
Practical Approach to Specification and

Conformance Testing of Distributed Network
Applications�

Victor V. Kuliamin, Nickolay V. Pakoulin, and Alexander K. Petrenko

Institute for System Programming of Russian Academy of Sciences (ISPRAS),
B. Kommunisticheskaya, 25, Moscow, Russia
{kuliamin, npak, petrenko}@ispras.ru

http://www.ispras.ru/groups/rv/rv.html

Abstract. Standardization of infrastructure and services in distributed
applications and frameworks requires ground methodological base. De-
sign by Contract approach looks very promising as a candidate. It helps
to obtain component-wise design, to separate concerns between develop-
ers accurately, and makes development of high quality complex systems
a manageable process. Unfortunately, in its classic form it can hardly be
applied to distributed network applications because of lack of adequate
means to describe nondeterministic asynchronous events. We extend De-
sign by Contract with capabilities to describe callbacks and asynchronous
communication between components. The resulting method was used to
specify distributed applications and to develop conformance test suites
for them in automated manner. Specifications are developed in an ex-
tension of C language that makes them clear and useful for industrial
developers and decreases greatly test construction effort. Practical re-
sults of numerous successful applications of the method are described.
More information on the applications of the method can be found at the
site of RedVerst group of ISP RAS [1].

Keywords: Design by Contract, asynchronous events specification, dis-
tributed system specification, formalization of standards, model based
testing, conformance testing, automated test construction, specification
extension of programming language, test oracle generation, UniTesK.

1 Introduction

Standardization of infrastructure and base services of distributed systems builds
up its strength as the important component of the movement to availability and
dependability of such systems. This process needs adequate support from meth-
ods and technologies of software construction. One of the promising approaches
to development of high-quality complex software systems is Design by Contract
(DbC) [2]. The key points of this approach can be stated as follows.

� This work is partially supported by RFBR grant 04-07-90386, by grant of Russian
Science Support Foundation, and by Program 4 of Mathematics Branch of RAS.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 68–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Practical Approach to Specification and Conformance Testing 69

– Software is considered as a system of components separated from each other
and communicating with each other only through the specified interfaces.

– An interface of the component is a set of its operations, which semantics
is described with preconditions and postconditions. Precondition of an op-
eration states the obligations of an environment – before the call of this
operation a caller should ensure that the precondition holds. Postcondi-
tion states counter-obligations of the component. If the precondition holds
just before the call of the operation, the component ensures that the post-
condition holds just after the call. Preconditions and postconditions are
usually formulated in terms of operation parameters and internal state of
the component.

– Common parts of pre- and postconditions of all the component’s operations
can be stated as separate invariants representing integrity constraints on the
component’s state.

Design by Contract proposes a powerful and well-scalable software develop-
ment method. It possesses the following advantages.

– Clear component boundaries and obligations make possible effective sep-
aration of concerns between different components, separation of develop-
ment activities between their developers, and significant flexibility in their
implementation.

– The approach ensures broad reuse. As long as we need some functionality
stated as a postcondition, we can use any component providing this or more
strict postcondition, if we in turn ensure the corresponding precondition.
As long as developer can ensure some postcondition providing that the pre-
condition holds, he or she may change the implementation of component
without risk of introducing errors in the system.

– The approach applies rather uniformly to components of different scale. Sub-
systems consisting of many components can be also considered as compo-
nents with their own contracts. With the help of contracts of a subsystem
and constituent components we can ensure correctness of subsystem’s de-
composition, and so, step by step, can build rather complex systems on the
same methodological base. The quality of the result can be predicted due to
rigor of the approach combined with the simplicity of its application.

All this sounds great. Even more great it can be for modern service-oriented
architectures, which are based on separate components providing services for
each other. But Design by Contract in its classic form given in [2] can hardly be
applied for modern complex software systems. We can formulate the following
causes of this situation.

– Complex networking software uses many different kinds of communication
activities between its components. For example, callbacks are rather com-
mon in distributed frameworks. Another widely used kind of communication
between components of such systems is asynchronous events and messages.
Consider these issues in more details.

70 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

Callback represents a parameter of functional type, constraints on which
can be described only if we consider the properties of all functions that can be
passed in this callback. So, we need to impose additional contract on callback,
although it is only a parameter of some operation, not an operation itself.
This kind of contracts and its use in system development is not concerned by
the classic Design by Contract approach. Any time a callback parameter is
used developers have to consider constraints on the corresponding operation
outside of DbC framework or treat them rather informally.

