
Scalable Distributed Stream Processing

Mitch Cherniack٭, Hari Balakrishnan†, Magdalena Balazinska†,
Don Carney‡, Uğur Çetintemel‡, Ying Xing‡, and Stan Zdonik‡

Many stream-based applications are naturally

distributed. Applications are often embedded in an
environment with numerous connected computing
devices with heterogeneous capabilities. As data travels
from its point of origin (e.g., sensors) downstream to
applications, it passes through many computing devices,
each of which is a potential target of computation.
Furthermore, to cope with time-varying load spikes and
changing demand, many servers would be brought to bear
on the problem. In both cases, distributed computation is
the norm.

Abstract
Stream processing fits a large class of new applications
for which conventional DBMSs fall short. Because
many stream-oriented systems are inherently
geographically distributed and because distribution
offers scalable load management and higher availability,
future stream processing systems will operate in a
distributed fashion. They will run across the Internet on
computers typically owned by multiple cooperating
administrative domains. This paper describes the
architectural challenges facing the design of large-scale
distributed stream processing systems, and discusses
novel approaches for addressing load management, high
availability, and federated operation issues. We describe
two stream processing systems, Aurora* and Medusa,
which are being designed to explore complementary
solutions to these challenges.

This paper discusses the architectural issues facing the
design of large-scale distributed stream processing
systems. We begin in Section 2 with a brief description of
our centralized stream processing system, Aurora [4]. We
then discuss two complementary efforts to extend Aurora
to a distributed environment: Aurora* and Medusa.
Aurora* assumes an environment in which all nodes fall
under a single administrative domain. Medusa provides
the infrastructure to support federated operation of nodes
across administrative boundaries. After describing the
architectures of these two systems in Section 3, we
consider three design challenges common to both:
infrastructures and protocols supporting communication
amongst nodes (Section 4), load sharing in response to
variable network conditions (Section 5), and high
availability in the presence of failures (Section 6). We
also discuss high-level policy specifications employed by
the two systems in Section 7. For all of these issues, we
believe that the push-based nature of stream-based
applications not only raises new challenges but also offers
the possibility of new domain-specific solutions.

1 Introduction
There is a large class of emerging applications in which
data, generated in some external environment, is pushed
asynchronously to servers that process this information.
Some example applications include sensor networks,
location-tracking services, fabrication line management,
and network management. These applications are
characterized by the need to process high-volume data
streams in a timely and responsive fashion. Hereafter, we
refer to such applications as stream-based applications.

The architecture of current database management
systems assumes a pull-based model of data access: when
a user (the active party) wants data, she submits a query
to the system (the passive party) and an answer is
returned. In contrast, in stream-based applications data is
pushed to a system that must evaluate queries in response
to detected events. Query answers are then pushed to a
waiting user or application. Therefore, the stream-based
model inverts the traditional data management model by
assuming users to be passive and the data management
system to be active.

2 Aurora: A Centralized Stream Processor

2.1 System Model
In Aurora, data is assumed to come from a variety of
sources such as computer programs that generate values
at regular or irregular intervals or hardware sensors. We
will use the term data source for either case. A data
stream is a potentially unbounded collection of tuples
generated by a data source. Unlike the tuples of the
relational database model, stream tuples are generated in
real-time and are typically not available in their entirety at
any given point in time.

 .Brandeis University, ‡Brown University, †M.I.T٭

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2003 CIDR Conference

Aurora processes tuples from incoming streams
according to a specification made by an application
administrator. Aurora is fundamentally a data-flow
system and uses the popular boxes and arrows paradigm

Input data
streams

Output to
applications

Continuous & ad hoc
queries

Operator boxes Historical
Storage

Figure 1: Basic Aurora System Model

1. (A = 1, B = 2)
2. (A = 1, B = 3)
3. (A = 2, B = 2)
4. (A = 2, B = 1)
5. (A = 2, B = 6)
6. (A = 4, B = 5)
7. (A = 4, B = 2)

 …
Figure 2: A Sample Tuple Stream

found in most process flow and workflow systems. Here,
tuples flow through a loop-free, directed graph of
processing operators (i.e., boxes), as shown in Figure 1.
Ultimately, output streams are presented to applications,
which must be constructed to handle the asynchronously
arriving tuples in an output stream.
 Every Aurora application must be associated with a
query that defines its processing requirements, and a
Quality-of-Service (QoS) specification that specifies its
performance requirements (see Section 7.1).

2.2 Query Model
Queries are built from a standard set of well-defined
operators (boxes). Each operator accepts input streams (in
arrows), transforms them in some way, and produces one
or more output streams (out arrows). By default, queries
are continuous [5] in that they can potentially run forever
over push-based inputs. Ad hoc queries can also be
defined and attached to connection points: predetermined
arcs in the flow graph where historical data is stored.

Aurora queries are constructed using a box-and-arrow
based graphical user interface. It would also be possible
to allow users to specify declarative queries in a language
such as SQL (modified to specify continuous queries),
and then compile these queries into our box and arrow
representation.

Here, we informally describe a subset of the Aurora
operators that are relevant to this paper; a complete
description of the operators can be found in [2, 4]. This
subset consists of a simple unary operator (Filter), a
binary merge operator (Union), a time-bounded
windowed sort (WSort), and an aggregation operator
(Tumble). Aurora also includes a mapping operator
(Map), two additional aggregate operators (XSection and
Slide), a join operator (Join), and an extrapolation
operator (Resample), none of which are discussed in
detail here.

Given some predicate, p, Filter (p) produces an output
stream consisting of all tuples in its input stream that
satisfy p. Optionally, Filter can also produce a second
output stream consisting of those tuples which did not
satisfy p. Union produces an output stream consisting of
all tuples on its n input streams. Given a set of sort
attributes, A1, A2, …, An and a timeout, WSort buffers all
incoming tuples and emits tuples in its buffer in

ascending order of its sort attributes, with at least one
tuple emitted per timeout period.*

Tumble takes an input aggregate function and a set of
input groupby attributes.† The aggregate function is
applied to disjoint “windows” (i.e., tuple subsequences)
over the input stream. The groupby attributes are used to
map tuples to the windows they belong to. For example,
consider the stream of tuples shown in Figure 2. Suppose
that a Tumble box is defined with an aggregate function
that computes the average value of B, and has A as its
groupby attribute. This box would emit two tuples and
have another tuple computation in progress as a result of
processing the seven tuples shown. The first emitted
tuple, (A = 1, Result = 2.5), which averages the
two tuples with A = 1 would be emitted upon the
arrival of tuple #3: the first tuple to arrive with a value of
A not equal to 1. Similarly, a second tuple, (A = 2,
Result = 3.0), would be emitted upon the arrival of
tuple #6. A third tuple with A = 4 would not get emitted
until a later tuple arrives with A not equal to 4.

