoff

Type Soundness: Proof Structure

e Preservation

— Substitution (with equal type) preserves type
— Execution preserves type

e Progress

— Certain types correspond to values (base case)

— Closed expressions of other types can make progress
— Progress does not change closedness

= Well-typed programs cannot “go wrong" .

DENVER 20

Christian Grothoff

Substitution

f 'z :s]Fe:tand ' M : s then I' ez := M] : ¢.

ul.lhlvkll.\ll\' OF
DENVER 71

Christian Grothoff

Proof by Induction

e Fach term e In the A-calculus can be associated with a
(finite) “size” based on the syntax tree for the calculus

e \We will assume that the substitution lemma holds for a
smaller” term while we try to show that it holds for a

“larger’ term

DENVER 29

Christian Grothoff

Larger?

e \x.e Is larger than e
e ciey is larger than ey and/or ey (individually)

e succe Is larger than e

DENVER 23

Christian Grothoff

Substitution

To show:

If lx:s|Fe:tand ' M :sthenT'Felx:= M]:t.

We have: Since I'|x : s| - e : t, one of our five type-

rules must have been used in the last step of the type
derivation.

DENVER 24

Christian Grothoff

Case l: e=y

e Case la: y = . hen ylx := M| = M. Since
'z :s|Fe:tweconclude s=t. FromT' M : s and
s =t we conclude I' = M : ¢.

e Case 1b: y = x. Then ylx := M| = y; from I'|z : s]
y : t we conclude I'(y) =t and thus I' -y : ¢.

l.lhlt"kll.\l\;{\' ‘\ll
DENVER o5

Christian Grothoff

Case 2: e = \y.e;

e Case 2a: y =x. Then (Ay.e1)|x := M| = Ay.e;. Since
x does not occur free in A\y.e; we can use the derivation
from I'lx : s|] - Ay.e; : t to produce a derivation of
I'= Ay.eq @ t.

e Case 2b: y £ x. Then (\y.ej)|z := M| = Az.eq|y :=
z||x := M| with z fresh. (continued)

l.lhlt"kll.\l\;{\"\ll
DENVER 26

Christian Grothoff

Case 2b: e = A\y.e;, yZ

The last step in the derivation of I'|z : s] e : t is of the

form:
F[ZE . 8][y . tQ] - €1 - tl

F[QZ . 8] -)\y.el . tQ — tl
Hence T'|z : s||z : to] F ei|ly := 2] : t;. Note that e
and consequently ei|ly := z| are “smaller” than Ay.eq
and hence by induction hypothesis I'|z : t3] F ey =
Zl[x ;= M] : t;. With type rule (2) we can derive
' Az.eqly := z]|x := M] : t5 — t1.

DENVER 7

Christian Grothoff

Case 3: ¢ = ¢eqes

The last step in the derivation of I'|z : s] e : t is of the
form:
Dx:slFe:tg—t Tlx:s|Fey:ty
Dx:slFee:t

Using the induction hypothesis we get I' F e[z := M] :
to — t and I' F es]z := M] : ty; with rule (3) T'F ez :=
M| es|x := M] : t follows.

l.lhlt"kll.\l\;{\' ‘\ll
DENVER 28

Christian Grothoff

Case 4: e=—c¢

Obviously c|xz := M] = ¢. The entire derivation of
Iz :s]Fe:tis of the form I'|x : s| - ¢ : Int. From
rule (4)) we have I' - ¢ : Int.

DENVER 29

Christian Grothoff

Case 5: ¢ = succey

Proof is similar to case 3.

ul.lhlvkll.\ll\' OF
DENVER
30

Christian Grothoff

Type Preservation

fI'Fe:tand e —y €, then '€ : ¢t.

DENVER 31

Christian Grothoff

Proof by Induction

e \We use induction over the derivation of I' e : t.

e In the proof, we assume that the theorem holds for a
derivation of depth n — 1 and show it for a derivation
of depth n.

e The theorem is obvious for derivations of depth 0 since
e —y € is impossible for those.

DENVER 39

Christian Grothoff

Case 1l: e=z

e —y € is not possible.

ul.JIhIVkR.\II\' OF
DENVER
33

Christian Grothoff

Case 2: ¢ = \zx.¢g

e —y € is not possible.

B
34

Christian Grothoff

Case 3: ¢ = ¢eqes

There are three subcases depending on which of the
possible ways e —y € was used to make progress.

