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ABSTRACT
TCP has traditionally been considered unfriendly for real-
time applications. Nonetheless, popular applications such
as Skype use TCP since UDP packets cannot pass through
many NATs and firewalls. Motivated by this observation,
we study the delay performance of TCP for real-time media
flows. We develop an analytical performance model for the
delay of TCP. We use extensive experiments to validate the
model and to evaluate the impact of various TCP mecha-
nisms on its delay performance. Based on our results, we
derive the working region for VoIP and live video streaming
applications and provide guidelines for delay-friendly TCP
settings. Our research indicates that simple application-level
schemes, such as packet splitting and parallel connections,
can reduce the delay of real-time TCP flows by as much as
30% and 90%, respectively.
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1. INTRODUCTION
The popularity of real-time applications, such as VoIP and

video streaming, has grown rapidly in recent years. The
conventional wisdom is that TCP is inappropriate for such
applications because its congestion controlled reliable de-
livery may lead to excessive end-to-end delays that violate
the real-time requirements of these applications. This has
led to the design of alternative unreliable transport proto-
cols [17,20,30] that favor timely data delivery over reliability
while still providing mechanisms for congestion control.

Despite the perceived shortcomings of TCP, it has been
reported that more than 50% of the commercial streaming
traffic is carried over TCP [16]. Popular media applica-
tions such as Skype [7] and Windows Media Services [16]
use TCP due to the wide deployment of NATs and firewalls
that often block UDP traffic. Further, TCP is by defini-
tion TCP-friendly [17] and is a mature and widely-tested
protocol whose performance can be fine tuned.

The gap between the perceived shortcomings of TCP and
its wide adoption in real-world implementations motivated
us to investigate the delay performance of TCP. Our study
seeks to address the following questions: (1) Under what
conditions can TCP satisfy the delay requirements of real-
time applications? (2) Can the performance of these applica-
tions be enhanced using simple application-layer techniques?
We address these questions in the context of two real-time
media applications that are characterized by timely and con-
tinuous data delivery: VoIP and live video streaming.

To understand all aspects of the performance of real-time
applications, we conduct an extensive performance study
using an analytical model and real-world experiments. The
analytical model allows us to systematically explore the de-
lay performance over a wide range of parameter settings, a
challenging process when relying on experimentation alone.
While there exists an extensive literature on TCP modeling
and analysis, it is geared towards file transfers [10, 28, 29]
and video streaming [19,33] rather than delay.

We use both test-bed and Internet experiments to vali-
date the model over a wide range of network environments.
We analyze how the delay depends on the congestion con-
trol and reliable delivery mechanisms of TCP. We further
study the impact of recent extensions such as window valida-
tion [18] and limited transmit [4]. The results obtained yield
guidelines for delay-friendly TCP settings and may further
be used to compare the performance of TCP with alterna-
tive protocols [17, 20] and experimental real-time enhance-
ments for TCP [15,22,25]. We analyze two application-level
schemes, namely, packet splitting and parallel connections
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which we find to significantly reduce the delay of live video
streaming flows.

Our research reveals that real-time application performance
over TCP may not be as delay-unfriendly as is commonly
believed. One reason is that the congestion control mecha-
nism used by TCP regulates rate as a function of the num-
ber of packets sent by the application. Such a packet-based
congestion control mechanism results in a significant perfor-
mance bias in favor of flows with small packet sizes, such as
VoIP. Second, due to implementation artifacts, the average
congestion window size can overestimate the actual load of a
rate-limited flow. This overestimation reduces the likelihood
of timeouts and consequently the resulting TCP delay.

The main contributions of this paper are:

• To the best of our knowledge, we are the first to present
a discrete-time Markov model for the delay distribu-
tion of a real-time TCP flow (Section 4).

• We find that under the same network conditions, VoIP
flows suffer from lower TCP delays than live video
streaming flows. We derive the working region for
VoIP and live streaming flows based on our model and
experiments (Section 6.1). VoIP operates well when
the network loss rate is at most 2% and RTT is at
most 100ms. Live video streaming operates well when
the network loss rate is at most 3% and RTT is 100ms.

• We study the impact of various TCP mechanisms on
the TCP delay (Sections 6.2–6.4). We then provide
TCP-level guidelines (Section 6.5) and simple application-
level heuristics (Section 7) for improving the perfor-
mance of real-time applications. The most promising
heuristic uses parallel connections with shortest-queue
first policy and achieves up to 90% delay reduction.

