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THE CUDA PROGRAMMING MODEL PROVIDES A STRAIGHTFORWARD MEANS OF

DESCRIBING INHERENTLY PARALLEL COMPUTATIONS, AND NVIDIA'S TESLA GPU

ARCHITECTURE DELIVERS HIGH COMPUTATIONAL THROUGHPUT ON MASSIVELY PARALLEL

PROBLEMS. THIS ARTICLE SURVEYS EXPERIENCES GAINED IN APPLYING CUDA T0 A

DIVERSE SET OF PROBLEMS AND THE PARALLEL SPEEDUPS OVER SEQUENTIAL CODES

RUNNING ON TRADITIONAL CPU ARCHITECTURES ATTAINED BY EXECUTING KEY

COMPUTATIONS ON THE GPU.

eeeeee With the transition from single-
core to multicore processors essentially
complete, virtually all commodicy CPUs
are now parallel processors. Increasing
parallelism, rather than increasing clock
rate, has become the primary engine of
processor performance growth, and this
trend is likely to continue. This raises many
important questions about how to produc-
tively develop efficient parallel programs
that will scale well across increasingly
parallel processors.

Modern  graphics  processing  units
(GPUs) have been at the leading edge of
increasing chip-level parallelism for some
time. Current NVIDIA GPUs are many-
core processor chips, scaling from 8 to 240
cores. This degree of hardware parallelism
reflects the fact that GPU architectures
evolved to fit the needs of real-time
computer graphics, a problem domain with
tremendous inherent parallelism. With the
advent of the GeForce 8800—the first GPU
based on NVIDIA’s Tesla unified architec-
ture—it has become possible to program
GPU  processors

directly, as massively
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parallel processors rather than simply as
graphics API accelerators.

NVIDIA developed the CUDA program-
ming model and software environment to
let programmers write scalable parallel
programs using a straightforward extension
of the C language. The CUDA program-
ming model guides the programmer to
expose substantial fine-grained parallelism
sufficient for utilizing massively multi-
threaded GPUs, while at the same time
providing scalability across the broad spec-
trum of physical parallelism available in the
range of GPU devices. Because it provides a
faitly simple, minimalist abstraction of
parallelism and inherits all the well-known
semantics of C, it lets programmers develop
massively parallel programs with relative ease.

In the year since its release, many
developers have used CUDA to parallelize
and accelerate computations across various
problem domains. In this article, we survey
some experiences gained in applying CUDA
to a diverse set of problems and the parallel
speedups attained by executing key compu-
tations on the GPU.
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void saxpy (uint n, float a, __global__ void saxpy(uint n, float a,
float *x, float *y) float *x, float *y)
{ {
for (uint i = 0; i<n; ++1) uint i = blockIdx.x*blockDim.x
yIi]l = a*x[i] + yI[il; + threadldx.x;

}

void serial_ sample ()

{
// Call serial SAXPY function
saxpy (n, 2.0, x,y);
}
}
(a) (b)

if ( i<n ) yl[i]

= a*x[1] + yl[i];

void parallel_sample ()

// Launch parallel SAXPY kernel

// using [n/256] blocks of 256

// threads each

saxpy<<<ceil (n/256),256>>>(n, 2, X, y);

Figure 1. Parallel programming with CUDA: serial (a) and parallel (b) kernels for computing y

«—oaX+Y.

CUDA parallel programming model

The CUDA parallel programming model
emphasizes two key design goals. First, it
aims to extend a standard sequential
programming language, specifically C/C4+,
with a minimalist set of abstractions for
expressing parallelism. Broadly speaking, this
lets the programmer focus on the important
issues of parallelism—how to craft efficient
parallel algorithms—rather than grappling
with the mechanics of an unfamiliar and
complicated language. Second, it is designed
for writing highly scalable parallel code that
can run across tens of thousands of concur-
rent threads and hundreds of processor cores.
This is essential because the physical paral-
lelism of current NVIDIA GPUs ranges
from eight processor cores and 768 thread
contexts up to 240 processor cores and
30,720 thread contexts. The CUDA model
naturally guides the programmer to write
parallel programs that transparently and
efficiently scale across these different levels
of parallelism.