2.3 Run-time Operation
The single-node Aurora run-time architecture is shown in
Figure 3. The heart of the system is the scheduler that
determines which box to run. It also determines how
many of the tuples that might be waiting in front of a
given box to process and how far to push them toward the
output. We call this latter determination train scheduling
[4]. Aurora also has a Storage Manager that is used to
buffer queues when main memory runs out. This is
particularly important for queues at connection points
since they can grow quite long.

Aurora must constantly monitor the QoS of output
tuples (QoS Monitor in Figure 3). This information is
important since it drives the Scheduler in its decision-
making, and it also informs the Load Shedder when and
where it is appropriate to discard tuples in order to shed
load. Load shedding is but one technique employed by
Aurora to improve the QoS delivered to applications.

* Note that WSort is potentially lossy because it must discard any tuples
that arrive after some tuple that follows it in sort order has already been
emitted.
† Aurora’s aggregate operators have two additional parameters that
specify when tuples get emitted and when an aggregate times out. For
the purposes of this discussion, we assume that these parameters have
been set to output a tuple whenever a window is full (i.e., never as a
result of a timeout).

When load shedding is not working, Aurora will try to re-
optimize the network using standard query optimization
techniques (such as those that rely on operator
commutativities). This tactic requires a more global view
of the network and thus is used more sparingly. It does
have the advantage that in transforming the original
network, it might uncover new opportunities for load
shedding. The final tactic is to retune the scheduler by
gathering new statistics or switching scheduler
disciplines.

3 Distributed System Architecture
Building a large-scale distributed version of a stream
processing system such as Aurora raises several important
architectural issues. In general, we envision a distributed
federation of participating nodes in different
administrative domains. Together, these nodes provide a
stream processing service for multiple concurrent stream-
based applications. Collaboration between distinct
administrative domains is fundamentally important for
several reasons, including:

1. A federation in which each participating organization

contributes a modest amount of computing,
communication, and storage resources allows for a
high degree of resource multiplexing and sharing,
enabling large time-varying load spikes to be
handled. It also helps improve fault-tolerance and
resilience against denial-of-service attacks.

2. Many streaming services, such as weather
forecasting, traffic management, and market analysis,
inherently process data from different autonomous
domains and compose them; distribution across
administrative boundaries is a fundamental constraint
in these situations.

We envision that programs will continue to be written in
much the same way that they are with single-node
Aurora, except that they will now run in a distributed
fashion. The partitioning of the query plan on to the

participating nodes in response to changing demand,
system load, and failures, is a challenging problem, and
intractable as an optimization problem in a large network.
Additionally, inter-domain collaborations are not a
straightforward extension of intra-domain distribution.
For instance, some applications may not want their data
or computation running within arbitrary domains, and
some organizations may not have the incentive to process
streams unless they derive tangible benefits from such
processing

…Q1
…Q2

.

.

.
…Qi

Buffer manager

…Qj

…Qn

.

.

.

Storage
Manager

Persistent Store

Scheduler

Router

Catalogs

σ

µ
.
.
.

Box Processors

inputs outputs

Load
Shedder

QoS
Monitor

Figure 3: Aurora Run-time Architecture

Our architecture splits the general problem into intra-
participant distribution (a relatively small-scale
distribution all within one administrative domain, handled
by Aurora*) and inter-participant distribution (a large-
scale distribution across administrative boundaries,
handled by Medusa). This method of splitting allows the
general problem to become tractable, enabling the
implementation of different policies and algorithms for
load sharing. This decomposition allows three pieces to
be shared between Aurora* and Medusa: (i) Aurora, (ii)
an overlay network for communication, and (iii)
algorithms for high-availability that take advantage of the
streaming nature of our problem domain.

3.1 Aurora*: Intra-participant Distribution
Aurora* consists of multiple single-node Aurora servers
that belong to the same administrative domain and
cooperate to run the Aurora query network on the input
streams. In general there are no operational restrictions
regarding the nodes where sub-queries can run; boxes can
be placed on and executed at arbitrary nodes as deemed
appropriate.

When an Aurora query network is first deployed, the
Aurora* system will create a crude partitioning of boxes
across a network of available nodes, perhaps as simple as
running everything on one node. Each Aurora node
supporting the running system will continuously monitor
its local operation, its workload, and available resources
(e.g., CPU, memory, bandwidth, etc.). If a machine finds
itself short of resources, it will consider offloading boxes
to another appropriate Aurora node. All dynamic
reconfiguration will take place in such a decentralized
fashion, involving only local, pair-wise interactions
between Aurora nodes. We discuss the pertinent load
distribution mechanisms and policies in more detail in
Section 5.

3.2 Medusa: Inter-participant Federated Operation
Medusa is a distributed infrastructure that provides
service delivery among autonomous participants. A
Medusa participant is a collection of computing devices
administered by a single entity. Hence, participants range
in scale from collections of stream processing nodes
capable of running Aurora and providing part of the
global service, to PCs or PDAs that allow user access to
the system (e.g., to specify queries), to networks of
sensors and their proxies that provide input streams.

Medusa is an agoric system [16], using economic
principles to regulate participant collaborations and solve
the hard problems concerning load management and
sharing. Participants provide services to each other by
establishing contracts that determine the appropriate
compensation for each service. Medusa uses a market
mechanism with an underlying currency (“dollars”) that
backs these contracts. Each contract exists between two
participants and covers a message stream that flows
between them. One of the contracting participants is the
sending participant; the other is the receiving participant.
Medusa models each message stream as having positive
value, with a well-defined value per message; the model
therefore is that the receiving participant always pays the
sender for a stream. In turn, the receiver performs query-
processing services on the message stream that
presumably increases its value, at some cost. The receiver
can then sell the resulting stream for a higher price than it
paid and make money.