2. APPLICATION SETTING
We study a general real-time media application, with a

Constant Bit Rate (CBR) source, that sends data across the
network using TCP. CBR is the most basic and dominant
encoding for media flows in the Internet [34]. Although our
analysis is general, we focus on CBR sources corresponding
to VoIP and live video streaming, as detailed in Section 5.
The VoIP and live video streaming flows are application-
limited, i.e., their sending rate is a function of media encod-
ing and not the underlying network. This is in contrast to
greedy flows, such as FTP, which are network-limited.

Throughout the paper, we refer to the transmission unit
of TCP as a segment and to the TCP payload (i.e., the
application-layer data unit) as a packet. The maximum seg-
ment size, MSS, is determined by the maximum transmission
unit of the network path [31]. A common characteristic of
real-time applications is their sensitivity to end-to-end de-
lay which may vary from application to application. For
live video streaming, there is usually minimal interactivity
involved, so the application can afford a startup delay in the
order of seconds [16]. For VoIP, low delay of up to 400ms is
required in order to maintain acceptable interactivity [15].
To reduce end-to-end delays, VoIP often uses small payloads
(e.g., 160-byte packets) that correspond to 20ms or 30ms
of audio. Thus, in the context of this paper, the difference
between VoIP and live video streaming flows is their packet
sizes and their tolerance of delay.

Network

TCP Connection

Sender Receiver

Receive buffer

Head-of-line

blocking

Send buffer

Congestion control and

retransmissions

Figure 1: Transport-layer queueing delays

We define TCP delay as the time it takes the application
to get a packet from source to destination through a TCP
connection. We use the TCP delay distribution to eval-
uate the performance of real-time applications. From the
delay distribution we derive the application-level packet loss
rate which is the portion of packets that arrive beyond their
playback time. This metric is closely correlated with user-
perceived video and audio quality [12,32], and hence is used
as an approximate performance measure. The application-
level packet loss metric is determined by the α-percentile de-
lay bound, defined as follows. A delay value d of α-percentile
corresponds to 1−α portion of packets that are delayed more
than d time units.

3. TCP DELAY COMPONENTS
Here we examine the various ways in which delay is in-

troduced in a TCP connection with a CBR source. The
delay in a TCP connection consists of two main compo-
nents: (a) network delay, which is the time it takes a seg-
ment to get across the network; (b) TCP-level delay, which
is an artifact of how TCP reacts to variations in the effective
throughput. While throughput variations can occur due to
application-level flow control, they are primarily the result
of network congestion. To understand TCP-level delays, we
briefly describe the transmission behavior of TCP. TCP is
a window-based protocol that uses two main mechanisms to
regulate its sending rate: Additive-increase-multiplicative-
decrease (AIMD) and timeout. These mechanisms may de-
lay data delivery because they require TCP to reduce its
sending rate in response to network congestion. In addition,
TCP uses packet retransmissions to provide lossless data de-
livery. This mechanism introduces additional delay for data
delivery. A detailed discussion of the mechanisms in TCP
can be found in [31].

TCP uses two buffers to provide congestion-controlled re-
liable data delivery; a send buffer and a receive buffer. The
send buffer serves two functions [15]. It absorbs rate mis-
matches between the application sending rate and the trans-
mission rate of TCP. It also stores a copy of the packets in
transit in the network should they be retransmitted. Al-
though these packets are buffered, they do not introduce
additional queuing delay for unsent packets. Only the un-
sent packets held in the send buffer, hereafter referred to
as the backlogged packets, contribute to the delay of newly
admitted packets to the send buffer. The purpose of the
receive buffer is to hold out-of-order packets while a loss is
being recovered. This buffering results in head-of-line (HOL)
blocking delay.

In this paper, we only consider packet backlogging due
to network congestion and ignore packet backlogging due to
other causes, such as application-level flow-control (e.g., a
receiving application that slows down an aggressive sender [31]).
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Figure 2: The evolution of the TCP delay and con-
gestion window size for a video-like CBR source.

Applications usually minimize this backlogging by setting a
large receive buffer and operating with non-blocking sock-
ets. Packet backlogging can also occur due to Nagle’s algo-
rithm [27] that was added to TCP to limit the transmission
of small segments. This algorithm ensures that TCP sends
data only when there are at least MSS bytes of available
data, and hence improves throughput at the expense of in-
creased transmission delay. In practice, many delay-sensitive
applications disable this algorithm to reduce transmission
delays [37]. We follow this practice in our work. Figure 1 il-
lustrates the TCP-level delay components. The sender-side
delay is caused by the congestion control and reliable deliv-
ery mechanisms in TCP, whereas the receiver-side delay is
caused by the in-order delivery guarantee of TCP.