A CUDA program is organized into a
host program, consisting of one or more
sequential threads running on the host
CPU, and one or more parallel kernels that
are suitable for execution on a parallel
processing device like the GPU. A kernel
executes a scalar sequential program on a set
of parallel threads. The programmer orga-
nizes these threads into a grid of thread

blocks. The threads of a single thread block
are allowed to synchronize with each other
via barriers and have access to a high-speed,
per-block shared on-chip memory for inter-
thread communication. Threads from dif-
ferent blocks in the same grid can coordi-
nate only via operations in a shared global
memory space visible to all threads. CUDA
requires that thread blocks be independent,
meaning that a kernel must execute correct-
ly no matter the order in which blocks are
run, even if all blocks are executed sequen-
tially in arbitrary order without preemption.
This restriction on the dependencies be-
tween blocks of a kernel provides scalability.
It also implies that the need for global
communication or synchronization amongst
threads is the main consideration in decom-
posing parallel work into separate kernels.
The details of the CUDA programming
model are available in NVIDIA’s CUDA
Programming Guide (www.nvidia.com/
CUDA) and related literature.! Figure 1
shows some basic features of parallel
programming with CUDA. It contains
straightforward implementations, both se-
quential and parallel, of the SAXPY routine
defined by the BLAS linear algebra library.
Given vectors x and y containing 7 floating-
point numbers, it performs the update y «
o x + y. The serial implementation is a
simple loop that computes one element of y
in each iteration. The parallel kernel



effectively executes each of these independent
iterations in parallel, assigning a separate
thread to compute each element of y. The
_ _global__ modifier indicates that the
procedure is a kernel entry point, and the
extended function call syntax saxpy
<<<B, T>>>(..) is used to launch
the kernel saxpy () in parallel across B
blocks of 7 threads each. Each thread of the
kernel determines which element it should
process from its integer thread block index
(blockIdx.x), its index within its block
(threadIdx.x), and the total number of
threads per block (blockDim.x).

This example demonstrates a common
parallelization pattern, where a serial loop
with independent iterations can be executed
in parallel across many threads. In the
CUDA paradigm, the programmer writes a
scalar program—the parallel saxpy ()
kernel—that specifies the behavior of a
single thread of the kernel. This lets CUDA
leverage the underlying C language, with
only a few small additions, such as the built-
in thread and block index variables.

The SAXPY kernel is also a simple
example of data parallelism, where parallel
work is decomposed to match result data
elements. Although different thread blocks
or different threads of a kernel can poten-
tially execute entirely different code, such
task parallelism does not generally scale as
well as data parallelism. Moreover, data-
parallel kernels typically expose substantially
more fine-grained parallelism than task-
parallel kernels and, therefore, generally can
take best advantage of the GPU architecture.

NVIDIA Tesla GPU architecture

NVIDIA  designed its Tesla unified
graphics and computing architecture? to
accelerate parallel programs written in the
CUDA programming model. It is built
around a fully programmable processor
array, organized into a number of SM
multithreaded multiprocessors, each of
which contains eight scalar SP processor
cores. In contrast to earlier generations of
GPUs, threads executing on the SP cores
have access to the full range of instructions
programmers expect in any general-purpose
processor core. In particular, memory is
accessed through load/store instructions

supporting arbitrary address arithmetic,
and it fully supports both floating-point
and integer data types.

Figure 2 shows the Tesla architecture of a
GeForce GTX 280 or Tesla T10 GPU with
240 SP streaming processor cores, organized
in 30 SM streaming multiprocessors. Each
multithreaded SP core executes up to 128
concurrent coresident threads sharing a
register file of 2,048 entries; in total, the
GPU executes up to 30,720 concurrent
threads. The earlier GeForce 8800 GTX
GPU provides 16 SMs with 1,024 registers
per SP core and supports a maximum of
12,288 concurrent threads. Thread crea-
tion, scheduling, and resource management
are performed entirely in hardware. The
cost of creating and destroying threads is
negligible, and there is effectively no
overhead involved in thread scheduling.
Each thread of a CUDA program is mapped
to a physical thread resident in the GPU,
and each running thread block is physically
resident on a single SM. The SM multi-
processor supports efficient communication
among threads in a block by providing an
extremely lightweight barrier synchroniza-
tion faciliy—CUDA’s  barrier intrinsic
translates into a single instruction—and 16
Kbytes per SM of on-chip shared memory
that has low access latency and high
bandwidth, similar to an L1 cache.

