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Many stream-based applications are naturally 

distributed. Applications are often embedded in an 
environment with numerous connected computing 
devices with heterogeneous capabilities. As data travels 
from its point of origin (e.g., sensors) downstream to 
applications, it passes through many computing devices, 
each of which is a potential target of computation. 
Furthermore, to cope with time-varying load spikes and 
changing demand, many servers would be brought to bear 
on the problem. In both cases, distributed computation is 
the norm. 

Abstract 
Stream processing fits a large class of new applications 
for which conventional DBMSs fall short. Because 
many stream-oriented systems are inherently 
geographically distributed and because distribution 
offers scalable load management and higher availability, 
future stream processing systems will operate in a 
distributed fashion. They will run across the Internet on 
computers typically owned by multiple cooperating 
administrative domains. This paper describes the 
architectural challenges facing the design of large-scale 
distributed stream processing systems, and discusses 
novel approaches for addressing load management, high 
availability, and federated operation issues. We describe 
two stream processing systems, Aurora* and Medusa, 
which are being designed to explore complementary 
solutions to these challenges. 

This paper discusses the architectural issues facing the 
design of large-scale distributed stream processing 
systems. We begin in Section 2 with a brief description of 
our centralized stream processing system, Aurora [4].  We 
then discuss two complementary efforts to extend Aurora 
to a distributed environment: Aurora* and Medusa.  
Aurora* assumes an environment in which all nodes fall 
under a single administrative domain. Medusa provides 
the infrastructure to support federated operation of nodes 
across administrative boundaries. After describing the 
architectures of these two systems in Section 3, we 
consider three design challenges common to both: 
infrastructures and protocols supporting communication 
amongst nodes (Section 4), load sharing in response to 
variable network conditions (Section 5), and high 
availability in the presence of failures (Section 6). We 
also discuss high-level policy specifications employed by 
the two systems in Section 7. For all of these issues, we 
believe that the push-based nature of stream-based 
applications not only raises new challenges but also offers 
the possibility of new domain-specific solutions.   

1 Introduction 
There is a large class of emerging applications in which 
data, generated in some external environment, is pushed 
asynchronously to servers that process this information. 
Some example applications include sensor networks, 
location-tracking services, fabrication line management, 
and network management. These applications are 
characterized by the need to process high-volume data 
streams in a timely and responsive fashion. Hereafter, we 
refer to such applications as stream-based applications. 

The architecture of current database management 
systems assumes a pull-based model of data access: when 
a user (the active party) wants data, she submits a query 
to the system (the passive party) and an answer is 
returned. In contrast, in stream-based applications data is 
pushed to a system that must evaluate queries in response 
to detected events. Query answers are then pushed to a 
waiting user or application. Therefore, the stream-based 
model inverts the traditional data management model by 
assuming users to be passive and the data management 
system to be active.  

2 Aurora:  A Centralized Stream Processor 

2.1 System Model 
In Aurora, data is assumed to come from a variety of 
sources such as computer programs that generate values 
at regular or irregular intervals or hardware sensors. We 
will use the term data source for either case. A data 
stream is a potentially unbounded collection of tuples 
generated by a data source. Unlike the tuples of the 
relational database model, stream tuples are generated in 
real-time and are typically not available in their entirety at 
any given point in time. 
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Aurora processes tuples from incoming streams 
according to a specification made by an application 
administrator. Aurora is fundamentally a data-flow 
system and uses the popular boxes and arrows paradigm 
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Figure 1: Basic Aurora System Model 

1. (A = 1, B = 2) 
2. (A = 1, B = 3) 
3. (A = 2, B = 2) 
4. (A = 2, B = 1) 
5. (A = 2, B = 6) 
6. (A = 4, B = 5) 
7. (A = 4, B = 2) 

    … 
Figure 2: A Sample Tuple Stream 

found in most process flow and workflow systems. Here, 
tuples flow through a loop-free, directed graph of 
processing operators (i.e., boxes), as shown in Figure 1. 
Ultimately, output streams are presented to applications, 
which must be constructed to handle the asynchronously 
arriving tuples in an output stream. 
 Every Aurora application must be associated with a 
query that defines its processing requirements, and a 
Quality-of-Service (QoS) specification that specifies its 
performance requirements (see Section 7.1).  

2.2 Query Model  
Queries are built from a standard set of well-defined 
operators (boxes). Each operator accepts input streams (in 
arrows), transforms them in some way, and produces one 
or more output streams (out arrows). By default, queries 
are continuous [5] in that they can potentially run forever 
over push-based inputs. Ad hoc queries can also be 
defined and attached to connection points: predetermined 
arcs in the flow graph where historical data is stored.   

Aurora queries are constructed using a box-and-arrow 
based graphical user interface. It would also be possible 
to allow users to specify declarative queries in a language 
such as SQL (modified to specify continuous queries), 
and then compile these queries into our box and arrow 
representation.  

Here, we informally describe a subset of the Aurora 
operators that are relevant to this paper; a complete 
description of the operators can be found in [2, 4]. This 
subset consists of a simple unary operator (Filter), a 
binary merge operator (Union), a time-bounded 
windowed sort (WSort), and an aggregation operator 
(Tumble). Aurora also includes a mapping operator 
(Map), two additional aggregate operators (XSection and 
Slide), a join operator (Join), and an extrapolation 
operator (Resample), none of which are discussed in 
detail here. 