Figure 2(a) illustrates the delay behavior of a TCP flow
driven by a CBR source. The CBR source sends 50 MSS-
sized packets per second over a symmetric network with a
200ms round-trip time (RTT). An application-limited pe-
riod is seen from 0 s to 0.5 s and from 2.4 s to 2.8 s. We de-
fine an application-limited period as a period where the TCP
throughput satisfies the source’s rate requirement. In this
period, the TCP delay is determined by the network delay.
A network-limited period is seen from 0.5 s to 2.4 s. In this
period, the TCP throughput no longer satisfies the source’s
rate requirement, resulting in TCP-level delays. TCP moves
to a network-limited period when a packet loss occurs. Within
the network-limited period there are two subregions: loss
recovery, seen from 0.5 s to 0.76 s, and packet backlogging,
seen from 0.76 s to 2.4 s. TCP uses retransmission to recover
the lost packet, which in turn causes head-of-line blocking
delay at the receiver. The receipt of a packet loss indication
at time 0.76 s triggers TCP to reduce its congestion window
size, resulting in packet backlogging.

Unlike application-limited periods, in network-limited pe-
riods TCP probes for additional bandwidth to satisfy the
source’s rate requirement. In our example, the transmission
rate of TCP is governed by the AIMD mechanism and hence
is linearly increasing, as seen in Figure 2(b). The mismatch
between the input and output rates at the TCP sender re-
sults in the quadratic-like delay curve seen in Figure 2(a).
TCP moves back to an application-limited period when the
rates are matched.

3.1 TCP Interaction with VoIP-like Flows
The performance of real-time applications that use small

CA SS

LRApp-
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backlog cleared

no loss

Network-Limitedpacket loss

Figure 3: A high-level view of a model for a TCP
connection with a CBR source.

packets (e.g., VoIP) is directly affected by whether the con-
gestion control mechanism in TCP is byte or packet-based.
According to [6], there are two different issues at work. First,
a TCP sender can track the congestion control state in terms
of outstanding bytes or outstanding packets. Second, a TCP
sender can update the congestion control state based on how
many bytes are acknowledged, a mechanism known as byte-
counting, or by some constant for each ACK arrival, a mech-
anism known as ACK-counting. We compare the perfor-
mance of ACK and byte-counting mechanisms (Section 6.3)
and focus on the latter due to its wide deployment [23], as
also verified by our measurements.

4. MODELING TCP DELAY
Our model builds upon the detailed TCP model in [35]

that predicts the performance of TCP from the viewpoint of
throughput. We extend this model in three ways. First,
we include the TCP buffer dynamics in order to predict
the delay performance of TCP. Second, we model the win-
dow behavior during application-limited periods [18] to ac-
curately capture the loss recovery latency of TCP. Third,
we capture the effect of window inflation [6] and the lim-
ited transmit mechanism [4] to improve the accuracy of the
model for small congestion windows. We assume that the
sender is using a NewReno TCP implementation, the pre-
dominant TCP variant in the Internet [23], and refer the in-
terested reader to [13, 31] for a detailed description of TCP
NewReno’s mechanisms.

4.1 A TCP Model
We consider a CBR source that sends fixed-size packets at

regular intervals across the network using TCP. Throughout
the paper, we assume that the average throughput provided
by TCP satisfies the rate requirement of the CBR source.
However, transient congestion episodes in the network can
still lead to TCP throughput fluctuations and hence to TCP-
level delays. These episodes cause the TCP connection to
alternate between application-limited and network-limited
periods, as described in Section 3.

Mimicking the behavior of a real-world TCP flow, our
model consists of two main states: application-limited and
network-limited. It transitions from an application-limited
state to a network-limited state when a loss occurs. TCP-
level delays are introduced only during network-limited states.
The model transitions back to an application-limited state
when the TCP sender matches its input and output rates
(e.g., when packet backlog is cleared). While in a network-
limited state, the model moves among four states corre-
sponding to TCP’s congestion control phases: slow-start
(SS), congestion avoidance (CA), fast recovery (FR), and
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Notation Definition

f load in packets per second
r load in packets per round-trip time
a packet size (bytes)
w congestion window size (in segments)
b backlog size (bytes)
l indicates whether loss recovery is required
p segment loss probability
L one-way network delay (seconds)

MSS maximum segment size (bytes)

Table 1: Summary of model notations

retransmission timeouts (TO). A high-level view of a model
for a TCP connection with a CBR source is shown in Fig-
ure 3; for ease of presentation, we merged the timeout and
fast recovery states into a single loss recovery (LR) state.