The Tesla architecture is designed to
operate on massively parallel problems. The
deep multithreading provides substantial
latency tolerance, allowing resources to be
dedicated toward throughput rather than
large caches. As we discussed earlier,
experience shows that data-parallel software
design is frequently the best approach for
managing this level of fine-grained parallel-
ism. The threads of a data-parallel kernel
will often be following substantially similar
paths of execution. Consequently, the Tesla
architecture is optimized for this case. The
Tesla SM employs a single instruction,
thread (SIMT)

where a block’s threads are grouped into

muldple architecture,!?
warps containing 32 threads each. A warp’s
threads are free to follow arbitrary and
independent execution paths, involving any
number of branches, but can collectively
execute only a single instruction at any
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Figure 2. Tesla unified graphics and computing architecture of a GeForce GTX 280 or Tesla T10 GPU with 240 SP streaming
processor cores, organized in 30 SM multithreaded multiprocessors. Each multithreaded SP core executes up to 128

concurrent threads; the GPU executes up to 30,720 concurrent threads.
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particular instant. Thus, threads in a warp
that execute different code paths (that is,
that diverge) must wait in turn while other
threads of the warp execute the instructions
they wish. Divergence and reconvergence
are managed in hardware. On the other
hand, in the common case where all threads
of a warp are executing the same instruc-
tion, all the warp’s threads can execute that
instruction at the same time. This lets the
hardware achieve substantial efficiencies
when executing typical data-parallel pro-
grams, while at the same time making the
SIMT execution of threads transparent to
the programmer and providing the flexibil-
ity of a scalar computational model.

Application experience with CUDA

Many applications consist of a mixture of
fundamentally serial control logic and
inherently parallel computation. Further-
more, these parallel computations are
frequently data-parallel in nature. This
directly matches the program model that
CUDA adopts, namely a sequential control

thread capable of launching a series of
parallel kernels. The use of parallel kernels
launched from a sequential program also
makes it relatively easy to parallelize an
application’s individual components, rather
than requiring a wholesale rewriting of the
entire application.

Many applications—both academic re-
search and industrial products—have been
accelerated using CUDA to achieve signif-
icant parallel speedups. Such applications
fall into a variety of problem domains,
including machine learning,® database pro-
cessing, bioinformatics,® financial model-
ing, numerical linear algebra, medical
imaging,” and physical simulation, among
others. Of the many available examples, we
survey a few representative cases.

Molecular dynamics

Molecular dynamics is a simulation
technique widely used in physics, chemistry,
biology, and related fields. Its goal is to
compute the movement of a number of
atoms, beginning in some initial configura-



tion, and track their trajectory over specified
time intervals. Molecular dynamics is a
versatile tool that scientists can use to
calculate materials’ static and dynamic
properties, study methods of crystal growth,
or examine mechanisms by which proteins
perform their functions, to name only a few
of its uses.® Figure 3 shows an example
snapshot from a bead-spring polymer
simulation with each of 64,017 particles
displayed as a sphere.’

Molecular dynamics simulations are in-
herently parallel computations and are
ideally suited to the CUDA programming
model. During each time step of the
simulation, the program must calculate the
forces acting on all atoms and use the
resulting forces to integrate atom positions
and velocities forward to the next step. The
different tasks required in a time step can
each be implemented in a separate kernel.
Because each atom can be processed
independently of the others during a single
time step, it is natural to map each atom to
a single thread. Thus, the application
naturally provides the large amount of
fine-grained parallelism for which the
GPU is designed, and several molecular
dynamics’® and molecular modeling'>"
codes have been successfully accelerated
with CUDA.