DbC also has no special means to describe asynchronous communica-
tions, which is very important in modern software. Moreover, in DbC frame-
work we can hardly find any means to reason about correctness of multiple
asynchronous communications performed in parallel. This is really serious
drawback of the approach, making it inapplicable to many modern systems.

– DbC approach was originally targeted for software design, and usually after
coming to rather clear understanding of the system design designers and de-
velopers cannot get any more benefits from the contracts. So, the contracts,
which require a lot of work to develop, become useless and are not supported
after some phase of the project to minimize the total effort (sometimes they
are also used for debugging). We think that to make contracts actually useful
they need additional means to provide sound and full-scale quality control of
the results of development performed on their base including automated test
construction, test adequacy measurement, regression testing, and certifica-
tion. The original approach says nothing about measurement of component’s
quality based on its contract – it provides only insights on possible usage of
contracts to check runtime behavior of the components or to test them in a
random fashion.

In this article we present possible solution of both problems. We provide
an extension of DbC approach that adds just several new entities to original
framework, but makes it applicable for specification of complex distributed ap-
plications and frameworks. In addition we present UniTesK test development
technology, which used to construct conformance tests based on DbC specifica-
tions in automated manner.

In the next section the methodological base of the suggested approach is pre-
sented. Then we consider several practical applications of the extended Design by
Contract to complex distributed systems, including both specification of system
properties, formalization of the corresponding standards, and automated devel-
opment of conformance test suites based on the stated specification. The fourth
section presents a brief review of similar approaches to specification and test
construction for distributed software. The last section of the article concludes
the discussion and provides directions of possible future development.

2 Extending Design by Contract Approach

The main point of the presented approach is the same as of the original DbC
– software is considered as a system of components communicating with each

Practical Approach to Specification and Conformance Testing 71

other through the specified interfaces. Interfaces consist of operations described
by their pre- and postcondition. The differences begin when we deal with con-
tract development for communication means of special kinds – callbacks and
asynchronous events.

Callbacks. Callbacks are considered as parts of inverse interface – a kind of
interface, which is used for calls from the system under consideration to its
environment (cp. with usual direct interface used for calls from the environment
to the system). So, a component implements some interface (its direct interface)
and requires from the environment to support some inverse interface.

Operations in inverse interface are considered as ordinary operations and
described by their pre- and postconditions. But when we define the behavior
of an ordinary operation, which may make some calls to inverse interfaces (for
example, it obtains callback as a parameter and its functionality requires to call
this callback in certain situations), we should describe the constraints on these
calls concerning their parameters and results.

To provide such a description we use model trace – each of components im-
plementing inverse interfaces considered as storing a list of calls of its inverse
operations. Each of those calls can be represented as a record with called opera-
tion identifier, values of its parameters, and value of the call result as fields. So,
in postcondition of an operation using callback we can state that this callback
was called with certain parameters. We also can state that the result of its call
was used in a certain way to produce the result of the operation call.

This extension of DbC approach, although a minor one, provides powerful
means to check systems interoperability or test whether the component can
be used inside a framework. We should provide the system or the framework
developed with description of contracts of both provided and required interfaces.
To check that two systems can operate together we need to check that each
one obeys the restrictions imposed by the other in preconditions of ordinary
operations and postconditions of inverse operations. To check that a component
can operate inside a framework we should test whether it ensures preconditions
of operations it calls in the framework and postconditions of its own callbacks
used by the framework.

Asynchronous events. More serious changes in usual DbC concepts are required
to introduce asynchronous communications. Operations, whether they are per-
formed synchronous or asynchronous calls, can be considered just in the same
way. But asynchronous events are another kind of entities. We represent them as
a special kind of operations without parameters, but having ordinary pre- and
postcondition.

Precondition of an event describes situations when this event is valid. If the
precondition does not hold, any occurrence of the event of this kind is incorrect.
Postcondition of an event describes restrictions on data provided by the event.
When precondition holds (so, events of this kind are possible) postcondition says
whether this event provides correct data or not. Asynchronous messages can be
also described in the same manner.

72 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

To define the correctness of a collection of events and calls occurring in the
concurrent manner we use so called interleaving or sequential semantics. This
semantics implies that the set of concurrent calls and events is performed in a
correct manner if they can be performed in correct manner in some sequence.
More precisely, a set {ei, i ∈ [1..n]} of calls of operations or occurrences of events
performed on or provided by a component is considered to satisfy their contracts
in a state s1 of the component if there exists such a sequence {sj, j ∈ [1..n + 1]}
of component’s states starting from s1 and the corresponding ordering {ij} of
those calls and events that each call or event eij occurs in the state sj , moves the
component to the state sj+1, and the contract of the corresponding operation
or event holds for pre-state sj , post-state sj+1, provided values of operation
parameters, and the result returned by the operation or by the event.