We make several simplifying assumptions in our model, as
follows. First, we assume that TCP increases the congestion
window by one packet per round-trip time, an assumption
motivated by the wide-deployment of ACK-counting TCP
implementations [23]. Second, we assume that the TCP im-
plementation does not increase the congestion window when
the TCP sender is application-limited, which is the behav-
ior observed for Linux and Windows XP systems (see Sec-
tion 6.4). Third, we assume that the slow start threshold is
statically set to half of the source’s sending rate in packets
per round-trip time. From our experience, using a static
slow-start threshold rather than a dynamic one has a mar-
ginal impact on the model’s prediction accuracy. Last, we do
not model the effect of delayed acknowledgements (ACKs).
Nonetheless, our model can be easily extended to support
delayed ACKs using a similar approach as in [29].

The CBR source is characterized by two parameters, the
data generation rate in packets per second f and the size of a
generated packet a. We let r denote the data generation rate
in packets per round-trip time. For convenience, we summa-
rized the notations used in this paper in Table 1. We model
the behavior of a TCP source by a discrete-time Markov
chain with a finite state space S = {(w, b, l)} and a prob-
ability transition matrix Q = [qs;s′ ], s, s′ ∈ S. Each state
is associated with at most three outgoing transitions repre-
senting the following events: the receipt of a fast retransmit
loss indication, the receipt of a timeout loss indication, and
successful delivery of window data. Each transition is asso-
ciated with a certain number of packet transmissions, and
each packet in this transmission is associated with a delay.

In our model, each state is represented by an ordered triple
(w, b, l), where w is the current congestion window size in
segments, b is the current backlog size in bytes, and l in-
dicates whether a loss has been detected and needs to be
recovered from (l > 0) or not (l = 0). The backlog size
value is used to indicate whether the sender is application-
limited (r ≤ w, b = 0) or network-limited. The window size
value is used to distinguish between the two loss recovery
strategies employed by TCP: fast recovery (w > 0, l = 1)
and retransmission timeout (w = 0, l ≥ 1), where l indi-
cates the current exponential back-off stage. Table 2 lists
the rules for classifying an arbitrary state s = (w, b, l) ac-
cording to the congestion control phases of TCP. We use
the notation AL = {(w, b, l) : r ≤ w, b = 0, l = 0} to denote
the set of states for which the application-limited condition

Classification Condition

AL (Application-limited) r ≤ w, b = 0, l = 0
NL (Network-limited) 0 < w, b 6= 0 or w < r, b = 0

CA (Congestion avoidance) r/2 < w, l = 0
SS (Slow start) w ≤ r/2, l = 0
FR (Fast recovery) 0 < w, l = 1
TO (Timeout) w = 0, l = 1, . . . , 6

Table 2: State classification

holds. The notations CA, SS, FR, TO are defined in a
similar way, as shown in Table 2.

4.2 A Delay Performance Model
In this section, we model the three ways in which TCP

introduces delays: congestion control, retransmissions, and
head-of-line blocking, as detailed in Section 3. We model the
time packets are buffered at the sender (i.e., the congestion
control delay) by scaling the backlog size by the sources’s
rate. This modeling approach can be explained by observ-
ing that the (unsent) buffered packets left behind after a
packet is transmitted must have been admitted to the send
buffer while the transmitted packet was buffered. Since we
consider a data source with a constant rate, a transmitted
packet that leaves behind a backlog of b bytes must have
been buffered for at least b/(fa), the backlog size divided
by the source’s rate in bytes per second. This approach in-
troduces an error in the order of several packetization inter-
vals. The error arises because the Markov chain captures the
backlog size evolution in network-limited states at round-
trip time granularity. This error can be reduced by keeping
track of the inter-sending packet times. However, this will
make the state space of the model prohibitively large and
hence will limit its usefulness.

We determine the head-of-line and the retransmission de-
lay by the loss recovery latency (i.e., the time it takes TCP
to detect and recover a lost packet). TCP interprets receipt
of three duplicate ACKs as an indication of a packet loss. It
immediately retransmits the lost packet upon the receipt of
the third duplicate ACK. Hence, we take the time required
to receive a fast retransmit loss indication to be RTT +3/f ;
the RTT term is the time needed for the first duplicate ACK
feedback and the 3/f term is the maximum time to gener-
ate three duplicate ACKs, which is attained when the loss
occurs in an application-limited state. For sake of simplic-
ity, we assume that fast recovery always takes a single RTT
regardless of the number of packets lost in a transmission
window, as suggested by [10].