A typical molecular dynamics simulation
of the polymer model in Figure 3 would be
run for 18 million time steps, and during
each time step, every atom can be processed
independently of the others. Performing all
this work sequentially can be expensive; a
serial calculation using a single core of a 2.4-
GHz Opteron 280 CPU can calculate about
6.46 time steps per second (tps) and would
take about 32 days to complete the entire
run. Usually, scientists perform jobs of this
size using parallel software such as
LAMMPS," possibly completing it in a
single day if executed on 32 processor cores
in a cluster of Opteron 280 nodes connect-
ed by InfiniBand. Implemented in CUDA
and executing on a single GeForce 8800
GTX, Highly Optimized Object-Oriented
Molecular Dynamics (HOOMD; www.
ameslab.gov/hoomd) can execute the same
simulation with a performance of 203 tps,
equivalent to that of LAMMPS using 32

T
%
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g

Figure 3. Snapshot of a bead-spring polymer simulation with

64,017 particles.

CPU cores.!® A multi-GPU implementation
is currently under development, and the
performance is expected to scale well with
the number of GPUs in the workstation.

Due to the excellent scalability of Tesla-
architecture  GPUs, HOOMD’s perfor-
mance scales linearly with particle count,
from systems as small as 5,000 particles to
those consuming all available memory.
Figure 4 shows the time taken to execute
just the pair force summation kernel for the
polymer system with varying numbers of
particles (V) and the speedup relative to an
optimized serial CPU implementation run-
ning on a single-core 3.0-GHz Xeon
80546K processor.!® The GPU is very
efficient at the pair force calculation kernel,
offering speedup factors of approximately
60 times for large systems. Furthermore, it
is able to accelerate the entire application-
level simulation for the problem shown in
Figure 3 by a total of 32 times.

In HOOMD, the different tasks required
in a time step are each implemented in a
separate kernel. The host program performs
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Figure 4. Scaling and parallel speedup of GPU implementation over single-
CPU core for the pair force calculation kernel, across many problem sizes.
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all memory management and other setup
tasks and then calls the GPU kernels to
perform the simulation. Each kernel breaks
its task down further in a data-parallel
fashion, with each thread mapped to a
single particle. This is a natural choice for
molecular dynamics, where all particles are
updated independently from each other
during a single time step, and is a natural
fit for CUDA. When executing the polymer
model simulations, completing each time
step in HOOMD requires calling a number
of kernels in sequence. First, the neighbor
list data structure must be updated, al-
though this doesn’t strictly need to be done
at every step. Then it can be used to
compute pair forces. After that, bond forces
are computed, and the system is integrated
forward to the next time step. Each of these
tasks requires calling one or more kernels
totaling five to eight for each time step,
depending on whether the neighbor lists
have been updated.

The GeForce 8800 GTX offers a peak
multiply-add rate of 345 Gflops and a
memory throughput of 86 Gbytes/s. Mak-
ing the most of these resources is key in
creating high-performance GPU kernels.
For most calculations in molecular dynam-
ics, this means optimizing the memory
accesses first because there are relatively

few floating-point operations for each
memory read. With CUDA, it is straight-
forward to write a kernel with a simple
memory access pattern that achieves near-
peak performance. Such kernels for per-
forming the integration step are nearly as
simple as the previous SAXPY example and
achieve near 70 Gbytes/s. The pair force
computation involves more complicated
and random memory access patterns. Uti-
lizing the 1D texture cache together with a
space-filling  curve-based data-reordering
technique, the pair force computation can
execute at close to peak bandwidth, utilizing
76 Gbytes/s and 130 Gflops.!® Achieving
these performance levels requires no assem-
bly language programming or complicated
code transformations, just writing simple
and readable data-parallel C code.

Folding@Home is a popular application
for molecular dynamics that runs on many
hardware platforms.!"® The performance
bottleneck for this application involves three
N-body calculations over all O(N*) unique
pairs of atoms. The first two of these
calculations are independent and can be
merged into one calculation, but the third
calculation depends on results generated by
the second. This leaves us with two such
loops that consume approximately 75
percent of this application’s computation.
Previous GPU-based implementations have
calculated all pair-wise interactions due to
the complexity of tracking only unique pairs
in a streaming parallel implementation. In
contrast, the CUDA implementation oper-
ates only on unique pairs. It blocks the
calculation on /V bodies into a series of p X
p swaths, where p is the warp width. This
lets the p threads within each warp each read
one atom’s worth of data into their register
space and then operate on p atoms that were
read into on-chip shared memory. Further-
more, because all the threads in a warp are
guaranteed to execute synchronously to-
gether, each thread can interact with one
atom’s data in shared memory at a time over
p iterations without any need for additional
synchronization.