For example, if we have an operation printing “Hello, world!” on a printer and
an event printing “Bye!”, any result “Hello, world!Bye!” or “Bye!Hello, world!”
is considered as correct result of concurrent call of the operation and occurrence
of the event, but the result “Hello,Bye! world!” is invalid.

Although the proposed extension of DbC approach is not complex, it can
be used successfully to describe distributed systems of practical significance, to
obtain valuable results from more formal consideration of system properties,
and to test the components of the system and a system as a whole, see the next
section for examples of such applications.

Use of programming language extension. One more peculiarity of our approach
is use of extensions of programming languages to specify software properties.
This fact becomes important if one needs to apply some methodology or tool
based on formal notation in industrial practice. Widely used programming lan-
guages are commonly recognized means of communication between developers
and specifications written in their extensions are comprehensible for average
software engineers. Specialized formal notations often require advanced math-
ematical education, do not contain adequate counterparts for widely used pro-
gramming concepts (such as pointers), and therefore are rarely used in practice.

We propose uniform extension of C, Java, and C# languages [23] based
on the main concepts of our approach – pre- and postconditions, invariants,
asynchronous events, and inverse interfaces – and some additional syntactic sugar
useful in postconditions, when one needs to work with both pre-states and post-
states of the same objects. The main elements of the extension are as follows.

– Some operations in class (or some global functions in C) can have
specification modifier saying that they contain contracts of the corre-
sponding operations in the system under consideration. Such an operation
can have access constraints describing the set of objects the operation has
access to and the kind of this access (whether an object can be only read by
the operation, only written, or both), precondition represented as additional
block returning Boolean value, postcondition represented also as additional
block also returning Boolean value. Postcondition has access to objects in
the states preceding the call of the operation and the same objects in the

Practical Approach to Specification and Conformance Testing 73

states after the call (pre- and post-states). To refer a pre-value of a variable
in a postcondition we can use pre operator.

In addition, specification operations may have branch constructs marking
different behavior constraints and so defining specification-based coverage
criteria for further testing.

– Operations marked with reaction modifier represent asynchronous reac-
tions provided by the system. Such a reaction can also have access con-
straints, pre- and postcondition. But it has no functionality branches, since
the behavior of the system in this situation is not determined by
external input.

– Operations marked with inverse modifier represents inverse operations.
They also can have access constraints, pre- and postcondition.

– Invariants are represented as special methods or functions marked with
invariant keyword and returning Boolean result. The result says whether
the invariant holds or not.

The code example 2 in Appendix demonstrates some elements of specification
extension of C. It presents specification of a component implementing banking
account. The component may be implemented as a web-service, or EJB, or plain
class – this does not matter for the description of its functionality.

An account has two operations and can produce events on change of balance.
Each event stores the difference between the new value of the balance and the old
one. The first operation, deposit(), is used to deposit money on the account.
The second one, withdraw(), is used to withdraw money from the account.
Both operations can give rise to an event on account change storing the actually
deposited sum or withdrawn sum as a negative number, but the results of several
operations can be summed by one such event with the total change of the balance.

Negative value of the balance means that a credit is given to the account
owner. The credit is limited by fixed maximum possible credit value, which is
state in the invariant. Postconditions of operations and event define their impact
on the state of the account. bank variable stores map of account identifiers into
account structures.

3 Practical Applications of the Method

This section presents some results of practical application of the approach de-
scribed above in two areas – clarification and formalization of standards and
automated construction of conformance test suites for distributed software.

3.1 Formalizations of Standards

This subsection concerns with two case studies in standard formalization related
with distributed applications. The first example is standard clarification and
conformance test suite development for ISO/IEC 13818-11, a standard on Intel-
lectual Property Management and Protection in MPEG-2 domain. The second
one is a part of specification-based test suite development for an implementation
of IPv6 protocol suite – the next generation of the Internet protocol.

74 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

Formalization of IPMP. A standard for MPEG-2 Intellectual Property Man-
agement and Protection (IPMP-2) [3] is an attempt to create a flexible and
interoperable solution for Digital Rights Management in MPEG-2 distribution
chain from content provider to user. For the sake of readability we will refer to
ISO/IEC 13818-11 [3] as “IPMP-2 specification” below in this section.