Some Medusa participants are purely stream sources
(e.g., sensor networks and their proxies), and are paid for
their data, while other participants (e.g., end-users) are
strictly stream sinks, and must pay for these streams.
However, most Medusa participants are “interior” nodes
(acting both as sources and sinks). They are assumed to
operate as profit-making entities; i.e., their contracts have
to make money or they will cease operation. Our hope is
that such contracts (mostly bilateral) will allow the
system to anneal to a state where the economy is stable,
and help derive a practical solution to the computationally
intractable general partitioning problem of placing query
operators on to nodes. The details of the contracting
process are discussed in Section 7.2.

4 Scalable Communications Infrastructure
Both Aurora* and Medusa require a scalable
communication infrastructure. This infrastructure must
(1) include a naming scheme for participants and query
operators and a method for discovering where any portion
of a query plan is currently running and what operators
are currently in place, (2) route messages between
participants and nodes, (3) multiplex messages on to
transport-layer streams between participants and nodes,
and (4) enable stream processing to be distributed and
moved across nodes. The communications infrastructure
is an overlay network, layered on top of the underlying
Internet substrate.

4.1 Naming and Discovery
There is a single global namespace for participants, and
each participant has a unique global name. When a
participant defines a new operator, schema, or stream, it
does so within its own namespace. Hence, each entity’s
name begins with the name of the participant who defined
it, and each object can be uniquely named by the tuple:
(participant, entity-name). Additionally, a stream that

crosses participant boundaries is named separately within
each participant.

To find the definition of an entity given its name, or
the location where a data stream is available or a piece of
a query is executing, we define two types of catalogs in
our distributed infrastructure: intra-participant and inter-
participant catalogs. Within a participant, the catalog
contains definitions of operators, schemas, streams,
queries, and contracts. For streams, the catalog also holds
(possibly stale) information on the physical locations
where events are being made available. Indeed, streams
may be partitioned across several nodes for load
balancing. For queries, the catalog holds information on
the content and location of each running piece of the
query. The catalog may be centralized or distributed. All
nodes owned by a participant have access to the complete
intra-participant catalog.

For participants to collaborate and offer services that
cross their boundaries, some information must be made
globally available. This information is stored in an inter-
participant catalog and includes the list, description, and
current location of pieces of queries running at each
participant.

Each participant that provides query capabilities
holds a part of the shared catalog. We propose to
implement such a distributed catalog using a distributed
hash table (DHT) with entity names as unique keys.
Several algorithms exist for this purpose (e.g., DHTs
based on consistent hashing [6, 14] and LH* [19]). These
algorithms differ in the way they distribute load among
participants, handle failures, and perform lookups.
However, they all efficiently locate nodes for any key-
value binding, and scale with the number of nodes and the
number of objects in the table.

4.2 Routing
Before producing events, a data source, or an
administrator acting on its behalf, registers a new schema
definition and a new stream name with the system, which
in turn assigns a default location for events of the new
type. Load sharing between nodes may later move or
partition the data. However, the location information is
always propagated to the intra-participant catalog.

When a data source produces events, it labels them
with a stream name and sends them to one of the nodes in
the overlay network. Upon receiving these events, the
node consults the intra-participant catalog and forwards
events to the appropriate locations.

Each Aurora network deployed in the system explicitly
binds its inputs and outputs to a list of streams, by
enumerating their names. When an input is bound, the
intra-participant catalog is consulted to determine where
the streams of interest are currently located. Events from
these streams are then continually routed to the location
where the query executes.

Query plans only bind themselves to streams defined
within a participant. Explicit connections are opened for

streams to cross participant boundaries. These streams are
then defined separately within each domain.

4.3 Message Transport
When a node transfers streams of messages to another
node in the overlay, those streams will in general belong
to different applications and have different characteristics.
In many situations, especially in the wide-area, we expect
the network to be the stream bottleneck. The transport
mechanism between nodes must therefore be carefully
designed.

One approach would be to set up individual TCP
connections, one per message stream, between the node
pair. This approach, although simple to implement, has
several problems. First, as the number of message streams
grows, the overhead of running several TCP connections
becomes prohibitive on the nodes. Second, independent
TCP connections do not share bandwidth well and in fact
adversely interact with each other in the network [11].
Third, both within one participant as well as between
participants, we would like the bandwidth between the
nodes to be shared amongst the different streams
according to a prescribed set of weights that depend on
either QoS specifications or contractual obligations.

Our transport approach is to multiplex all the message
streams on to a single TCP connection and have a
message scheduler that determines which message stream
gets to use the connection at any time. This scheduler
implements a weighted connection sharing policy based
on QoS or contract specification, and keeps track of the
rates allocated to the different messages in time.

There are some message streaming applications where
the in-order reliable transport abstraction of TCP is not
needed, and some message loss is tolerable. We plan to
investigate if a UDP-based multiplexing protocol is also
required in addition to TCP. Doing this would require a
congestion control protocol to be implemented [12].

4.4 Remote Definition
To share load dynamically between nodes within a
participant, or across participants, parts of Aurora
networks must be able to change the location where they
execute at run-time. However, process migration raises
many intractable compatibility and security issues,
especially if the movement crosses participant
boundaries. Therefore, we propose a different approach,
which we call remote definition. With this approach, a
participant instantiates and composes operators from a
pre-defined set offered by another participant to mimic
box sliding. For example, instead of moving a WSort box,
a participant remotely defines the WSort box at another
participant and binds it to the appropriate streams within
the new domain. Load sharing and box sliding are
discussed in more details in the following sections.

In addition to facilitating box sliding, remote definition
also helps content customization. For example, a
participant might offer streams of events indicating stock

quotes. A receiving participant interested only in knowing
when a specific stock passes above a certain threshold
would normally have to receive the complete stream and
would have to apply the filter itself. With remote
definition, it can instead remotely define the filter, and
receive directly the customized content.

5 Load Management
To adequately address the performance needs of stream-
based applications under time varying, unpredictable
input rates, a multi-node data stream processing system
must be able to dynamically adjust the allocation of
processing among the participant nodes. This decision
will primarily consider the loads and available resources
(e.g., processor cycles, bandwidth, memory).