Given some predicate, p, Filter (p) produces an output 
stream consisting of all tuples in its input stream that 
satisfy p. Optionally, Filter can also produce a second 
output stream consisting of those tuples which did not 
satisfy p. Union produces an output stream consisting of 
all tuples on its n input streams. Given a set of sort 
attributes, A1, A2, …, An and a timeout, WSort buffers all 
incoming tuples and emits tuples in its buffer in 

ascending order of its sort attributes, with at least one 
tuple emitted per timeout period.* 

Tumble takes an input aggregate function and a set of 
input groupby attributes.† The aggregate function is 
applied to disjoint “windows” (i.e., tuple subsequences) 
over the input stream. The groupby attributes are used to 
map tuples to the windows they belong to. For example, 
consider the stream of tuples shown in Figure 2. Suppose 
that a Tumble box is defined with an aggregate function 
that computes the average value of B, and has A as its 
groupby attribute. This box would emit two tuples and 
have another tuple computation in progress as a result of 
processing the seven tuples shown. The first emitted 
tuple, (A = 1, Result = 2.5), which averages the 
two tuples with A = 1 would be emitted upon the 
arrival of tuple #3: the first tuple to arrive with a value of 
A not equal to 1. Similarly, a second tuple, (A = 2, 
Result = 3.0), would be emitted upon the arrival of 
tuple #6. A third tuple with A = 4 would not get emitted 
until a later tuple arrives with A not equal to 4. 

2.3 Run-time Operation 
The single-node Aurora run-time architecture is shown in 
Figure 3. The heart of the system is the scheduler that 
determines which box to run. It also determines how 
many of the tuples that might be waiting in front of a 
given box to process and how far to push them toward the 
output. We call this latter determination train scheduling 
[4]. Aurora also has a Storage Manager that is used to 
buffer queues when main memory runs out. This is 
particularly important for queues at connection points 
since they can grow quite long. 

Aurora must constantly monitor the QoS of output 
tuples (QoS Monitor in Figure 3). This information is 
important since it drives the Scheduler in its decision-
making, and it also informs the Load Shedder when and 
where it is appropriate to discard tuples in order to shed 
load. Load shedding is but one technique employed by 
Aurora to improve the QoS delivered to applications. 
                                                           
* Note that WSort is potentially lossy because it must discard any tuples 
that arrive after some tuple that follows it in sort order has already been 
emitted. 
† Aurora’s aggregate operators have two additional parameters that 
specify when tuples get emitted and when an aggregate times out. For 
the purposes of this discussion, we assume that these parameters have 
been set to output a tuple whenever a window is full (i.e., never as a 
result of a timeout). 

 



When load shedding is not working, Aurora will try to re-
optimize the network using standard query optimization 
techniques (such as those that rely on operator 
commutativities). This tactic requires a more global view 
of the network and thus is used more sparingly. It does 
have the advantage that in transforming the original 
network, it might uncover new opportunities for load 
shedding. The final tactic is to retune the scheduler by 
gathering new statistics or switching scheduler 
disciplines.   

3 Distributed System Architecture 
Building a large-scale distributed version of a stream 
processing system such as Aurora raises several important 
architectural issues. In general, we envision a distributed 
federation of participating nodes in different 
administrative domains. Together, these nodes provide a 
stream processing service for multiple concurrent stream-
based applications. Collaboration between distinct 
administrative domains is fundamentally important for 
several reasons, including: 

 
1. A federation in which each participating organization 

contributes a modest amount of computing, 
communication, and storage resources allows for a 
high degree of resource multiplexing and sharing, 
enabling large time-varying load spikes to be 
handled. It also helps improve fault-tolerance and 
resilience against denial-of-service attacks. 

2. Many streaming services, such as weather 
forecasting, traffic management, and market analysis, 
inherently process data from different autonomous 
domains and compose them; distribution across 
administrative boundaries is a fundamental constraint 
in these situations. 

 
We envision that programs will continue to be written in 
much the same way that they are with single-node 
Aurora, except that they will now run in a distributed 
fashion. The partitioning of the query plan on to the 

participating nodes in response to changing demand, 
system load, and failures, is a challenging problem, and 
intractable as an optimization problem in a large network. 
Additionally, inter-domain collaborations are not a 
straightforward extension of intra-domain distribution. 
For instance, some applications may not want their data 
or computation running within arbitrary domains, and 
some organizations may not have the incentive to process 
streams unless they derive tangible benefits from such 
processing 
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Figure 3: Aurora Run-time Architecture 

Our architecture splits the general problem into intra-
participant distribution (a relatively small-scale 
distribution all within one administrative domain, handled 
by Aurora*) and inter-participant distribution (a large-
scale distribution across administrative boundaries, 
handled by Medusa). This method of splitting allows the 
general problem to become tractable, enabling the 
implementation of different policies and algorithms for 
load sharing. This decomposition allows three pieces to 
be shared between Aurora* and Medusa: (i) Aurora, (ii) 
an overlay network for communication, and (iii) 
algorithms for high-availability that take advantage of the 
streaming nature of our problem domain. 

3.1 Aurora*: Intra-participant Distribution 
Aurora* consists of multiple single-node Aurora servers 
that belong to the same administrative domain and 
cooperate to run the Aurora query network on the input 
streams. In general there are no operational restrictions 
regarding the nodes where sub-queries can run; boxes can 
be placed on and executed at arbitrary nodes as deemed 
appropriate. 

When an Aurora query network is first deployed, the 
Aurora* system will create a crude partitioning of boxes 
across a network of available nodes, perhaps as simple as 
running everything on one node. Each Aurora node 
supporting the running system will continuously monitor 
its local operation, its workload, and available resources 
(e.g., CPU, memory, bandwidth, etc.). If a machine finds 
itself short of resources, it will consider offloading boxes 
to another appropriate Aurora node. All dynamic 
reconfiguration will take place in such a decentralized 
fashion, involving only local, pair-wise interactions 
between Aurora nodes. We discuss the pertinent load 
distribution mechanisms and policies in more detail in 
Section 5. 

3.2 Medusa: Inter-participant Federated Operation 
Medusa is a distributed infrastructure that provides 
service delivery among autonomous participants. A 
Medusa participant is a collection of computing devices 
administered by a single entity. Hence, participants range 
in scale from collections of stream processing nodes 
capable of running Aurora and providing part of the 
global service, to PCs or PDAs that allow user access to 
the system (e.g., to specify queries), to networks of 
sensors and their proxies that provide input streams. 