The original architecture for protecting MPEG-2 movies, called Conditional
Access (CA), proved to be non-interoperable. Playing content from a particular
producers required purchasing Conditional access solution from certain vendors,
and CA solutions from different vendors were incompatible.

IPMP-2 specification regulates IPMP operations on the side of a user. IPMP
Device includes a Terminal and a number of IPMP Tools. IPMP Tools perform
all operations needed to prepare data for playback such as user authorization,
content deciphering, watermarks processing, etc. IPMP Tools are software or
hardware modules that are plugged to specific control points in the MPEG-2
processing pipe. Terminal intercepts multimedia data and passes them to the
corresponding instances of IPMP Tools for processing. Results of processing
(e.g. deciphering) are returned to the Terminal for further processing. IPMP
Tools interact with each other and the Terminal by means of message exchange.
IPMP-2 specification provides a number of messages for several purposes, such
as authentication or notification.

Content providers add control information and protection signaling to their
content. This information includes indications on which tools to use, how to
initialize the tools, etc. The IPMP Device parses content and tries to acquire
IPMP tools from the network if needed. Then the device instantiates tools with
given parameters and starts playback.

IPMP-2 specification uses Syntax Definition Language [4] for defining syntax
of messages and IPMP-related data in content. Still the semantics of messages
and data is defined in plain text without any formal notation.

The formalization of semantics of IPMP-2 operations has the following facets.

– Constraints on data integrity.
– Constraints on prerequisites and results of operations.

The work on IPMP-2 formalization was conducted for Audio Video coding
Standard Working Group of China (AVS). Length of the studied specification
is about 30 pages. The project resulted in two submissions [5,6] to AVS DRM
group and a prototype of conformance test suite for processing IPMP Control
Information in bit streams.

Other results of the project include the following.

– We identified significant inconsistencies in syntax specification of IPMP data
in bit streams. For example, it allowed inserting up to 65 536 bytes of data
(16-bit length field) in a descriptor which length is limited to 256 bytes.

– Under-specifications were found in the semantics of the Mutual Authentica-
tion – a security protocol for establishing trust between two tool instances.
We demonstrated that current specification of Mutual Authentication does
not ensure interoperability between implementations from different vendors.

Practical Approach to Specification and Conformance Testing 75

– Correctness criteria of data in IPMP-2 specification are poorly defined. Dis-
cussion with IPMP developers showed that there are many implicit rules of
what is correct and what is not. For example, IPMP-2 specification defines
IPMP Tool List structure as a container for IPMP Control Info classes, but
it is intended to carry information about tools only. We put this implicit
constraint into explicit form: each element of IPMP Tool List is of IPMP
Tool Info type. The list of constraints educed during the formalization for
IPMP Control Information classes is presented in [6]. The constraints are
not written in formal notation yet.

Taking into account numerous misspellings in code parts of IPMP-2 specifi-
cations the exact number of fixes we proposed is hard to count.

The standard study showed that IPMP-2 specification consists of several
loosely related pieces that sometimes contradict to each other. Certain require-
ments are under-specified or contain errors.

Contract formalization of IPv6. IPv6 is a group of protocols located at the Net-
work Layer of the OSI Reference Model [7]. IPv6 provides services to protocols
of transport layer, such as UDP and TCP.

IPv6 features a much greater address space compared to IPv4, the current
version of the Internet Protocol. Large address space enables true point-to-point
connectivity within global scope. Besides extended address space IPv6 includes
improved routing architecture and integrated suite of protocols for autoconfigu-
ration and discovering the state of the communication.

Implementations of IPv6 provide three classes of interfaces: procedural (API),
binary (ABI), and message-based.

Procedural interfaces include generic sockets API and several IPv6-specific
extensions. Binary interfaces are non-standard, implementation-specific ways to
access the kernel part of an implementation. Examples of such interfaces are
request code for ioctl call on Unixens or control code for DeviceIOControl
routine in Windows accompanied with memory layouts for inputs and outputs.
Message-based interface is an abstraction for sending and receiving IPv6 data-
grams to or from Data Link Layer.

IPv6 messages and part of procedural interface are standardized by Inter-
net Engineering Task Force in IPv6-related Requests for Comments (RFCs).
Binary interface and some part of procedural interface are not standardized and
are implementation-specific. Since the component functionality should be un-
derstood unambiguously to apply Design by Contract fruitfully, it is natural to
limit formalization to the scope of messages and standard API of IPv6.