Folding@Home presents an excellent
opportunity to compare the performance
of several different architectures on the same
application. Figure 5 plots the performance



of the CUDA implementation of the
Folding@Home energy kernel on a GeForce
8800M GTS (a laptop GPU with 64 SPs),
a GeForce 8800 GTS (a desktop GPU with
128 SPs), and the latest GeForce GTX 280
(a high-end GPU with 240 SPs). The
CUDA programming model was specifical-
ly designed to enable the design of scalable
parallel compurtations, and here we see clear
evidence of strong scaling across a range of
processors with substantially different levels
of physical parallelism. To place their
performance in context, the graph also
shows the performance of this simulation
on a Core2 Duo CPU, the Cell processor of
a Sony PlayStation 3, and an ATI Radon
3870 GPU. The algorithmic flexibility that
CUDA provides, and the architectural
features that it exploits—specifically shared
memory—allow the CUDA implementa-
tion on the GTX 280 to run 3.6 times faster
than the Brook-based ATI implementation
and 6.7 times faster than the Cell imple-
mentation.

Numerical linear algebra

Dense matrix-matrix multiplication, par-
ticularly as provided by the BLAS library
GEMM routines, is one of the fundamental
building blocks of numerical linear algebra
algorithms. It is also a natural fit for CUDA
and the GPU because it is inherently
parallel and can naturally be expressed as a
blocked computation.

Volkov and Demmel? the
design of a custom SGEMM matrix-matrix
multiplication kernel. Figure 6 summarizes
the performance of their algorithm running
on a GeForce 8800 GTX and Intel’s Math
Kernel Library (MKL) 10.0, running on a
2.4-GHz Core2 Quad Q6600 (“Kents-
field”) processor. This algorithm, which
operates on single-precision floating-point
numbers, achieves up to 206 Gflops—a 2.9

describe

times improvement over the highest rate
achieved by the Core2 Quad—and roughly
60 percent of the GeForce 8800 GTX peak
multiply-add rate.

Writing a basic dense matrix-matrix
multiplication kernel is a fairly simple
exercise (see the CUDA Programming
Guide for detail). Achieving this high level
of performance, on the other hand, requires
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Figure 5. Performance of Folding@Home energy kernel on various

platforms.

more careful optimization. Volkov and
Demmel use a block algorithm similar to
those used for vector computers, using GPU
registers and per-block shared memory to
store the data blocks. As the GPU has an
unusually large register file, registers can be
used as the primary scratch space for the
computation. Furthermore, assigning small
blocks of elements to each thread, rather
than a single element to each thread, boosts
efficiency much as strip-mining boosts
efficiency on vector machines. Finally, the
nonblocking nature of loads on the GPU
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Figure 6. Performance on dense matrix-matrix multiplication (SGEMM).
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makes it possible to do software prefetching,
which is useful for hiding memory latency.
Ryoo and colleagues explored the benefits of
blocking and loop unrolling, producing a
matrix multiplication kernel executing at 91
Gflops.’® The gap with the performance
achieved by Volkov and Demmel clearly
demonstrates the utility of the additional
optimizations they employed, namely stor-
ing as much data as possible in registers,
using larger data blocks, and strip-mining
multiple elements onto each thread.
Matrix factorizations are widely used to
solve systems of linear equations and linear
least-square problems, and among the many
available factorization schemes the LU,
Cholesky, and QR factorizations are most
common. Like matrix-matrix multplication,
these factorizations can be implemented
using blocked algorithms that do most of
their work with bulk matrix-matrix multiplies
that have high arithmetic intensity and expose
substantial amounts of data and thread-level
parallelism. The remaining work lies in
factorizing tall and skinny matrices (called
panels) and pivoting. Panel factorizations
involve many small fine-grained operations
that might not offer sufficient parallelism to
run efficiently on the GPU. Therefore, it is
often more efficient to perform panel
factorization on the CPU while using the
GPU to perform the inherently parallel parts

of the computation, particularly since these

computations can then be overlapped. For
efficient partial pivoting in LU factorization,
it is necessary to arrange accesses to memory
to have a minimal stride, which can be done
by keeping matrices transposed in the GPU
memory.