Both Aurora* and Medusa address such load
management issues by means of a set of algorithms that
provide efficient load sharing among nodes. Because
Aurora* assumes that the participants are all under a
common administrative control, lightly-loaded nodes will
freely share load with their over-burdened peers. Medusa
will make use of the Aurora* mechanisms where
appropriate, but it must also worry about issues of how to
cross administrative boundaries in an economically viable
way without violating contractual constraints.

In the rest of this section, we first discuss the basic
mechanisms used for partitioning and distributing Aurora
operator networks across multiple nodes. We then discuss
several key questions that need to be addressed by any
repartitioning policy.

5.1 Mechanisms: Repartitioning Aurora Networks
On every node that runs a piece of Aurora network, a
query optimizer/load share daemon will run periodically
in the background. The main task of this daemon will be
to adjust the load of its host node in order to optimize the
overall performance of the system. It will achieve this by
either off-loading computation or accepting additional
computation. Load redistribution is thus a process of
moving pieces of the Aurora network from one machine
to another.

Load sharing must occur while the network is
operating. Therefore, it must first stabilize the network at
the point of the transformation. Network transformations
are only considered between connection points. Consider
a sub-network S that is bounded on the input side by an
arc, Cin, and on the output side by an arc, Cout. The
connection point at Cin is first choked off by simply
collecting any subsequent input arriving at the connection
point at Cin. Any tuples that are queued within S are
allowed to drain off. When S is empty, the network is
manipulated, parts of it are moved to other machines, and
the flow of messages at Cin is turned back on.

It should be noted that the reconfiguration of the
Aurora network will not always be a local decision. For
example, an upstream node might be required to signal a
downstream node that it does not have sufficient

Filter(p)

splits into …

Filter(p)

Filter(p)

Filter(q) Union

Figure 5: Splitting a Filter Box

B1 B2 B3

B1 B2 B3

After the slide …

machine1 machine2

machine1 machine2

Before the slide …

Figure 4: Box Sliding

bandwidth to handle its output (this would happen if an
upstream node notices a backup on its output link). In this
case, the upstream node might want to signal the
neighboring downstream node to move one or more boxes
upstream to reduce the communication across that link.

We now discuss two basic load sharing mechanisms,
box sliding and box splitting, which are used to repartition
the Aurora network in a pair-wise fashion.

Box Sliding. This technique takes a box on the edge of a
sub-network on one machine and shifts it to its neighbor.
Beyond the obvious repositioning of processing, shifting
a box upstream is often useful if the box has a low
selectivity (reduces the amount of data) and the
bandwidth of the connection is limited. Shifting a box
downstream can be useful if the selectivity of the box is
greater than one (produces more data than the input, e.g.,
a join) and the bandwidth of the connection is again
limited. We call this kind of remapping horizontal load
sharing or box sliding. Figure 4 illustrates upstream box
sliding.

It should be noted that the machine to which a box is
sent must have the capability to execute the given
operation. In a sensor network, some of the nodes can be
very weak. Often the sensor itself is capable of
computation, but this capability is limited. Thus, it might
be possible to slide a simple Filter box to a sensor node,
whereas the sensor might not support a Tumble box.

It should also be noted that box sliding could also move
boxes vertically. That is, a box that is assigned to machine
A can be moved to machine B as long as the input and
output arcs are rerouted accordingly.

Box Splitting. A heavier form of load sharing involves
splitting Aurora boxes. A split creates a copy of a box that
is intended to run on a second machine. This mechanism
can be used to offload from an overloaded machine; one
or more boxes on this machine get split, and some of the
load then gets diverted to the box copies resulting from
the split (and situated on other machines). Every box-split
must be preceded by a Filter box with a predicate that
partitions input tuples (routing them to one box or the
other). For splits to be transparent (i.e., to ensure that a

split box returns the same result as an unsplit box), one or
more boxes must be added to the network that merges the
box outputs back into a single stream.

The boxes required to merge results depend on the box
that is split. Figure 5 and Figure 6 show two examples.
The first split is of Filter and simply requires a Union
box to accomplish the merge. The second split is of
Tumble, which requires a more sophisticated merge,
consisting of Union followed by WSort and then another
Tumble. It also requires that the aggregate function
argument to Tumble, agg, have a corresponding
combination function, combine, such that for any set of
tuples, {x1, x2, …, xn}, and k ≤ n:

agg({x1, x2, …, xn}) =
 combine(agg({x1, x2, …, xk}), agg({xk+1, xk+2, …, xn})

For example, if agg is cnt (count), combine is sum, and if
agg is max, then combine is max also. In Figure 6, agg is
cnt and combine is sum.

To illustrate the split shown in Figure 6, consider a
Tumble applied to the stream that was shown in Figure 2
with the aggregate function cnt and groupby attribute A.
Observe that without splitting, Tumble would emit the
following tuples while processing the seven tuples shown
in Figure 2:

Tumble (cnt, Groupby A)

splits into …

Filter (p)
Tumble (cnt, Groupby A)

Union

WSort (A)

Tumble (cnt, Groupby A)

Tumble (sum, Groupby A)

Merge

Figure 6: Splitting a Tumble Box

 (A = 1, result = 2)
 (A = 2, result = 3)

Suppose that a split of the Tumble box takes place after
tuple #3 arrives, and that the Filter box used for routing
tuples after the split uses the predicate, B < 3 to decide
where to send any tuple arriving in the future (i.e., if B <
3 then send the tuple to machine containing the original
Tumble box (machine #1), and otherwise send the tuple
to machine #2). In this case, machine #1 will see tuples 1,
2, 3, 4 and 7; and machine #2 will see tuples 5 and 6.
After machine #1 processes tuple #7, its Tumble box will
have emitted tuples:

 (A = 1, result = 2)
 (A = 2, result = 2)

and after machine #2 processes tuple #6, its Tumble box
will have emitted the tuple:

 (A = 2, result = 1)

Assuming a large enough timeout argument, WSort
rearranges the union of these tuples, emitting them in
order of their values for A. The Tumble box that follows
then adds the values of result for tuples with like
values of A. This results in the emission of tuples:

 (A = 1, result = 2)
 (A = 2, result = 3)

which is identical to that of the unsplit Tumble box.