The scope of our projects on IPv6 conformance testing was formalization and
testing of the following basic features of IPv6.

– Sending datagrams from the transport layer to the network and processing
of incoming IPv6 packets.

– Neighbor Discovery on hosts. Neighbor Discovery is a suite of service proto-
cols for identifying router and neighbor nodes attached to a link and detect-
ing their reachability status.

76 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

– Multicast Listener Discovery on hosts. Multicast Listener Discovery is a pro-
tocol to obtain information about multicast listeners attached to a link.

– UDP over IPv6.

The contract formalization is based upon requirements presented in regulat-
ing RFCs. We studied the requirements of many RFCs, most notably
[8,9,10,11,12,13,14,15,16,17,18]. More than 400 separate functional requirements
were elicited.

RFCs define protocol semantics in plain text mostly. Syntax is defined in
tabular format with textual definition of bit-wise message layout.

We identified a number of inconsistencies and under-specifications in IPv6
regulating documents. For example, the specification of IPv6 protocol [8] enu-
merates a number of cases that should be considered as errors in incoming frag-
mented IPv6 packets, and a number of cases that are not errors. Unfortunately
this enumeration misses several important cases, such as fragments overlap.

Despite the defects found we can state that IPv6 regulating requirements are
well-defined as a rule. They are detailed enough to ensure interoperability be-
tween implementations and at the same time leave much flexibility
to implementers.

The formal model of the IPv6 subset described above is about 8500 lines of
code in the specification extension of C language [19]. The model was used to
build a test suite that was applied to several open and commercial implementa-
tions of IPv6 protocol stack (see the next subsection).

3.2 Automated Conformance Test Construction

The historically first application of the extended DbC approach was automated
test development. The specifications written in the described manner can be
used to construct conformance test suite with the help of UniTesK technology.
Here we provide a short introduction into UniTesK. The interested reader can
find more details on it in [20,21,22,23,24].

The main principles of UniTesK test development may be summarized as
follows.

– UniTesK is intended to develop conformance test suites automatically on
the base of the specifications to be tested. The main approach to testing
is black-box, testing adequacy is measured as the achieved during testing
coverage of specifications according to some criterion. Test oracles – programs
automatically checking the correctness of the behavior of the system under
test – are generated automatically from contracts specified.

– User should manually write test scenarios providing very brief descriptions
of the automaton model of the component under test, including structure
of its state and the list of operations to be called in an arbitrary state.
Each operation is supplemented with some procedure to generate values of
its parameters. This procedure can be written manually or taken from a
library; its main goal is to provide a large set of different arrays of operation

Practical Approach to Specification and Conformance Testing 77

parameters values. The development of test scenario can be facilitated with
the help of the template, taking several choices of the user as its input and
generating all the other parts of the scenario. The main goal of a scenario is
to ensure high level of test coverage in certain specification-based coverage
metric.

Test scenarios provide a powerful feature – they can be used to process
possible nondeterminism of specifications very effectively. To do this, one
can define scenario states on the base of classes of states described in specifi-
cations. This technique called factorization allows creation of rather efficient
and compact tests for complex subsystems. Details of the technique can be
found in [25].

– Similar template technique is used to create test adapters providing binding
between specifications and implementation under test.

– The UniTesK tool used translates specifications, adapters, and scenarios into
the base language of the tool (C, Java, or C#) and executes the resulting
test. During test execution the sequence of test calls is generated on-the-
fly using the data presented in the scenario and the actual behavior of the
system under test. The generation algorithm tries to call each operation in
each state achieved, but do not perform calls that add nothing to already
achieved test coverage in term of specifications (branch statements are an
example of construct that can be used to define coverage of specifications).

UniTesK technology was used to develop conformance tests in the following
projects.

– Development of regression test suite for switch operating system kernel for
Nortel Networks. Results of this project was already presented in [20,24], see
also [23]. Total size of the system under test is about 250 KLOC, the size
of resulting suite of specifications and scenarios is about 140 KLOC. To our
knowledge, this is the largest piece of formally specified software and the
largest system tested in such a formal way. The total effort of the project
is about 10 man-years, total duration – about one year and a half. 372 test
scenarios were developed for about 500 procedures of the operating system
kernel, 304 of those scenarios tested single procedure, 68 – a group of inter-
operating procedures. With different parameters of execution the resulting
test suite can perform from dozens of thousands to several millions of test
cases. Several hundreds of defects were detected in critical telecommunica-
tion software already working in the field for about 10 years. Several of bugs
found could cause cold restart of the system.