Figure 7 compares the performance of
these factorization routines running on a
GeForce 8800 GTX in a 2.67-GHz Core2
Duo system, versus performing the factor-
ization entirely on a 2.4-GHz Core2 Quad
with MKL. The CUDA factorization code
achieves rates of up to 190 Gflops, which
approaches the peak rate sustained by
matrix-matrix multdplication itself. For
matrix dimensions of around 300, the
problem becomes large enough to leverage
the GPU parallelism and overcome the
overhead of CPU-GPU coordination and
data movement. For larger matrices, the
CUDA factorization running on the GPU
and Core2 Duo is up to 5.5 times faster
than the MKL factorization code running

on the Core2 Quad.

Medical imaging

TechniScan Medical Systems has been
developing advanced inverse-scattering al-
gorithms to generate 3D volumetric images
of the breast with ultrasound for several
years. Unlike conventional ultrasound im-
aging, in which reflected ultrasound is used
to form images, inverse-scattering uses
ultrasound transmitted through, refracted
by, and scattered by breast tissue to generate
high-resolution speed and attenuation of
sound images.”” Pending FDA clearance,
these images are intended to provide
additional information to improve care
and outcome in breast disease treatment
(see Figure 8).

In the last five years, CPUs have become
fast enough to run these algorithms in
several hours on a small high-performance
computing cluster inside the TechniScan
Whole Breast Ultrasound (WBU) scanner.
Radiologists and women’s health providers,
however, would like images in minutes so
that they can conduct the exam and discuss
results with their patients in the same visit.
TechniScan has investigated porting the
inverse-scattering algorithm to FPGAs,
digital signal processors (DSPs), and IBM’s



Figure 8. Example scans produced from ultrasound by TechniScan Medical Systems.

Cell processor to meet this goal, but each
has disadvantages. FPGAs can be a huge
engineering undertaking, and DSPs don’t
provide the floating-point performance
necessary to compute images in minutes.
The Cell processor showed potential, but
the development workstation was expensive
for a small startup.

For approximately $600—the cost of one
GeForce 8800 GTX and an ATX power
supply—TechniScan was able to start a
proof-of-concept project to port the inverse-
scattering algorithm to the GPU. The
scanner collects ultrasound signals at regular
rotational positions and at regular coronal
slice positions. The inverse-scattering algo-
rithm is a modified nonlinear conjugate
gradient method that tries to match simu-
lated scattered ultrasound to the collected
signals. It uses 2D convolution by fast
Fourier transform (FFT) to simulate ultra-
sound propagation.!” This simulation is used
to compute the residual, gradient, and step
length for each iteration. Approximately
63 million 2D FFTs are performed during
the algorithm’s run, which accounts for over
75 percent of the computation time.

A 2D GPU convolution routine can be
implemented easily using CUFFT—the
Fast Fourier Transform library supplied

with CUDA—and a simple kernel to
perform point-wise multiplication. This
approach is approximately eight times faster
than a CPU version using an optimized
FFT and running on one core of a 2.4-GHz
Core2 Quad Q6600 processor. However,
because the FFT size is fairly small (256 X
64), using the entire GPU to perform a
single FFT does not produce enough work
to efficienty utilize the GPU. Instead,
creating a batched FFT that assigns multiple
FFTs to different thread blocks is a much
more effective way of utilizing the hardware.
Implementing a batched 2D FFT kernel
nearly doubled convolution performance
and made the GPU convolution almost 16
times faster than the CPU implementation.

Other parts of the algorithm showed
more dramatic speed improvements run-
ning on the GPU. The most impressive
improvements were seen in the CAXPBY
routine, which multiplies two complex-
valued vectors by two different scalars and
sums the resulting vectors; computation of
the L2 norm of a complex vector; and
computation of the complex exponent of
each value of a large, complex vector.
Figure 9 shows the runtime of each routine
running on a GeForce 8800 GTX and one
core of a 2.4-GHz Q6600 GPU.