If either e1es —y € e 0r €169 —y €165 were used, ' e’ @ ¢
follows from the induction hypothesis and rule (3)).

l.lhlt"kll.\l\;{\' ‘\ll
DENVER 35

Christian Grothoff
Case 3c: e = (Az.ep)v

Suppose
(Ax.e1)v —y er|x := 0]
was used. Then the last part of the derivation of I' - e : ¢ is of the
form: T[z:s]eq:t
Mweps—t L IU:DS
I'E (Az.eq)v:t
Using the substitution lemma, I'|x : s|Fe;:tand ' - v : s we get

I'Felz:=v]:t

l.lhlt"kll.\l\;{\"\ll
DENVER 36

Christian Grothoff

Case 4: e=—c¢

e —y € is not possible.

B
37

Christian Grothoff

Case 5: ¢ = succey

Again we look at two subcases depending on how e —y €
happened.

If e = succe; and € = ¢ (where {(c) = {(¢1) + 1)
then the type derivation of I' - e : ¢ was of the form
[' F succe @ Int and from rule (4) we have I' F ¢y : Int.

DENVER 38

Christian Grothoff

Case 5b: ¢ = succe; and ey —y e

The last part of the derivation of I' - e : t is then of the

form:
' eq: Int

I' - succeq : Int

From the induction hypothesis we have I' - ey : Int, so
using rule (5)) we derive I' F succ e, : Int.

l.lhlt"kll.\l\;{\' ‘\ll
DENVER 39

Christian Grothoff

Typable Value

It I' = v : Int, then v is of the form c.
If I'~v:s — t then v is of the form A\x.e.

Proof: Obvious from type rules 2 and 4.

DENVER 40

Christian Grothoff

Progress

If e is a closed expression, and I' - e : ¢ then either e is a
value, or there exists ¢’ such that e —y €.

DENVER 11

Christian Grothoff

Proof by Induction

e Since I' - e : t there must exist a type deriviation for
the term e

e We will assume that the progress lemma holds for a
type deriviation of size n — 1 while we try to show that
it holds for a type deriviation of size n

e There are now five subcases depending on which of the
type rules was the last one used in the deriviation

DENVER 49

Christian Grothoff

Case 1l: e=z

The term is not closed.

DENVER 43

Christian Grothoff

Case 2: e= \zx.e

The term 1s a value.

DENVER 14

Christian Grothoff

Case 3: ¢ = ¢eqes

Since e is closed, e; and es must be closed. The last step
In the derivation of I' - ejes : ¢ must be of the form
F|—6128—>t F|—6228
I' - €1€9 . t

From the induction hypothesis we have that either ¢ Is a
value or there exists €} such that e; —y €] (in which case
we can make progress to €es). Also, either ey is a value,
or there exists €}, such that e; —y €5 (in which case we

can make progress to ejel.
B

DENVER 45

Christian Grothoff

Case 3c: e = (Az.e3)es

If both e; and ey are values, then according to the typeable
value theorem e; must be of the form Ax.e3 and hence

€1€2 —V 63[513‘ .= 62]

DENVER 46

Christian Grothoff

Case 4: e=—c¢

The term 1s a value.

B
47

Christian Grothoff

Case 5: ¢ = succey

Since e is closed, e is also closed. The last step in the
derivation of I' F e : t must be of the form

I'Feq: Int
' - succe; : Int

From the induction hypothesis we have that either e; Is a
value or there exists €| such that e; —y €.

DENVER 48

Christian Grothoff

Case 5: e = succe; (continued)

If e; is a value, then from I' - e; : Int and the typeable
value lemma we have that eq is of the form ¢; and hence

succc; — ¢ (where (c) = (1) + 1).

Otherwise, if there exists €| such that e; —y €}, then
we can make progress using succe; —y succe].

DENVER 49

Christian Grothoff

Closedness Preservation

If e is closed, and e —y €/, then € is closed.

Proof: Obvious.

ul.lhlvkll.\ll\' OF
DENVER 50

Christian Grothoff

Conclusion

Well-typed programs cannot go wrong.

Proof: Suppose we have a well-typed program e that is
stuck at an expression € with e —§, ¢/. We know that
e’ is closed (closendess preservation) and well-typed (type
preservation). But then there exists €¢” so that ¢’ —y €”
(progress), a contradiction (e’ can not be stuck).

DENVER 51

Christian Grothoff

Questions

B
52

Christian Grothoff

Question!

Can Java programs go wrong?

B
53