– Development of test suite and testing several IPv6 implementations. The
detailed results those projects can be found in [19] and [22]. The projects
also demonstrated the approach’s capability to clarify ambiguous parts of
informal telecommunication standards. The first project was conducted to
test open IPv6 implementation of Microsoft Research. The results showed
that the test suite provides good error detection – it found more errors that
the counterparts we could compare with at that time (Microsoft Research
organized an international contest in testing of this IPv6 implementation).

78 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

4 serious bugs were found in the system under test, one of them leads to
operating system crash and can be used to shut down any remote node in
IPv6 network. The second project is conducted in the Russian telecommu-
nication software development company Octet by its own developers trained
in our technology. It also resulted in several serious bugs found in another
proprietary implementation of IPv6.

– Test development for a part of bank CRM system based on J2EE technology.
This project demonstrated that UniTesK technology and tools can be applied
to test distributed software constructed with the help of modern component-
based technologies for multi-tier applications development. The duration of
the project was about 2 months, and its results include about a dozen of
bugs detected. The details of this and several other projects can be found
on [23].

The diagram of process including standard formalization and conformance
test suite development on the base of the approach presented is shown on
Figure 1.

Standard
Text

Clarification and
clean-up of standard

�

�

Formal Specifications
of Standard

Formalization of standard re-
quirements to API fucntionality
in terms of extended contracts

�
Test Suites

UniTesK tools + testing
goals in form of expected
test coverage values

�
��

�
��

�Conformance testing Interoperability testing

Certification

Fig. 1. Standard formalization and conformance test suite construction

4 Short Review of Similar Approaches

Here we present rather brief review of similar approaches taking into considera-
tion only those that provide possibility to describe distributed systems formally
and support test development automation for conformance testing, so a lot of in-
teresting solutions stay out of scope of this section. More detailed and systematic
review of various model-based testing techniques can be found in [26].

Practical Approach to Specification and Conformance Testing 79

The most widely used practical approach to conformance test suite construc-
tion for distributed applications is based on informally determined test pur-
poses and test cases manually developed on their base. In comparison with
methods based on some formal description of application functions, it lacks
strict and measurable definition of testing adequacy based on functional re-
quirements and forces test developers to provide correct results only on the
base of their understanding of the functions under test. Both disadvantages
can be overcome by diligence and cross-checking, but not for large-scale sys-
tems.

The usual approach to formal specification and further testing of distributed
software are based on some kind of transition systems – it may be labeled transi-
tion systems, input-output automata, and systems of communicating (extended)
finite automata. Theoretical background for most part of those works was laid
by J. Tretmans [27,28]. He proposed a formal definition of conformance rela-
tion between specifications and system under test and a method for test case
generation based not only on possible inputs and outputs of the system under
test, but also on special quiescent states where the system could not produce
any output without some input from the environment. A series of tools based
on those ideas were developed in the academic community, the most prominent
from them are TGV [29] and TorX [30]. Some of those tools can take formal de-
scriptions in such languages as SDL, LOTOS, or Estelle as input. In 2001-2003
years those tools were integrated into common environment developed in the
AGEDIS project [31]. It includes uniform testing tool architecture and UML-
based statecharts as standard input for such tools.

Transition systems used for automatic test generation proved to be very
useful instrument, but they have the following disadvantages.

– State explosion problem. When one tries to model a real system on a detailed
level, he obtains an unmanageable model with huge numbers of states and
transitions. This is a demonstration of more serious drawback – transition
systems can hardly be decomposed to separate different concerns and func-
tions, they usually require considering the system as a whole to get valuable
results. Design by Contract looks much more promising in this view since it
provides a method to consider components of a complex system separately.
In UniTesK state explosion problem can be overcome with the help of state
factorization technique.

– Inefficient processing of nondeterminism. It is rather hard to introduce non-
determinism natural to distributed applications in transition systems and
keep them useful. Most of them become inoperative after such a procedure.
So, some special actions are always needed to introduce necessary nonde-
terminism in such a model. Contract based approach incorporates it nat-
urally by stating the corresponding predicates in postcondition. Combina-
tion with factorization technique used in UniTesK, although not reducing
concurrency-related nondeterminism to negligible level, makes it much more
manageable.