Once split has replicated a part of the network, the
parallel branches can be mapped to different machines. In
fact, an overloaded machine may perform a split and then
ask a neighbor if it can accept some additional load. If the
neighbor is willing, the network might get remapped as in
Figure 7.

5.2 Key Repartitioning Challenges
We now provide an outline of several fundamental policy
decisions regarding when and how to use the load sharing
mechanism described in the previous subsection.
Particular solutions will be guided and constrained by the
high-level policy specifications and guidelines, QoS and

economic contracts, used by Aurora* and Medusa,
respectively (see Section 7).

B

B

Merge

machine2

machine1

Filter

p

¬p

Figure 7: Remapping after a Split

Initiation of Load Sharing. Because network topologies
and loads will be changing frequently, load sharing will
need to be performed fairly frequently as well. However,
shifting boxes around too frequently could lead to
instability as the system tries to adjust to load
fluctuations. Determining the proper granularity for this
operation is an important consideration for a successful
system.

Choosing What to Offload. Both box sliding and box
splitting require moving boxes and their input and output
arcs across machine boundaries. Even though a
neighboring machine may have available compute cycles
and memory, it may not be able to handle the additional
bandwidth of the new arcs. Thus, the decision of which
Aurora network pieces to move must consider bandwidth
availability as well.

Choosing Filter Predicates for Box Splitting. Every
box split results in a new sub-network rooted by a Filter
box. The Filter box acts as a semantic router for the
tuples arriving at the box that has been split. The filter
predicate, p, defines the redistributed load. The choice of
p is crucial to the effectiveness of this strategy. Predicate
p could depend on the stream content. For example, we
might want to separate streams based on where they were
generated as in all streams generated in Cambridge. On
the other hand, the partitioning criterion could depend on
some metadata or statistics about the streams as in the top
10 streams by arrival rate. Alternatively, p could be
based on a simple statistic as in half of the available
streams. Moreover, the choice of p could vary with time.
In other words, as the network characteristics change, a
simple adjustment to p could be enough to rebalance the
load.

Choosing What to Split. Choosing the right sub-network
to split is also an important optimization problem. The
trick is to pick a set of boxes that will move “just enough”
processing. In a large Aurora network, this could be quite
difficult. Moreover, it is important to move load in way
that will not require us to move it again in the near future.
Thus, finding candidate sub-networks that have durable
effect is important.

Handling Connection Points. Naively, splitting a
connection point could involve copying a lot of data.
Depending on the expected usage, this might be a good
investment. In particular, if it is expected that many users
will attach ad hoc queries to this connection point, then
splitting it and moving a replica to different machine may
be a sensible load sharing strategy. On the other hand, it
might make sense to leave the connection point intact and
to split the boxes on either side of it. This would mean

that the load introduced by the processing would be
moved, while the data access to the second box would be
remote.

primary server

back-up of the tuples in transit

back-up server

s1 s2 s3

Figure 8: Primary and back-up servers

6 High Availability
A key goal in the design of any data stream processing
system is to achieve robust operation in volatile and
dynamic environments, where availability may suffer due
to (1) server and communication failures, (2) sustained
congestion levels, and (3) software failures. In order to
improve overall system availability, Aurora* and Medusa
rely on a common stream-oriented data back-up and
recovery approach, which we describe below.

6.1 Overview and Key Features
Our high-availability approach has two unique
advantages, both due to the streaming data-flow nature of
our target systems. First, it is possible to reliably back up
data and provide safety without incurring the overhead to
explicitly copy them to special back up servers (as in the
case of traditional process pair models [10]). In our
model, each server can effectively act as a back-up for its
downstream servers. Tuples get processed and flow
naturally in the network (precisely as in the case of
regular operation). Unlike in regular operation, however,
processed tuples are discarded lazily, only when it is
determined that their effects are safely recorded
elsewhere, and, thus, can be effectively recovered in case
of a failure.

Second, the proposed approach enables a tradeoff
between the recovery time and the volume of checkpoint
messages required to provide safety. This flexibility
allows us to emulate a wide spectrum of recovery models,
ranging from a high-volume checkpoints/fast-recovery
approach (e.g., Tandem [1]) to a low-volume
checkpoints/slow-recovery approach (e.g., log-based
recovery in traditional databases).

6.2 Regular Operation
We say that a distributed stream processing system is k-
safe if the failure of any k servers does not result in any
message losses. The value of k should be set based on the
availability requirements of applications, and the
reliability and load characteristics of the target
environments. We provide k-safety by maintaining the
copies of the tuples that are in transit at each server s, at k
other servers that are upstream from s. An upstream back-
up server simply holds on to a tuple it has processed until
its primary server tells it to discard the tuple. Figure 8
illustrates the basic mechanism for k = 1. Server s1 acts as
a back-up of server s2. A tuple t sent from s1 to s2 is
simply kept at s1’s output queue until it is guaranteed that
all tuples that depended on t (i.e., the tuples whose values
got determined directly or indirectly based on t) made it
to s3.

In order to correctly truncate output queues, we need to
keep track of the order in which tuples are transmitted

between the servers. When an upstream server sends a
message (containing tuples) to a successor, it also
includes a monotonically increasing sequence number. It
is sufficient to include only the base sequence number, as
the corresponding numbers for all tuples can be
automatically generated at the receiving server by simply
incrementing the base. We now describe two remote
queue truncation techniques that use tuple sequence
numbers.

Our first technique involves the use of special flow
messages. Periodically, each data source creates and
sends flow messages into the system. A box processes a
flow message by first recording the sequence number of
the earliest tuple that it currently depends on‡, and then
passing it onward. Note that there might be multiple
earliest sequence numbers, one for each upstream server
at the extreme case. When the flow message reaches a
server boundary, these sequence values are recorded and
the message continues in the next server. Hence, each
server records the identifiers of the earliest upstream
tuples that it depends on. These values serve as
checkpoints; they are communicated through a back
channel to the upstream servers, which can appropriately
truncate the tuples they hold. Clearly, the flow message
can also be piggybacked on other control or data
messages (such as heartbeat messages, DHT lookup
messages, or regular tuple messages).