 



Medusa is an agoric system [16], using economic 
principles to regulate participant collaborations and solve 
the hard problems concerning load management and 
sharing. Participants provide services to each other by 
establishing contracts that determine the appropriate 
compensation for each service. Medusa uses a market 
mechanism with an underlying currency (“dollars”) that 
backs these contracts. Each contract exists between two 
participants and covers a message stream that flows 
between them. One of the contracting participants is the 
sending participant; the other is the receiving participant. 
Medusa models each message stream as having positive 
value, with a well-defined value per message; the model 
therefore is that the receiving participant always pays the 
sender for a stream. In turn, the receiver performs query-
processing services on the message stream that 
presumably increases its value, at some cost. The receiver 
can then sell the resulting stream for a higher price than it 
paid and make money.  

Some Medusa participants are purely stream sources 
(e.g., sensor networks and their proxies), and are paid for 
their data, while other participants (e.g., end-users) are 
strictly stream sinks, and must pay for these streams. 
However, most Medusa participants are “interior” nodes 
(acting both as sources and sinks). They are assumed to 
operate as profit-making entities; i.e., their contracts have 
to make money or they will cease operation. Our hope is 
that such contracts (mostly bilateral) will allow the 
system to anneal to a state where the economy is stable, 
and help derive a practical solution to the computationally 
intractable general partitioning problem of placing query 
operators on to nodes. The details of the contracting 
process are discussed in Section 7.2. 

4 Scalable Communications Infrastructure 
Both Aurora* and Medusa require a scalable 
communication infrastructure. This infrastructure must 
(1) include a naming scheme for participants and query 
operators and a method for discovering where any portion 
of a query plan is currently running and what operators 
are currently in place, (2) route messages between 
participants and nodes, (3) multiplex messages on to 
transport-layer streams between participants and nodes, 
and (4) enable stream processing to be distributed and 
moved across nodes. The communications infrastructure 
is an overlay network, layered on top of the underlying 
Internet substrate. 

4.1 Naming and Discovery 
There is a single global namespace for participants, and 
each participant has a unique global name. When a 
participant defines a new operator, schema, or stream, it 
does so within its own namespace. Hence, each entity’s 
name begins with the name of the participant who defined 
it, and each object can be uniquely named by the tuple: 
(participant, entity-name). Additionally, a stream that 

crosses participant boundaries is named separately within 
each participant. 

To find the definition of an entity given its name, or 
the location where a data stream is available or a piece of 
a query is executing, we define two types of catalogs in 
our distributed infrastructure: intra-participant and inter-
participant catalogs. Within a participant, the catalog 
contains definitions of operators, schemas, streams, 
queries, and contracts. For streams, the catalog also holds 
(possibly stale) information on the physical locations 
where events are being made available. Indeed, streams 
may be partitioned across several nodes for load 
balancing. For queries, the catalog holds information on 
the content and location of each running piece of the 
query. The catalog may be centralized or distributed. All 
nodes owned by a participant have access to the complete 
intra-participant catalog.  

For participants to collaborate and offer services that 
cross their boundaries, some information must be made 
globally available. This information is stored in an inter-
participant catalog and includes the list, description, and 
current location of pieces of queries running at each 
participant.  

Each participant that provides query capabilities 
holds a part of the shared catalog. We propose to 
implement such a distributed catalog using a distributed 
hash table (DHT) with entity names as unique keys. 
Several algorithms exist for this purpose (e.g., DHTs 
based on consistent hashing [6, 14] and LH* [19]). These 
algorithms differ in the way they distribute load among 
participants, handle failures, and perform lookups. 
However, they all efficiently locate nodes for any key-
value binding, and scale with the number of nodes and the 
number of objects in the table. 

4.2 Routing 
Before producing events, a data source, or an 
administrator acting on its behalf, registers a new schema 
definition and a new stream name with the system, which 
in turn assigns a default location for events of the new 
type. Load sharing between nodes may later move or 
partition the data. However, the location information is 
always propagated to the intra-participant catalog. 

When a data source produces events, it labels them 
with a stream name and sends them to one of the nodes in 
the overlay network. Upon receiving these events, the 
node consults the intra-participant catalog and forwards 
events to the appropriate locations. 

Each Aurora network deployed in the system explicitly 
binds its inputs and outputs to a list of streams, by 
enumerating their names. When an input is bound, the 
intra-participant catalog is consulted to determine where 
the streams of interest are currently located. Events from 
these streams are then continually routed to the location 
where the query executes. 

Query plans only bind themselves to streams defined 
within a participant. Explicit connections are opened for 

 



streams to cross participant boundaries. These streams are 
then defined separately within each domain. 

4.3 Message Transport 
When a node transfers streams of messages to another 
node in the overlay, those streams will in general belong 
to different applications and have different characteristics. 
In many situations, especially in the wide-area, we expect 
the network to be the stream bottleneck. The transport 
mechanism between nodes must therefore be carefully 
designed. 

One approach would be to set up individual TCP 
connections, one per message stream, between the node 
pair. This approach, although simple to implement, has 
several problems. First, as the number of message streams 
grows, the overhead of running several TCP connections 
becomes prohibitive on the nodes. Second, independent 
TCP connections do not share bandwidth well and in fact 
adversely interact with each other in the network [11]. 
Third, both within one participant as well as between 
participants, we would like the bandwidth between the 
nodes to be shared amongst the different streams 
according to a prescribed set of weights that depend on 
either QoS specifications or contractual obligations.  

Our transport approach is to multiplex all the message 
streams on to a single TCP connection and have a 
message scheduler that determines which message stream 
gets to use the connection at any time. This scheduler 
implements a weighted connection sharing policy based 
on QoS or contract specification, and keeps track of the 
rates allocated to the different messages in time. 

There are some message streaming applications where 
the in-order reliable transport abstraction of TCP is not 
needed, and some message loss is tolerable. We plan to 
investigate if a UDP-based multiplexing protocol is also 
required in addition to TCP. Doing this would require a 
congestion control protocol to be implemented [12]. 