80 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

5 Conclusion

The paper proposes an extension of Design by Contract approach for distributed
network applications. The main extensions are constructs for specification of
component-environment interaction through inverse interfaces and asynchronous
events. Correctness of concurrent events is checked according to sequential se-
mantics – a set of events is considered to be correct if and only if it can be
ordered into a sequence conforming to all the contracts involved.

The extended DbC approach is used in practice-oriented UniTesK test de-
velopment technology to construct conformance test suites in automated man-
ner. UniTesK tools uses specifications in extension of programming languages
(C, Java, and C# are supported now) to make them accessible and useful for
ordinary industrial developers without background in formal methods. Although
the approach and the test development technology based on it seems to be quite
general, there are a lot of technical issues concerning their use in testing appli-
cations through GUI or Web interfaces, or through interfaces including timing
events. Those issues should be resolved in future development. Since UniTesK
tools were already successfully used in several industrial projects, the authors
consider the proposed approach quite mature to be used in practical development
of standards, distributed applications, and corresponding test suites.

The focus point of the approach presented is integrated process of standard
formalization and conformance test suite development for it. This provides the
following advantages.

– Standards are intended to state not only the common syntax of interfaces,
but the common understanding of the functionality of the services described.
Formalization removes a lot of ambiguities and misunderstandings, makes
this functionality clearly stated, and so prevents a lot of potential problems
with interoperability, sustainability, and dependability of future applications
based on this standard.

– Formally stated functionality opens the door to automated conformance test
suite construction, which decrease the effort to produce conforming appli-
cations and also make them more qualitative. In addition it gives a natural
measure of testing adequacy in terms of requirements – one can precisely
say now what is tested and what is not, to what degree some application
conforms the standard and to what degree it breaks it.

Standards and development of infrastructure for distributed network applica-
tions attract more and more attention now. Neglect of the modern specification
and automated conformance testing techniques has negative influence on both
the quality of approved standards and the dependability of the systems developed
on their base. Maybe, the same causes inhibit advancement of component-based
development as a whole and growth of independent software vendors in particu-
lar. At the same time, the main restrictions of possible development are imposed
not by the lack of adequate methods and tools, but by the lack of engineering
staff having corresponding skills and experience in their application in practice.
Our experience shows that this problem can be solved successfully.

Practical Approach to Specification and Conformance Testing 81

Appendix

specification typedef struct account model {
int balance; int change; bool event;

} AccountModel = {};

invariant typedef AccountModel Account;

invariant int MaxCredit = 3;

invariant (MaxCredit) { return MaxCredit >= 0; }

invariant (Account * acc) { return acc->balance + acc->change >= -MaxCredit; }

typedef Integer AccountID;

Map * bank; // A map from Account ID to account

specification void deposit(AccountID *id, int sum) {
Account * account = get Map(bank, id);
pre {

return (sum > 0) && (account != NULL)
&& (account->balance + account->change < INT MAX - sum)
&& (account->change < INT MAX - sum);

}
post {

return (account->balance == (account->balance))
&& (account->change == (account->change) + sum)
&& (account->event == true);

}
}

specification void withdraw(AccountID *id, int sum) {
Account * account = get Map(bank, id);
pre { return (sum > 0) && (account != NULL); }
post {

if(account->balance + account->change < sum - MaxCredit) {
return (account->balance == (account->balance))

&& (account->change == (account->change));
} else {

return (account->balance == (account->balance))
&& (account->change == (account->change) - sum)
&& (account->event == true);

}
}

}

specification typedef struct account notification {
AccountID * id; int change;

} AccountNotification;

reaction AccountNotification * update() {
Map * bank saved = clone(bank); int i;
pre {

for (i = 0; i < size Map(bank); i++) {
if(((Account*)get Map(bank, key Map(bank, i)))->event) return true;

}
return false;

}
post {

Account * account saved = get Map(bank saved, update->id);
Account * account = get Map(bank, update->id);

return (account saved != NULL) && (account != NULL)
&& (update->change == account saved->change)
&& (account->balance == account saved->balance + account saved->change)
&& (account->change == 0) && (account->event == false);

}
}

Fig. 2. Example of specifications in C extension

82 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

References

1. http://www.ispras.ru/groups/rv/rv.html

2. Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Prentice
Hall, 1997.

3. ISO/IEC 13818-11:2004. Information technology – Generic coding of moving pic-
tures and associated audio information – Part 11: IPMP on MPEG-2 systems. 2003.