The above scheme will operate correctly only for
straight-line networks. When there are branches and
recombinations, special care must be taken. Also, when
messages from one server go to multiple subsequent
servers, additional extensions are required.

Whenever a message is split and sent to two
destinations, then the flow message is similarly split. If a
box gets input from two arcs, it must save the first flow
message until it receives one on the other arc. If the two
flow messages come from different servers, then both are
sent onward. If they come from the same server, then the

‡ If the box has state (e.g., consider an aggregate box), then the
recorded tuple is the one that presently contributes to the state of
the box and that has the lowest sequence number (for each
upstream server). If the box is stateless (e.g., a filter box), then
the recorded tuple is the one that has been processed most
recently.

The basic approach can be extended to support faster
recovery, but at higher run time cost. Consider
establishing a collection of K virtual machines on top of
the Aurora network running on a single physical server.
Now, utilize the approach described above for each
virtual machine. Hence, there will be queues at each
virtual machine boundary, which will be truncated when
possible. Since each queue is on the same physical
hardware as its downstream boxes, high availability is not
provided on machine failures with the algorithms
described so far.

minimum is computed as before and a single message
sent onward. In this way, the correct minimum is received
at the output.

An output can receive flow messages from multiple
upstream servers. It must merely respond to the correct
one with a back channel message. Similarly, when an
upstream server has multiple successor servers, it must
wait for a back channel message from each one, and then
only truncate the queue to the maximum of the minimum
values.

An alternate technique to special flow messages is to
install an array of sequence numbers on each server, one
for each upstream server. On each box’s activation, the
box records in this array the earliest tuples on which it
depends. The upstream servers can then query this array
periodically and truncate their queues accordingly. This
approach has the advantage that the upstream server can
truncate at its convenience, and not just when it receives a
back channel message. However, the array approach
makes the implementation of individual boxes somewhat
more complex.

 To achieve high-availability, the queue has to be
replicated to a physical backup machine. At a cost of one
message per entry in the queue, each of the K virtual
machines can resume processing from its queue, and finer
granularity restart is supported. The ultimate extreme is to
have one virtual machine per box. In this case, a message
must be sent to a backup server each time a box processes
a message. However, only the processing of the in-transit
boxes will be lost. This will be very similar to the
process-pair approach. Hence, by adding virtual machines
to the high-availability algorithms, we can tune the
algorithms to any desired tradeoff between recovery time
and run time overhead.

6.3 Failure Detection and Recovery
Each server sends periodic heartbeat messages to its
upstream neighbors. If a server does not hear from its
downstream neighbor for some predetermined time
period, it considers that its neighbor failed, and it initiates
a recovery procedure. In the recovery phase, the back-up
server itself immediately starts processing the tuples in its
output log, emulating the processing of the failed server
for the tuples that were still being processed at the failed
server. Subsequently, load-sharing techniques can be used
to offload work from the back-up server to other available
servers. Alternatively, the backup server can move its
output log to another server, which then takes over the
processing of the failed server. This approach might be
worthwhile if the back-up server is already heavily loaded
and/or migration of the output log is expected to be
inexpensive.

7 Policy Specifications and Guidelines
We now describe the high-level policy specifications
employed by Aurora* and Medusa to guide all pertinent
resource, load, and availability management decisions.
We first describe application-specific QoS specifications
used by Aurora*, and then overlay the Medusa approach
for establishing (economic) contracts between different
domains.

7.1 QoS Based Control in Aurora*
Along with a query, every Aurora application must also
specify its QoS expectations [4]. A QoS specification is a
function of some performance, result precision, or
reliability related characteristic of an output stream that
produces a utility (or happiness) value to the
corresponding application. The operational goal of
Aurora is to maximize the perceived aggregate QoS
delivered to the client applications. As a result, all Aurora
resource allocation decisions, such as scheduling and load
shedding, are driven by QoS-aware algorithms [4]. We
now discuss some interesting issues that arise as we
extend the basic single-node QoS model to a distributed
multi-node model to be used by Aurora*.

6.4 Recovery Time vs. Back Up Granularity
The above scheme does not interfere with the natural flow
of tuples in the network, providing high availability with
only a minimum of extra messages. In contrast, a process-
pair approach requires check pointing a computation to its
backup on a regular basis. To achieve high availability
with a process-pair model would require a checkpoint
message every time a box processed a message. This is
overwhelmingly more expensive than the approach we
presented. However, the cost of our scheme is the
possibly considerable amount of computation required
during recovery. In contrast, a process-pair scheme will
redo only those box calculations that were in process at
the time of the failure. Hence, the proposed approach
saves many run-time messages, at the expense of having
to perform additional work at failover time.

One key QoS issue that needs to be dealt with in
Aurora* involves inferring QoS for the outputs of
arbitrary Aurora* nodes. In order to be consistent with the
basic Aurora model and to minimize the coordination
among the individual Aurora nodes, it is desirable for
each node in an Aurora* configuration to run its own
local Aurora server. This requires the presence of QoS
specifications at the outputs of internal nodes (i.e., those
that are not directly connected to output applications).

Because QoS expectations are defined only at the output
nodes, the corresponding specifications for the internal
nodes must be properly inferred. This inference is
illustrated in Figure 9, where a given application’s query
result is returned by node S3, but additional computation
is done at the internal nodes S1 and S2. The QoS specified
at the output node S3 needs to be pushed inside the
network, to the outputs of S1 and S2, so that these internal
nodes can make local resource management decisions.

s1
s3

s2

QoSoutput

QoSinferred

QoSinferred

….

….

Figure 9: Inferring QoS at intermediate nodes While, in general, inferring accurate QoS requirements

in the middle of an Aurora network is not going to be
possible, we believe that inferring good approximations to
some of the QoS specifications (such as the latency-based
QoS specification, which is a primary driver for many
resource control issues) is achievable given the
availability of operational system statistics. To do this, we
assume that the system has access to the average
processing cost and the selectivity of each box. These
statistics can be monitored and maintained in an
approximate fashion over a running network.

7.2 Economic Contract Based Control in Medusa
As discussed in previous sections, Medusa regulates
interactions between participants using an agoric model
with three basic types of contracts: (a) content contracts
(b) suggested contracts, and (c) movement contracts. We
discuss each type of contract in turn.