4.4 Remote Definition 
To share load dynamically between nodes within a 
participant, or across participants, parts of Aurora 
networks must be able to change the location where they 
execute at run-time. However, process migration raises 
many intractable compatibility and security issues, 
especially if the movement crosses participant 
boundaries. Therefore, we propose a different approach, 
which we call remote definition. With this approach, a 
participant instantiates and composes operators from a 
pre-defined set offered by another participant to mimic 
box sliding. For example, instead of moving a WSort box, 
a participant remotely defines the WSort box at another 
participant and binds it to the appropriate streams within 
the new domain. Load sharing and box sliding are 
discussed in more details in the following sections. 

In addition to facilitating box sliding, remote definition 
also helps content customization. For example, a 
participant might offer streams of events indicating stock 

quotes. A receiving participant interested only in knowing 
when a specific stock passes above a certain threshold 
would normally have to receive the complete stream and 
would have to apply the filter itself. With remote 
definition, it can instead remotely define the filter, and 
receive directly the customized content.   

5 Load Management 
To adequately address the performance needs of stream-
based applications under time varying, unpredictable 
input rates, a multi-node data stream processing system 
must be able to dynamically adjust the allocation of 
processing among the participant nodes. This decision 
will primarily consider the loads and available resources 
(e.g., processor cycles, bandwidth, memory). 

Both Aurora* and Medusa address such load 
management issues by means of a set of algorithms that 
provide efficient load sharing among nodes. Because 
Aurora* assumes that the participants are all under a 
common administrative control, lightly-loaded nodes will 
freely share load with their over-burdened peers. Medusa 
will make use of the Aurora* mechanisms where 
appropriate, but it must also worry about issues of how to 
cross administrative boundaries in an economically viable 
way without violating contractual constraints. 

In the rest of this section, we first discuss the basic 
mechanisms used for partitioning and distributing Aurora 
operator networks across multiple nodes. We then discuss 
several key questions that need to be addressed by any 
repartitioning policy. 

5.1 Mechanisms: Repartitioning Aurora Networks 
On every node that runs a piece of Aurora network, a 
query optimizer/load share daemon will run periodically 
in the background. The main task of this daemon will be 
to adjust the load of its host node in order to optimize the 
overall performance of the system. It will achieve this by 
either off-loading computation or accepting additional 
computation. Load redistribution is thus a process of 
moving pieces of the Aurora network from one machine 
to another. 

Load sharing must occur while the network is 
operating. Therefore, it must first stabilize the network at 
the point of the transformation. Network transformations 
are only considered between connection points. Consider 
a sub-network S that is bounded on the input side by an 
arc, Cin, and on the output side by an arc, Cout. The 
connection point at Cin is first choked off by simply 
collecting any subsequent input arriving at the connection 
point at Cin. Any tuples that are queued within S are 
allowed to drain off. When S is empty, the network is 
manipulated, parts of it are moved to other machines, and 
the flow of messages at Cin is turned back on. 

It should be noted that the reconfiguration of the 
Aurora network will not always be a local decision. For 
example, an upstream node might be required to signal a 
downstream node that it does not have sufficient 
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Figure 5: Splitting a Filter Box 
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Figure 4: Box Sliding 

bandwidth to handle its output (this would happen if an 
upstream node notices a backup on its output link). In this 
case, the upstream node might want to signal the 
neighboring downstream node to move one or more boxes 
upstream to reduce the communication across that link. 

We now discuss two basic load sharing mechanisms, 
box sliding and box splitting, which are used to repartition 
the Aurora network in a pair-wise fashion. 
 
Box Sliding. This technique takes a box on the edge of a 
sub-network on one machine and shifts it to its neighbor. 
Beyond the obvious repositioning of processing, shifting 
a box upstream is often useful if the box has a low 
selectivity (reduces the amount of data) and the 
bandwidth of the connection is limited. Shifting a box 
downstream can be useful if the selectivity of the box is 
greater than one (produces more data than the input, e.g., 
a join) and the bandwidth of the connection is again 
limited. We call this kind of remapping horizontal load 
sharing or box sliding. Figure 4 illustrates upstream box 
sliding. 

It should be noted that the machine to which a box is 
sent must have the capability to execute the given 
operation. In a sensor network, some of the nodes can be 
very weak. Often the sensor itself is capable of 
computation, but this capability is limited. Thus, it might 
be possible to slide a simple Filter box to a sensor node, 
whereas the sensor might not support a Tumble box. 

It should also be noted that box sliding could also move 
boxes vertically. That is, a box that is assigned to machine 
A can be moved to machine B as long as the input and 
output arcs are rerouted accordingly. 

 
Box Splitting. A heavier form of load sharing involves 
splitting Aurora boxes. A split creates a copy of a box that 
is intended to run on a second machine. This mechanism 
can be used to offload from an overloaded machine; one 
or more boxes on this machine get split, and some of the 
load then gets diverted to the box copies resulting from 
the split (and situated on other machines). Every box-split 
must be preceded by a Filter box with a predicate that 
partitions input tuples (routing them to one box or the 
other). For splits to be transparent (i.e., to ensure that a 

split box returns the same result as an unsplit box), one or 
more boxes must be added to the network that merges the 
box outputs back into a single stream. 

The boxes required to merge results depend on the box 
that is split. Figure 5 and Figure 6 show two examples. 
The first split is of Filter and simply requires a Union 
box to accomplish the merge. The second split is of 
Tumble, which requires a more sophisticated merge, 
consisting of Union followed by WSort and then another 
Tumble. It also requires that the aggregate function 
argument to Tumble, agg, have a corresponding 
combination function, combine, such that for any set of 
tuples, {x1, x2, …, xn}, and k ≤ n: 
 
agg({x1, x2, …, xn}) =  
 combine(agg({x1, x2, …, xk}), agg({xk+1, xk+2, …, xn}) 
 
For example, if agg is cnt (count), combine is sum, and if 
agg is max, then combine is max also. In Figure 6, agg is 
cnt and combine is sum. 