4. ISO/IEC 14496-1:2001, Information technology – Coding of audio-visual objects –
Part 1: Systems.

5. MPEG-2 IPMP Conformance Test Suite Development. AVS M1263: 2004/6.

6. Enhancing IPMP-2 for Conformance Testing. AVS M1487: 2004/12.

7. ISO/IEC 10731:1994. Information technology – Open Systems Interconnection –
Basic Reference Model – Conventions for the definition of OSI services. 1994.

8. RFC 2460. S. Deering, R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
December 1998.

9. RFC 2461. T. Narten, E. Nordmark, W. Simpson. Neighbor Discovery for IP Ver-
sion 6 (IPv6). December 1998.

10. RFC 2462. S. Thomson, T. Narten. IPv6 Stateless Address Autoconfiguration.
December 1998.

11. RFC 2463. A. Conta, S. Deering. Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification. December 1998.

12. RFC 2464. M. Crawford. Transmission of IPv6 Packets over Ethernet Networks.
December 1998.

13. RFC 3513. R. Hinden, S. Deering. Internet Protocol Version 6 (IPv6) Addressing
Architecture. April 2003.

14. RFC 2373. R. Hinden, S. Deering. IP Version 6 Addressing Architecture. July 1998.

15. RFC 2292. W. Stevens, M. Thomas. Advanced Sockets API for IPv6. Febru-
ary 1998.

16. RFC 2553. R. Gilligan, S. Thomson, J. Bound, W. Stevens. Basic Socket Interface
Extensions for IPv6. March 1999.

17. RFC 2675. D. Borman, S. Deering, R. Hinden. IPv6 Jumbograms. August 1999.

18. RFC 2710. S. Deering, W. Fenner, B. Haberman. Multicast Listener Discovery
(MLD) for IPv6. October 1999.

19. http://www.unitesk.com/products/ctesk/

20. V. Kuliamin, A. Petrenko, I. Bourdonov, and A. Kossatchev. UniTesK Test Suite
Architecture. Proc. of FME 2002, LNCS 2391, pp. 77–88, Springer-Verlag, 2002.

21. V. Kuliamin, A. Petrenko, A. Kossatchev, and I. Bourdonov. UniTesK: Model
Based Testing in Industrial Practice. In proceedings of 1-st Europpean Conference
on Model-Driven Software Engineering, December 2003.

22. V. Kuliamin, A. Petrenko, N. Pakoulin, I. Bourdonov, and A. Kossatchev. Integra-
tion of Functional and Timed Testing of Real-time and Concurrent Systems. Proc.
of PSI 2003, LNCS 2890, pp. 450–461, Springer-Verlag, 2003.

23. http://www.unitesk.com

24. I. Bourdonov, A. Kossatchev, A. Petrenko, and D. Galter. KVEST: Automated
Generation of Test Suites from Formal Specifications. FM’99: Formal Methods.
LNCS 1708, Springer-Verlag, 1999, pp. 608–621.

25. I. B. Burdonov, A. S. Kossatchev, and V. V. Kulyamin. Application of finite au-
tomatons for program testing. Programming and Computer Software, 26(2):61–73,
2000.

Practical Approach to Specification and Conformance Testing 83

26. V. Kuliamin. Multi-paradigm Models as Source for Automated Test Construction.
Proc. of Workshop on Model Based Testing, Barcelona, Spain, March 2004. Also
available in Electronic Notes in Theoretical Computer Science 111:137–160, 2005,
Elseveir.

27. J. Tretmans. A Formal Approach to Conformance Testing. Proceedings of the IFIP
TC6/WG6.1 Sixth International Workshop on Protocol Test systems, Pau, France,
September 1993, pp. 257–276.

28. J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software – Concepts and Tools, 17(3):103–120, 1996.

29. J. -C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on the fly verification
techniques for the generation of test suites. Proccedings of CAV’96, Conference
on Computer Aided Verification, Rutgers University, New Brunswick, New Jersey,
USA, July-August 1996.

30. J. Tretmans, A. Belinfante. Automatic testing with formal methods. In Eu-
roSTAR’99: 7-th European Int. Conference on Software Testing, Analysis and Re-
view, Barcelona, Spain, November 8-12, 1999. EuroStar Conferences, Galway, Ire-
land. Also: Technical Report TRCTIT-17, Centre for Telematics and Information
Technology, University of Twente, The Netherlands.

31. http://www.agedis.de/

	Introduction
	Extending Design by Contract Approach
	Practical Applications of the Method
	Formalizations of Standards
	Automated Conformance Test Construction

	Short Review of Similar Approaches
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