JuLY—AuGusT 2008 2 ]
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The algorithm was also adapted to run on
multiple GPUs. Running the algorithm on
two Tesla D870s provided the performance
necessary to generate images in approxi-
mately 16 minutes—fast enough to meet
the same-visit requirement of TechniScan’s
customers. This level of performance is over
twice as fast as a 16-core Intel Core2 CPU
cluster.

Fluid dynamics

Physical simulations based on finite-
finite-difference,
and similar methods are not as trivially

element, finite-volume,
parallelized as molecular dynamics. Howev-
er, by adopting a blocking strategy similar
to those used in matrix multiplication and
image processing, algorithms of this sort can
also be transformed into highly parallel
computations.

As an example, we consider the 2D
compressible Euler equations, which are
often used in the design of aerospace vehicle
components such as rocket nozzles and
supersonic airfoils. The equations are solved
on an irregular structured grid using the
finite-volume method and an integration
scheme developed by Ni.'® The solver uses
local time stepping and muldgrid tech-
niques to accelerate convergence. This
procedure can serve as the pseudo-time

iteration in a more complex solver for the
unsteady compressible Navier-Stokes equa-
tions with turbulence modeling.

Phillips and colleagues developed this
CUDA-based solver,” which makes each
thread block responsible for updating a 16
X 5 tile of the domain (see Figure 10).
Each block requires access to a 20 X 9 area
because the computational stencil extends
by two nodes past the tile boundary in each
direction. These specific dimensions are
chosen to best fit Tesla-architecture GPUs:
the memory subsystem can deliver much
higher bandwidth by coalescing accesses by
threads of a warp to 16 contiguous values,
and a height of five is the largest that fits
within available register and per-block
shared memory limits. Memory bandwidth
can become the bottleneck when solving the
Euler equations on graphics hardware.”
Consequently, reducing memory band-
width by calculating intermediate variables
on the fly, rather than storing them, can
improve efficiency.

Figure 11 shows example simulations of
a rocket nozzle and supersonic airfoil
performed on a QuadroFX 5600. Figure 12
shows the performance of the CUDA-based
solver running on a GPU cluster in
comparison to a serial reference solver
running on a 2.4-GHz Core2 Duo. The
cluster consists of four nodes, each with two
QuadroFX 5600 GPUs and dual Opteron
2216 CPUs connected by gigabit Ethernet.
For the solution process, the domain is
decomposed across GPUs, and each GPU
performs one iteration of the solver, after
which the boundary elements are commu-
nicated with its neighbors. On the coarsest
grid of 1,600 nodes, the amount of parallel
work is small enough that the overhead of
moving work onto the GPU is a compar-
atively high cost, and a single GPU is only
able to deliver about four the
performance of the serial CPU solver. With
25,000 nodes, the subdomains remain small

times

and communication time dominates; a
single GPU, which solves the problem at
roughly 18 times the speed of the CPU, is
faster than the entire eight GPU cluster. As
the grids become denser, communication
cost is an ever-decreasing component of the
solution time. At the densest grid resolu-
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Figure 10. Decomposition of a 33 X 17 subdomain. A single-thread block computes a result
for the light gray tile in the center and also accesses neighboring information for integration
(white boxes surrounding the center tile) and smoothing (dark gray boxes surrounding the

center tile) overlap.

tion, the solver scales nearly linearly as more
GPUs are used, delivering 22 times the
serial performance on one GPU and 160
times the serial performance on eight GPUs.
All GPU simulations were performed in
single precision, and the results were
verified to agree with a reference CPU
implementation. The use of single precision
required a priori calculation of the inlet and
exit properties to compensate for numerical
drift due to the exponentiation and square-
root functions’ limited accuracy.

Seismic imaging

The petroleum industry makes heavy use
of seismic data to construct images of the
Earth’s subsurface structure in its search for
oil and gas. A seismic survey of a prospective
region will typically consist of hundreds of
thousands of seismic experiments. Each
experiment involves an impulsive acoustic
source that generates a signal that propa-
gates up to tens of kilometers through the
subsurface, reflects off the interfaces be-
tween rock layers, and is recorded by a few
thousand pressure-sensitive receivers at the
surface. This acquisition process produces
terabytes of seismic data.