To illustrate the split shown in Figure 6, consider a 
Tumble applied to the stream that was shown in Figure 2 
with the aggregate function cnt and groupby attribute A. 
Observe that without splitting, Tumble would emit the 
following tuples while processing the seven tuples shown 
in Figure 2: 

Tumble (cnt, Groupby A)

splits into …

Filter (p)
Tumble (cnt, Groupby A)

Union

WSort (A)

Tumble (cnt, Groupby A)

Tumble (sum, Groupby A)

Merge

 
Figure 6: Splitting a Tumble Box 

 



 
         (A = 1, result = 2) 
         (A = 2, result = 3) 
 
Suppose that a split of the Tumble box takes place after 
tuple #3 arrives, and that the Filter box used for routing 
tuples after the split uses the predicate, B < 3 to decide 
where to send any tuple arriving in the future (i.e., if B < 
3 then send the tuple to machine containing the original 
Tumble box (machine #1), and otherwise send the tuple 
to machine #2). In this case, machine #1 will see tuples 1, 
2, 3, 4 and 7; and machine #2 will see tuples 5 and 6. 
After machine #1 processes tuple #7, its Tumble box will 
have emitted tuples: 
 
 (A = 1, result = 2) 
         (A = 2, result = 2) 

 
and after machine #2 processes tuple #6, its Tumble box 
will have emitted the tuple: 
    
         (A = 2, result = 1) 
 

Assuming a large enough timeout argument, WSort 
rearranges the union of these tuples, emitting them in 
order of their values for A. The Tumble box that follows 
then adds the values of result for tuples with like 
values of A. This results in the emission of tuples: 
   
         (A = 1, result = 2) 
         (A = 2, result = 3) 
 
which is identical to that of the unsplit Tumble box. 

Once split has replicated a part of the network, the 
parallel branches can be mapped to different machines. In 
fact, an overloaded machine may perform a split and then 
ask a neighbor if it can accept some additional load. If the 
neighbor is willing, the network might get remapped as in 
Figure 7. 

5.2 Key Repartitioning Challenges 
We now provide an outline of several fundamental policy 
decisions regarding when and how to use the load sharing 
mechanism described in the previous subsection. 
Particular solutions will be guided and constrained by the 
high-level policy specifications and guidelines, QoS and 

economic contracts, used by Aurora* and Medusa, 
respectively (see Section 7). 
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Figure 7: Remapping after a Split 

 
Initiation of Load Sharing. Because network topologies 
and loads will be changing frequently, load sharing will 
need to be performed fairly frequently as well.  However, 
shifting boxes around too frequently could lead to 
instability as the system tries to adjust to load 
fluctuations. Determining the proper granularity for this 
operation is an important consideration for a successful 
system. 
 
Choosing What to Offload. Both box sliding and box 
splitting require moving boxes and their input and output 
arcs across machine boundaries. Even though a 
neighboring machine may have available compute cycles 
and memory, it may not be able to handle the additional 
bandwidth of the new arcs. Thus, the decision of which 
Aurora network pieces to move must consider bandwidth 
availability as well. 
 
Choosing Filter Predicates for Box Splitting. Every 
box split results in a new sub-network rooted by a Filter 
box. The Filter box acts as a semantic router for the 
tuples arriving at the box that has been split. The filter 
predicate, p, defines the redistributed load. The choice of 
p is crucial to the effectiveness of this strategy. Predicate 
p could depend on the stream content. For example, we 
might want to separate streams based on where they were 
generated as in all streams generated in Cambridge. On 
the other hand, the partitioning criterion could depend on 
some metadata or statistics about the streams as in the top 
10 streams by arrival rate. Alternatively, p could be 
based on a simple statistic as in half of the available 
streams. Moreover, the choice of p could vary with time. 
In other words, as the network characteristics change, a 
simple adjustment to p could be enough to rebalance the 
load. 
 
Choosing What to Split. Choosing the right sub-network 
to split is also an important optimization problem. The 
trick is to pick a set of boxes that will move “just enough” 
processing. In a large Aurora network, this could be quite 
difficult. Moreover, it is important to move load in way 
that will not require us to move it again in the near future. 
Thus, finding candidate sub-networks that have durable 
effect is important. 
 
Handling Connection Points. Naively, splitting a 
connection point could involve copying a lot of data. 
Depending on the expected usage, this might be a good 
investment. In particular, if it is expected that many users 
will attach ad hoc queries to this connection point, then 
splitting it and moving a replica to different machine may 
be a sensible load sharing strategy. On the other hand, it 
might make sense to leave the connection point intact and 
to split the boxes on either side of it. This would mean 

 



that the load introduced by the processing would be 
moved, while the data access to the second box would be 
remote. 

primary server

back-up of the tuples in transit

back-up server

s1 s2 s3

 
Figure 8: Primary and back-up servers

6 High Availability 
A key goal in the design of any data stream processing 
system is to achieve robust operation in volatile and 
dynamic environments, where availability may suffer due 
to (1) server and communication failures, (2) sustained 
congestion levels, and (3) software failures. In order to 
improve overall system availability, Aurora* and Medusa 
rely on a common stream-oriented data back-up and 
recovery approach, which we describe below. 

6.1 Overview and Key Features 
Our high-availability approach has two unique 
advantages, both due to the streaming data-flow nature of 
our target systems. First, it is possible to reliably back up 
data and provide safety without incurring the overhead to 
explicitly copy them to special back up servers (as in the 
case of traditional process pair models [10]). In our 
model, each server can effectively act as a back-up for its 
downstream servers. Tuples get processed and flow 
naturally in the network (precisely as in the case of 
regular operation). Unlike in regular operation, however, 
processed tuples are discarded lazily, only when it is 
determined that their effects are safely recorded 
elsewhere, and, thus, can be effectively recovered in case 
of a failure. 