Using the above observations, we express the TCP delay
of the ith packet sent in a transition from state s to state s′

as:

d
(i)

s;s′ = L +

8<: b/(fa) + RTT + (3 + i)/f if s′ ∈ FR
0 if s′ ∈ TO
b/(fa) otherwise

(1)

where L is the one-way sender to receiver network delay. For
loss-free transitions, the delay added by TCP is determined
by the backlogged packets, and hence is modeled as b/(fa),
as shown by the third case of (1). For transitions to fast
recovery states, an additional delay of RTT + (3 + i)/f is
introduced by the in-order delivery guarantee of TCP, as
shown by the first case of (1). Since the TCP sender is
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likely to be idle during timeouts, we assume no packets are
sent in transitions to timeout states.

The number of CBR packets sent in a transition from s
to s′ ns;s′ is given by

ns;s′ =

8>><>>:
1 if s ∈ AL, s′ ∈ AL
bmin (b, wMSS) /ac if s′ ∈ {CA|SS}
bmin (b, (w + 3)MSS) /ac if s′ ∈ FR
0 if s′ ∈ TO

(2)

Since our model evolves at packet-level granularity while
in an application-limited state (see Section 4.1), a single
packet is sent in a loss-free transition from an application-
limited state, as captured by the first case of (2). The second
case models the number of packets sent in a loss-free tran-
sition from a network-limited state, which is determined by
the number of backlogged packets that fit into the congestion
window. The third case accounts for the extra transmissions
due to the receipt of the duplicate ACKs needed to trigger
a fast recovery, a mechanism known as window inflation [6].

We obtain the stationary distribution of the Markov chain
for the TCP source, πs, using standard steady-state discrete-
time Markov analysis; see for example [36]. Let Nt be the
number of packets successfully sent in some time interval
[0, t] and let Nt(d) be the number of packets out of Nt that
experience delay d. Then, the portion of packets sent that
experience delay d is given by Nt(d)/Nt. Let D be the steady
state delay distribution of a TCP connection with a CBR
source. Assume D is defined over some finite interval A.
Using renewal theory [36], we can now compute the steady-
state delay distribution.

D = d w.p. lim
t→∞

Nt(d)

Nt
∀d ∈ A

= d w.p.

P
s∈S πs

P
s′∈S qs;s′

Pns;s′
i=1 Ids;s′=dP

s∈S πs

P
s′∈S qs;s′ ns;s′

∀d ∈ A

(3)

where I is the indicator function, πs is the steady-state dis-
tribution of the chain, and ds;s′ and ns;s′ are given in (1)
and (2), respectively. The numerator and denominator cor-
respond, respectively, to the number of packets sent that ex-
perience delay d in steady-state and the number of packets
sent in steady-state. Equation (3) can be solved numerically
to yield the performance statistics of TCP: the delay jitter
σD and the α-delay percentile arg max xP{D ≤ x} ≤ α,
along with other statistics such as the mean delay E[D].

4.3 Backlog and Window Size Evolution
The discrete-time Markov model for the TCP source moves

along several states, changing the congestion window size,
send buffer size, and congestion control phase based on the
packet loss feedback. For example, in the absence of packet
loss, the TCP model transitions from state (w, b, l) to state
(w + 1, b′, l′) if the sender is in congestion avoidance. A
detailed description of the Markov chain is given in [9].

Since TCP is a byte stream protocol, it can assemble a
number of small application packets into one TCP segment.
An application that uses small packets (e.g., VoIP) yields
a TCP flow that dynamically varies its segment size, and
hence the packet size on the wire, depending on the con-
gestion in the network. During network-limited periods, the
data backlog enables the TCP sender to use the maximum

segment size. In application-limited periods, however, there
is no backlog at the sender, and TCP matches the segment
size to the application payload size. Let Ms be the size of
a segment transmitted in a transition from state s. Hence,
Ms = a if s ∈ AL and Ms = MSS otherwise.