Content contracts cover the payment by a receiving
participant for the stream to be sent by a sending
participant. The form of a content contract is: A QoS specification at the output of some box, B is a

function of time t and can be written as Qo(t). Assume
that box B takes, on average, TB units of time for a tuple
arriving at its input to be processed completely. TB can be
measured and recorded by each box and would implicitly
include any queuing time. The QoS specification Qi(t) at
box B’s input would be Qo(t+TB). This simple technique
can be applied across an arbitrary number of Aurora
boxes to compute an estimated latency graph for any arc
in the system.

For stream_name
For time period
With availability guarantee
Pay payment

Here, stream_name is a stream known to the sender,
which the receiver must map to a local stream name. The
time period is the amount of time that sender will make
the stream available to the receiver, and payment is the
amount of money remitted. Payment can either be a fixed
dollar amount (subscription) or it can be a per-message
amount. An optional availability clause can be added to
specify the amount of outage that can be tolerated, as a
guarantee on the fraction of uptime.

Another important issue relates to the precision (i.e.,
accuracy) of query results. Precise answers to queries are
sometimes unachievable or undesirable, both of which
potentially lead to dropped tuples. A precise query
answer is what would be returned if no data was ever
dropped, and query execution could complete regardless
of the time it required. A precise query answer might be
unachievable (from an Aurora system’s perspective) if
high load on an Aurora server necessitated dropping
tuples. A precise query answer might be undesirable
(from an Aurora application’s perspective) if a query
depended upon data arriving on an extremely slow
stream, and an approximate but fast query answer was
preferable to one that was precise but slow. QoS
specifications describe, from an applications’ perspective,
what measures that it prefer Aurora take under such
circumstances. For example, if tuples must be dropped,
QoS specifications can be used to determine which and
how many.

With content contracts, Medusa participants can
perform services for each other. Additionally, if
participants authorize each other to do remote definitions,
then buying participants can easily customize the content
that they buy by defining a query plan at the selling
participant. These two types of interactions form the basis
of our system.

Additional contracts are needed to manage load
among participants and optimize queries. For instance,
participant P can use remote definition and content
contracts to partition a query plan Q over a set of other
participants {P1, …, Pk} in an arbitrary manner. P needs
to have remote definition authorization at each of P1
through Pk, but the latter do not need to have contracts
with each other. Unfortunately, this form of collaboration
will require that query plans be “star shaped” with P in
the middle, since P1 through Pk don’t have contractual
relationships with each other.

Because imprecise query answers are sometimes
unavoidable or even preferable to precise query answers,
precision is the wrong standard for Aurora systems to
strive for. In general, there will be a continuum of
acceptable answers to a query, each of which has some
measurable deviation from the perfect answer. The degree
of tolerable approximation is application specific; QoS
specifications serve to define what is acceptable.

To facilitate more efficient plans and inter-participant
load management, we need the ability to modify the way
queries are partitioned across participants at run time.

More precisely, we need the ability to slide boxes across
participants as well as the ability to add or remove a
participant from a query-processing path. For instance,
we would like to remove P from the star-shaped query
defined above.

Load sharing has been extensively studied in a
variety of settings, including distributed operating
systems (e.g., [9, 20]) and databases (e.g., [3, 7]). In a
distributed system, the load typically consists of multiple
independent tasks (or processes), which are the smallest
logical units of processing. In Aurora, the corresponding
smallest processing units are individual operators that
exhibit input-output dependencies, complicating their
physical distribution.

Adding a participant to a query plan is
straightforward with remote definition and content
contracts. Removing a participant requires that the
leaving participant ask other participants to establish new
content contracts with each other. The mechanism for this
is suggested contracts: a participant P suggests to
downstream participants an alternate location (participant
and stream name) from where they should buy content
currently provided by P. Receiving participants may
ignore suggested contracts.

Several distributed systems [8, 17] investigated on-
the-fly task migration and cloning as means for dynamic
load sharing. Our Slide and Split operations not only
facilitate similar (but finer-grained) load sharing, but also
take into account operator dependencies mentioned
above, properly splitting and merging the input and
resulting data streams as necessary. The last form of contract facilitates load balancing

via a form of box sliding, and is called a movement
contract. Using remote definition, a participant P1
defines a query plan at another participant, P2. Using a
content contract, this remote query plan can be activated.
To facilitate load balancing, P1 can define not one, but a
set of L remote query plans. Paired with locally running
queries (upstream or downstream), these plans provide
equivalent functionality, but distribute load differently
across P1 and P2. Hence, a movement contract between
two participants contains a set of distributed query plans
and corresponding inactive content contracts. There is a
separate movement contract for each query crossing the
boundary between two participants. An oracle on each
side determines at runtime whether a query plan and
corresponding content contracts from one of the
movement contracts is preferred to any of currently active
query plans and content contracts. If so, it communicates
with the counterpart oracle to suggest a substitution; i.e.,
to make the alternate query plan (and its corresponding
content contracts) active instead of the current query plan
and contracts. If the second oracle agrees, then the switch
is made. In this way, two oracles can agree to switch
query plans from time to time.

Parallel database systems [3, 7] typically share load by
using operator splitting and data partitioning. Since
Aurora operators are stream-based, the details of how we
split the load and merge results are different. More
importantly, existing parallel database query execution
models are relatively static compared to Aurora* and
Medusa: they do not address continuous query execution,
and as a result, do not also consider adaptation issues.

Because our load sharing techniques involve
dynamically transforming query plans, systems that
employ dynamic query optimization are also relevant
(e.g., see [13] for a survey). These system change query
plans on the fly in order to minimize query execution
cost, reduce query response time, or maximize output
rates; whereas our motivation is to enable dynamic cross-
machine load distribution. Furthermore, most dynamic
query optimization research addressed only centralized
query processing. The ones that addressed
distributed/parallel execution relied on centralized query
optimization and load sharing models. Our mechanisms
and policies, on the other hand, implement dynamic query
re-configuration and load sharing in a truly decentralized
way in order to achieve high scalability.