Second, the proposed approach enables a tradeoff 
between the recovery time and the volume of checkpoint 
messages required to provide safety. This flexibility 
allows us to emulate a wide spectrum of recovery models, 
ranging from a high-volume checkpoints/fast-recovery 
approach (e.g., Tandem [1]) to a low-volume 
checkpoints/slow-recovery approach (e.g., log-based 
recovery in traditional databases). 

6.2 Regular Operation 
We say that a distributed stream processing system is k-
safe if the failure of any k servers does not result in any 
message losses. The value of k should be set based on the 
availability requirements of applications, and the 
reliability and load characteristics of the target 
environments. We provide k-safety by maintaining the 
copies of the tuples that are in transit at each server s, at k 
other servers that are upstream from s. An upstream back-
up server simply holds on to a tuple it has processed until 
its primary server tells it to discard the tuple. Figure 8 
illustrates the basic mechanism for k = 1. Server s1 acts as 
a back-up of server s2. A tuple t sent from s1 to s2 is 
simply kept at s1’s output queue until it is guaranteed that 
all tuples that depended on t (i.e., the tuples whose values 
got determined directly or indirectly based on t) made it 
to s3. 

In order to correctly truncate output queues, we need to 
keep track of the order in which tuples are transmitted 

between the servers. When an upstream server sends a 
message (containing tuples) to a successor, it also 
includes a monotonically increasing sequence number. It 
is sufficient to include only the base sequence number, as 
the corresponding numbers for all tuples can be 
automatically generated at the receiving server by simply 
incrementing the base. We now describe two remote 
queue truncation techniques that use tuple sequence 
numbers. 

Our first technique involves the use of special flow 
messages. Periodically, each data source creates and 
sends flow messages into the system. A box processes a 
flow message by first recording the sequence number of 
the earliest tuple that it currently depends on‡, and then 
passing it onward. Note that there might be multiple 
earliest sequence numbers, one for each upstream server 
at the extreme case. When the flow message reaches a 
server boundary, these sequence values are recorded and 
the message continues in the next server. Hence, each 
server records the identifiers of the earliest upstream 
tuples that it depends on. These values serve as 
checkpoints; they are communicated through a back 
channel to the upstream servers, which can appropriately 
truncate the tuples they hold. Clearly, the flow message 
can also be piggybacked on other control or data 
messages (such as heartbeat messages, DHT lookup 
messages, or regular tuple messages). 

The above scheme will operate correctly only for 
straight-line networks. When there are branches and 
recombinations, special care must be taken. Also, when 
messages from one server go to multiple subsequent 
servers, additional extensions are required. 

Whenever a message is split and sent to two 
destinations, then the flow message is similarly split. If a 
box gets input from two arcs, it must save the first flow 
message until it receives one on the other arc. If the two 
flow messages come from different servers, then both are 
sent onward. If they come from the same server, then the 
                                                           
‡ If the box has state (e.g., consider an aggregate box), then the 
recorded tuple is the one that presently contributes to the state of 
the box and that has the lowest sequence number (for each 
upstream server). If the box is stateless (e.g., a filter box), then 
the recorded tuple is the one that has been processed most 
recently. 

 



The basic approach can be extended to support faster 
recovery, but at higher run time cost. Consider 
establishing a collection of K virtual machines on top of 
the Aurora network running on a single physical server. 
Now, utilize the approach described above for each 
virtual machine. Hence, there will be queues at each 
virtual machine boundary, which will be truncated when 
possible. Since each queue is on the same physical 
hardware as its downstream boxes, high availability is not 
provided on machine failures with the algorithms 
described so far.   

minimum is computed as before and a single message 
sent onward. In this way, the correct minimum is received 
at the output.   

An output can receive flow messages from multiple 
upstream servers. It must merely respond to the correct 
one with a back channel message. Similarly, when an 
upstream server has multiple successor servers, it must 
wait for a back channel message from each one, and then 
only truncate the queue to the maximum of the minimum 
values. 

An alternate technique to special flow messages is to 
install an array of sequence numbers on each server, one 
for each upstream server. On each box’s activation, the 
box records in this array the earliest tuples on which it 
depends. The upstream servers can then query this array 
periodically and truncate their queues accordingly. This 
approach has the advantage that the upstream server can 
truncate at its convenience, and not just when it receives a 
back channel message. However, the array approach 
makes the implementation of individual boxes somewhat 
more complex. 

 To achieve high-availability, the queue has to be 
replicated to a physical backup machine. At a cost of one 
message per entry in the queue, each of the K virtual 
machines can resume processing from its queue, and finer 
granularity restart is supported. The ultimate extreme is to 
have one virtual machine per box. In this case, a message 
must be sent to a backup server each time a box processes 
a message. However, only the processing of the in-transit 
boxes will be lost. This will be very similar to the 
process-pair approach. Hence, by adding virtual machines 
to the high-availability algorithms, we can tune the 
algorithms to any desired tradeoff between recovery time 
and run time overhead. 

6.3 Failure Detection and Recovery 
Each server sends periodic heartbeat messages to its 
upstream neighbors. If a server does not hear from its 
downstream neighbor for some predetermined time 
period, it considers that its neighbor failed, and it initiates 
a recovery procedure. In the recovery phase, the back-up 
server itself immediately starts processing the tuples in its 
output log, emulating the processing of the failed server 
for the tuples that were still being processed at the failed 
server. Subsequently, load-sharing techniques can be used 
to offload work from the back-up server to other available 
servers. Alternatively, the backup server can move its 
output log to another server, which then takes over the 
processing of the failed server. This approach might be 
worthwhile if the back-up server is already heavily loaded 
and/or migration of the output log is expected to be 
inexpensive. 

7 Policy Specifications and Guidelines 
We now describe the high-level policy specifications 
employed by Aurora* and Medusa to guide all pertinent 
resource, load, and availability management decisions. 
We first describe application-specific QoS specifications 
used by Aurora*, and then overlay the Medusa approach 
for establishing (economic) contracts between different 
domains. 