Reconstructing a subsurface image from
this data typically requires weeks of com-
putations on thousands of CPUs, with the

exact effort depending on the fidelity of the
approximations used to simulate the wave
propagation.

Given the large amount of parallel
computation involved in the seismic imag-
ing process, it is natural to consider
mapping the process onto the GPU with
CUDA. We consider a specific imaging
method, where the wave equation is solved
in the frequency domain using a paraxial
approximation implemented with an ADI
(alternating-direction implicit) finite-differ-
ence method. This method’s computational
cost is dominated by the evaluation and

(a) M\

Figure 11. Simulation results showing pressure distribution in a rocket

nozzle (a) and over a supersonic airfoil (b).
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Figure 12. Performance speedup for GPU clusters of varying size over a single CPU for

solving 2D Euler equations.

solution of complex-valued tridiagonal lin-
ear systems, where there are on the order of
a billion systems for each seismic experi-
ment and the dimension of each system is in
the hundreds.

Although the solution of tridiagonal
systems can be parallelized directly,?** this
is not an effective way to solve such a large
number of relatively small systems. A much
more efficient approach is to assign each
linear system to a single thread. In this
particular application, it also happens that
many systems to be solved involve the same
coefficient matrix. This leads to a natural
design in CUDA where each thread block is
given one tridiagonal matrix and each
thread of that block solves a linear system
involving that matrix and a specific right-
hand side. Furthermore, keeping these
shared coefficients in shared memory avoids
redundant accesses to memory. A thread
block’s threads collectively read their coef-
ficients into shared memory and synchro-
nize, and then each thread computes its
system’s solution.

Figure 13 examines the speedup of the
prototype  CUDA implementation over
CPU production code with varying num-

bers of processors. The CUDA code was
executed on a Tesla C870 GPU. CPU
performance was measured on two systems,
a dual 3.6-GHz Intel Xeon and a dual 3.0-
GHz quad-core Xeon (Harpertown). The
CPU code was optimized to use SSE
(streaming SIMD extension) vector instruc-
tions and compiled with the Intel Fortran
compiler. Even though eight CPU cores
were available on the Harpertown-based
system, performance did not scale beyond
four processes because of memory band-
width limitations. This resulted in a single
GPU out-performing an entire Harpertown
system by a factor of six on this seismic
imaging code.

In considering the experiences of a
number of applications parallelized with
CUDA, we believe that a few basic trends
are apparent. CUDA provides a straightfor-
ward means of describing inherently parallel
computations and is particularly well suited
for data-parallel algorithms. The NVIDIA
Tesla GPU architecture delivers high com-
putational throughput on such kernels.
Furthermore, unlike the massively parallel
machines of the past, which were large,
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Figure 13. Speedup of a CUDA prototype wave-equation solver compared with various

CPU configurations.

expensive, and available to a select few, these
GPUs capable of running CUDA are
ubiquitous. By the end of summer 2008,
NVIDIA will have shipped roughly 80 mil-
lion CUDA-capable GPUs, transforming
acceleration with massively parallel hardware
from a rarity into an everyday commodity.
Reviewing the many CUDA-enabled
applications now available, we encounter a
few important design techniques. First, and
foremost, is the fundamental importance of
exposing sufficient amounts of fine-grained
parallelism to exploit hardware like the
Tesla-architecture  GPU. Second is the
importance of blocking computations, a
process that naturally fits the CUDA thread
block abstraction and encourages data
layout and access patterns with high locality.
Third is the efficiency of data-parallel
programs where threads of a warp follow
the same execution path, thus fully utilizing
the GPU’s processor cores. Finally is the
benefit of the on-chip, per-block shared
memory provided by the Tesla architecture,
which provides high-speed, low-latency
scratchpad space that is critical to the
performance of many efficient algorithms.

The latest CUDA toolkit, documenta-
tion, and code examples, as well as a
directory of some of the many available
CUDA-based applications and research
projects, are available at www.nvidia.com/
CUDA/. A course on parallel programming
using CUDA is also available online (http://
courses.ece.uiuc.edu/ece498/al). MR
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