A movement contract can be cancelled at any time by
either of the participants. If a contract is cancelled and the
two oracles do not agree on a replacement, then co-
operation between the two participants reverts to the
existing content contract (if one is in place). Hence
movement contracts can be used for dynamic load
balancing purposes. Of course, oracles must carefully
monitor local load conditions, and be aware of the
economic model that drives contracting decisions at the
participant. Additionally, in the same manner as content
contracts, movement contracts can also be transferred
using suggested contracts.

While we have compared our back-up and recovery
approach with the generic process-pair model in Section
4, a variation of this model [15] provides different levels
of availability for workflow management systems. Instead
of backing up process states, the system logs changes to
the workflow components, which store inter-process
messages. This approach is similar to that of ours, in that
system state can be recovered by reprocessing the
component back-ups. Unlike our approach, however, this
approach does not take advantage of the data-flow nature
of processing, and therefore has to explicitly back up the
components at remote servers.

Market-based approaches rely on economic principles
to value available resources and match supply and
demand. Mariposa [18] is a distributed database system
that uses economic principles to guide data management
decisions. While Mariposa’s resource pricing and trade
are on a query-by-query basis, the trade in Medusa is

8 Related Work
We now briefly discuss previous related research,
focusing primarily on load sharing, high availability, and
distributed mechanisms for federated operations.

based on service subscriptions. Medusa contracts enable
participants to collaborate and share load with reasonably
low overhead, unlike Mariposa’s per-query bidding
process.

9 Conclusions
This paper discusses architectural issues encountered in
the design of two complementary large-scale distributed
stream processing systems. Aurora* is a distributed
version of the stream processing system Aurora, which
assumes nodes belonging to a common administrative
domain. Medusa is an infrastructure supporting the
federated operation of several Aurora nodes across
administrative boundaries. We discussed three design
goals in particular: a scalable communication
infrastructure, adaptive load management, and high
availability. For each we discussed mechanisms for
achieving these goals, as well as policies for employing
these mechanisms in both the single domain (Aurora*)
and federated (Medusa) environments. In so doing, we
identified the key challenges that must be addressed and
opportunities that can be exploited in building scalable,
highly available distributed stream processing systems.

Acknowledgments
We are grateful to Mike Stonebraker for his extensive
contributions to the work described in this paper. Funding
for this work at Brandeis and Brown comes from NSF
under grant number IIS00-86057, and at MIT comes from
NSF ITR ANI-0205445.

References

[1] Tandem Database Group. Non-Stop SQL: A
Distributed, High Performance, High-Reliability
Implementation of SQL. In Proceedings of the
Workshop on High Performance Transaction Systems,
Asilomar, CA, 1987.

[2] D. Abbadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, and S.
Zdonik. Aurora: A New Model and Architecture for
Data Stream Management. Brown Computer Science
CS-02-10, August 2002.

[3] L. Bouganim, D. Florescu, and P. Valduriez. Dynamic
Load Balancing in Hierarchical Parallel Database
Systems. In Proceedings of International Conference on
Very Large Data Bases, Bombay, India, 1996.

[4] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S.
Zdonik. Monitoring Streams: A New Class of Data
Management Applications. In proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB'02), Hong Kong, China, 2002.

[5] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of
Data, Dallas, TX, 2000.

[6] D. Karger, E. Lehman, T. Leighton, M. Levine, D.
Lewin, and R. Panigrahy. Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. In 29th
Annual ACM Symposium on Theory of Computing, El
Paso, Texas, 1997.

[7] D. DeWitt and J. Gray. Parallel database systems: the
future of high performance database systems.
Communications of the ACM, 35(6):85-98, 1992.

[8] F. Douglis and J. Ousterhout. Process Migration in the
Sprite Operating System. In Proceedings of the 7th
International IEEE Conference on Distributed
Computing Systems, Berlin, Germany, 1987.

[9] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive Load
Sharing in Homogeneous Distributed Systems. IEEE
Transactions on Software Engineering, 12(5):662-675,
1986.

[10] J. Gray and A. Reuter, Transaction Processing:
Concepts and Techniques: Morgan Kaufman, 1993.

[11] H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated
Congestion Management Architecture for Internet
Hosts. In ACM SIGCOMM, Cambridge, MA, 1999.

[12] H. Balakrishnan and S. Seshan. The Congestion
Manager, RFC 3124.

[13] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A.
Deshpande, K. Hildrum, S. Madden, V. Raman, and M.
Shah. Adaptive Query Processing: Technology in
Evolution. IEEE Data Engineering Bulletin, 23(2):7-18,
2000.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In ACM SIGCOMM,
San Diego, CA, 2001.

[15] M. Kamath, G. Alonso, R. Guenthor, and C. Mohan.
Providing High Availability in Very Large Workflow
Management Systems. In Proceedings of the 5th
International Conference on Extending Database
Technology, Avignon, France, 1996.

[16] M.S. Miller and K. E. Drexler, “Markets and
Computation: Agoric Open Systems,” in The Ecology of
Computation, B. A. Huberman, Ed.: North-Holland,
1988.

[17] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,
and S. Zhou. Process migration. ACM Computing
Surveys, 32(241-299, 2000.

[18] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A.
Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A Wide-
Area Distributed Database System. VLDB Journal: Very
Large Data Bases, 5(1):48-63, 1996.

[19] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* -
A Scalable Distributed Data Structure. ACM
Transactions on Data Base Systems, 21(4):480-525,
1996.

[20] W. Zhu, C. Steketee, and B. Muilwijk. Load balancing
and workstation autonomy on Amoeba. Australian
Computer Science Communications, 17(1):588--597,
1995.

	Introduction
	Aurora: A Centralized Stream Processor
	System Model
	Query Model
	Run-time Operation

	Distributed System Architecture
	Aurora*: Intra-participant Distribution
	Medusa: Inter-participant Federated Operation

	Scalable Communications Infrastructure
	Naming and Discovery
	Routing
	Message Transport
	Remote Definition

	Load Management
	Mechanisms: Repartitioning Aurora Networks
	Key Repartitioning Challenges

	High Availability
	Overview and Key Features
	Regular Operation
	Failure Detection and Recovery
	Recovery Time vs. Back Up Granularity

	Policy Specifications and Guidelines
	QoS Based Control in Aurora*
	Economic Contract Based Control in Medusa

	Related Work
	Conclusions
	Acknowledgments
	References