7.1 QoS Based Control in Aurora* 
Along with a query, every Aurora application must also 
specify its QoS expectations [4]. A QoS specification is a 
function of some performance, result precision, or 
reliability related characteristic of an output stream that 
produces a utility (or happiness) value to the 
corresponding application. The operational goal of 
Aurora is to maximize the perceived aggregate QoS 
delivered to the client applications. As a result, all Aurora 
resource allocation decisions, such as scheduling and load 
shedding, are driven by QoS-aware algorithms [4]. We 
now discuss some interesting issues that arise as we 
extend the basic single-node QoS model to a distributed 
multi-node model to be used by Aurora*. 

6.4 Recovery Time vs. Back Up Granularity 
The above scheme does not interfere with the natural flow 
of tuples in the network, providing high availability with 
only a minimum of extra messages. In contrast, a process-
pair approach requires check pointing a computation to its 
backup on a regular basis. To achieve high availability 
with a process-pair model would require a checkpoint 
message every time a box processed a message. This is 
overwhelmingly more expensive than the approach we 
presented. However, the cost of our scheme is the 
possibly considerable amount of computation required 
during recovery. In contrast, a process-pair scheme will 
redo only those box calculations that were in process at 
the time of the failure. Hence, the proposed approach 
saves many run-time messages, at the expense of having 
to perform additional work at failover time. 

One key QoS issue that needs to be dealt with in 
Aurora* involves inferring QoS for the outputs of 
arbitrary Aurora* nodes. In order to be consistent with the 
basic Aurora model and to minimize the coordination 
among the individual Aurora nodes, it is desirable for 
each node in an Aurora* configuration to run its own 
local Aurora server. This requires the presence of QoS 
specifications at the outputs of internal nodes (i.e., those 
that are not directly connected to output applications). 

 



Because QoS expectations are defined only at the output 
nodes, the corresponding specifications for the internal 
nodes must be properly inferred. This inference is 
illustrated in Figure 9, where a given application’s query 
result is returned by node S3, but additional computation 
is done at the internal nodes S1 and S2. The QoS specified 
at the output node S3 needs to be pushed inside the 
network, to the outputs of S1 and S2, so that these internal 
nodes can make local resource management decisions. 

s1
s3

s2

QoSoutput

QoSinferred

QoSinferred

….

….

 
Figure 9: Inferring QoS at intermediate nodes While, in general, inferring accurate QoS requirements 

in the middle of an Aurora network is not going to be 
possible, we believe that inferring good approximations to 
some of the QoS specifications (such as the latency-based 
QoS specification, which is a primary driver for many 
resource control issues) is achievable given the 
availability of operational system statistics. To do this, we 
assume that the system has access to the average 
processing cost and the selectivity of each box. These 
statistics can be monitored and maintained in an 
approximate fashion over a running network. 

7.2 Economic Contract Based Control in Medusa 
As discussed in previous sections, Medusa regulates 
interactions between participants using an agoric model 
with three basic types of contracts: (a) content contracts 
(b) suggested contracts, and (c) movement contracts. We 
discuss each type of contract in turn. 

Content contracts cover the payment by a receiving 
participant for the stream to be sent by a sending 
participant. The form of a content contract is: A QoS specification at the output of some box, B is a 

function of time t and can be written as Qo(t). Assume 
that box B takes, on average, TB units of time for a tuple 
arriving at its input to be processed completely. TB can be 
measured and recorded by each box and would implicitly 
include any queuing time. The QoS specification Qi(t) at 
box B’s input would be Qo(t+TB). This simple technique 
can be applied across an arbitrary number of Aurora 
boxes to compute an estimated latency graph for any arc 
in the system. 

 
For stream_name 
For time period 
With availability guarantee 
Pay payment  

 
Here, stream_name is a stream known to the sender, 
which the receiver must map to a local stream name.  The 
time period is the amount of time that sender will make 
the stream available to the receiver, and payment is the 
amount of money remitted.  Payment can either be a fixed 
dollar amount (subscription) or it can be a per-message 
amount. An optional availability clause can be added to 
specify the amount of outage that can be tolerated, as a 
guarantee on the fraction of uptime. 

Another important issue relates to the precision (i.e., 
accuracy) of query results. Precise answers to queries are 
sometimes unachievable or undesirable, both of which 
potentially lead to dropped tuples. A precise query 
answer is what would be returned if no data was ever 
dropped, and query execution could complete regardless 
of the time it required. A precise query answer might be 
unachievable (from an Aurora system’s perspective) if 
high load on an Aurora server necessitated dropping 
tuples. A precise query answer might be undesirable 
(from an Aurora application’s perspective) if a query 
depended upon data arriving on an extremely slow 
stream, and an approximate but fast query answer was 
preferable to one that was precise but slow. QoS 
specifications describe, from an applications’ perspective, 
what measures that it prefer Aurora take under such 
circumstances. For example, if tuples must be dropped, 
QoS specifications can be used to determine which and 
how many. 

With content contracts, Medusa participants can 
perform services for each other. Additionally, if 
participants authorize each other to do remote definitions, 
then buying participants can easily customize the content 
that they buy by defining a query plan at the selling 
participant. These two types of interactions form the basis 
of our system. 

Additional contracts are needed to manage load 
among participants and optimize queries. For instance, 
participant P can use remote definition and content 
contracts to partition a query plan Q over a set of other 
participants {P1, …, Pk} in an arbitrary manner.  P needs 
to have remote definition authorization at each of P1 
through Pk, but the latter do not need to have contracts 
with each other. Unfortunately, this form of collaboration 
will require that query plans be “star shaped” with P in 
the middle, since P1 through Pk don’t have contractual 
relationships with each other.   

Because imprecise query answers are sometimes 
unavoidable or even preferable to precise query answers, 
precision is the wrong standard for Aurora systems to 
strive for. In general, there will be a continuum of 
acceptable answers to a query, each of which has some 
measurable deviation from the perfect answer. The degree 
of tolerable approximation is application specific; QoS 
specifications serve to define what is acceptable. 

To facilitate more efficient plans and inter-participant 
load management, we need the ability to modify the way 
queries are partitioned across participants at run time. 

 



More precisely, we need the ability to slide boxes across 
participants as well as the ability to add or remove a 
participant from a query-processing path. For instance, 
we would like to remove P from the star-shaped query 
defined above. 

Load sharing has been extensively studied in a 
variety of settings, including distributed operating 
systems (e.g., [9, 20]) and databases (e.g., [3, 7]). In a 
distributed system, the load typically consists of multiple 
independent tasks (or processes), which are the smallest 
logical units of processing. In Aurora, the corresponding 
smallest processing units are individual operators that 
exhibit input-output dependencies, complicating their 
physical distribution. 

Adding a participant to a query plan is 
straightforward with remote definition and content 
contracts. Removing a participant requires that the 
leaving participant ask other participants to establish new 
content contracts with each other. The mechanism for this 
is suggested contracts: a participant P suggests to 
downstream participants an alternate location (participant 
and stream name) from where they should buy content 
currently provided by P. Receiving participants may 
ignore suggested contracts. 

Several distributed systems [8, 17] investigated on-
the-fly task migration and cloning as means for dynamic 
load sharing. Our Slide and Split operations not only 
facilitate similar (but finer-grained) load sharing, but also 
take into account operator dependencies mentioned 
above, properly splitting and merging the input and 
resulting data streams as necessary. The last form of contract facilitates load balancing 

via a form of box sliding, and is called a movement 
contract. Using remote definition, a participant P1 
defines a query plan at another participant, P2. Using a 
content contract, this remote query plan can be activated. 
To facilitate load balancing, P1 can define not one, but a 
set of L remote query plans. Paired with locally running 
queries (upstream or downstream), these plans provide 
equivalent functionality, but distribute load differently 
across P1 and P2. Hence, a movement contract between 
two participants contains a set of distributed query plans 
and corresponding inactive content contracts. There is a 
separate movement contract for each query crossing the 
boundary between two participants. An oracle on each 
side determines at runtime whether a query plan and 
corresponding content contracts from one of the 
movement contracts is preferred to any of currently active 
query plans and content contracts. If so, it communicates 
with the counterpart oracle to suggest a substitution; i.e., 
to make the alternate query plan (and its corresponding 
content contracts) active instead of the current query plan 
and contracts. If the second oracle agrees, then the switch 
is made. In this way, two oracles can agree to switch 
query plans from time to time.   

Parallel database systems [3, 7] typically share load by 
using operator splitting and data partitioning. Since 
Aurora operators are stream-based, the details of how we 
split the load and merge results are different. More 
importantly, existing parallel database query execution 
models are relatively static compared to Aurora* and 
Medusa: they do not address continuous query execution, 
and as a result, do not also consider adaptation issues. 

Because our load sharing techniques involve 
dynamically transforming query plans, systems that 
employ dynamic query optimization are also relevant 
(e.g., see [13] for a survey). These system change query 
plans on the fly in order to minimize query execution 
cost, reduce query response time, or maximize output 
rates; whereas our motivation is to enable dynamic cross-
machine load distribution. Furthermore, most dynamic 
query optimization research addressed only centralized 
query processing. The ones that addressed 
distributed/parallel execution relied on centralized query 
optimization and load sharing models. Our mechanisms 
and policies, on the other hand, implement dynamic query 
re-configuration and load sharing in a truly decentralized 
way in order to achieve high scalability. 

A movement contract can be cancelled at any time by 
either of the participants. If a contract is cancelled and the 
two oracles do not agree on a replacement, then co-
operation between the two participants reverts to the 
existing content contract (if one is in place). Hence 
movement contracts can be used for dynamic load 
balancing purposes. Of course, oracles must carefully 
monitor local load conditions, and be aware of the 
economic model that drives contracting decisions at the 
participant. Additionally, in the same manner as content 
contracts, movement contracts can also be transferred 
using suggested contracts. 

While we have compared our back-up and recovery 
approach with the generic process-pair model in Section 
4, a variation of this model [15] provides different levels 
of availability for workflow management systems. Instead 
of backing up process states, the system logs changes to 
the workflow components, which store inter-process 
messages. This approach is similar to that of ours, in that 
system state can be recovered by reprocessing the 
component back-ups. Unlike our approach, however, this 
approach does not take advantage of the data-flow nature 
of processing, and therefore has to explicitly back up the 
components at remote servers. 

Market-based approaches rely on economic principles 
to value available resources and match supply and 
demand. Mariposa [18] is a distributed database system 
that uses economic principles to guide data management 
decisions. While Mariposa’s resource pricing and trade 
are on a query-by-query basis, the trade in Medusa is 

8 Related Work 
We now briefly discuss previous related research, 
focusing primarily on load sharing, high availability, and 
distributed mechanisms for federated operations.  

 



 

based on service subscriptions. Medusa contracts enable 
participants to collaborate and share load with reasonably 
low overhead, unlike Mariposa’s per-query bidding 
process. 

9 Conclusions 
This paper discusses architectural issues encountered in 
the design of two complementary large-scale distributed 
stream processing systems. Aurora* is a distributed 
version of the stream processing system Aurora, which 
assumes nodes belonging to a common administrative 
domain. Medusa is an infrastructure supporting the 
federated operation of several Aurora nodes across 
administrative boundaries. We discussed three design 
goals in particular: a scalable communication 
infrastructure, adaptive load management, and high 
availability. For each we discussed mechanisms for 
achieving these goals, as well as policies for employing 
these mechanisms in both the single domain (Aurora*) 
and federated (Medusa) environments. In so doing, we 
identified the key challenges that must be addressed and 
opportunities that can be exploited in building scalable, 
highly available distributed stream processing systems. 
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