The backlog evolution (i.e., the TCP send buffer occu-
pancy evolution) for two successive states, s = (w, b, l) and
s′ = (w′, b′, l′), is modeled by

b′ =

8>><>>:
max (0, b + afts;s′ −Ms) if s ∈ AL, s′ ∈ AL
max (0, b + afts;s′ − wMs) if s′ ∈ {CA|SS}
max (0, b + afts;s′ − (w + 3)Ms) if s′ ∈ FR
max (0, b + afts;s′) if s′ ∈ TO

(4)

where ts;s′ is the time taken for the transition from s to s′,
which can be found in [9]. The first term in (4) b + afts;s′

models the increase in backlog size due to newly admitted
packets to the send buffer. The second term models the
decrease in backlog size due to the transmission of segments,
which is obtained by applying similar reasoning to that used
to derive (2).

5. MODEL VALIDATION
We evaluated the model using experiments in a controlled

network environment and Internet experiments using Plan-
etLab and residential machines. We use “CBR-TCP” to de-
note a TCP connection with a CBR source, “FTP” for a
TCP connection with bulk data transfer, and “web” for a
TCP connection with HTTP traffic.

We wrote a tool that can send and receive bidirectional
CBR over TCP flows with different packet sizes and differ-
ent packetization (inter-sending time) intervals. To validate
our model we use CBR sources with packet sizes of 174,
724 and 1448 bytes, and packetization intervals of 20ms and
30ms, as these choices approximately reflect typical one-way
voice [30], low bit rate interactive video [15] and live video
streaming [16]. The size of the packet includes a 12 byte
RTP header [30] and two bytes for framing RTP packets
over TCP [21]. Hence, excluding the header size, the bit
rate of the voice flows is 64 kb/s and 42 kb/s, that of inter-
active video is 284 kb/s and 187 kb/s, and that of live video
streaming is 573 kb/s and 378 kb/s. Unless stated otherwise,
we refer to the voice flow with a bit rate of 64 kb/s as ‘VoIP’
and the live video streaming flow with a bit rate of 573 kb/s
as ‘video’ flow and only present the results for them due to
lack of space. Excluded results are available in [9]. We abuse
notation and refer to the segment loss rate in the network as
the packet loss rate. These rates may be different for VoIP
flows because TCP can assemble several small packets into
one segment during network-limited periods.

All the experiments, except for those run in the Planet-
Lab environment, were conducted using Linux (kernel ver-
sions 2.6.17.8 and 2.6.9) and Windows XP machines. Both
operating systems yielded similar delay performance and
hence Windows XP results are not shown. PlanetLab ex-
periments were conduced using Linux machines. The system
and session-level TCP settings were determined according to
the configuration described in Section 6.5.

5.1 Validation Using Configured Drop Rates
We performed the model validation on a test-bed that

emulates a wide range of network settings. The topology
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Figure 4: Experiment setup for model verification
in a controlled environment.

of the test-bed is shown in Figure 4(a). We consider a sin-
gle CBR-TCP flow going through a router running NIST
Net [1], a network emulation program which can introduce
constant delay and can drop packets according to a config-
ured loss process. We configured NIST Net to drop packets
uniformly at random independent of their size.

We varied the network setting, as follows. NIST Net was
configured with drop rates of 0.1%, 0.5%, 1%, 2%, 3%, 5%
and 10%, and a fixed round-trip propagation delay of 20ms,
100ms, and 300ms. The delay setting choice roughly re-
flects the delay of sites on the same coast in US, US coast-
to-coast delays, and trans-continental delays [15]. Note that
in this setting there were no background flows and hence
there were no queuing delays on the round-trip. We do not
consider loss rates greater than than 10% because the aver-
age TCP throughput (i.e., the available network bandwidth)
does not satisfy the rate requirement of the CBR-TCP flow
for considered RTTs. The average TCP throughput can be
computed using Padhye’s equation [29]. For each set of para-
meters, we ran the experiment for five minutes and repeated
each experiment ten times. We present the average results
of these experiments and compare them to the ones obtained
using our model. The model was run with the assumption
of random packet losses (see [9]).

Figure 5(a) and Figure 5(b) present the predicted vs. mea-
sured mean and 95th percentile TCP delay, respectively, for
VoIP and video flows for various network packet loss rates
and RTT of 100ms and 300ms. As shown, the model pro-
vides satisfactory matching for the majority of cases, specif-
ically, when the measured delay is below 0.6 s. To better see
the modeling accuracy across various loss rates and RTTs,
we plot the relative prediction error of the average TCP de-
lay with respect to the actual measurement for VoIP and
video flows in Figure 6. Observe that for VoIP flows, the
average error is less than 10% for loss rates up to 2%. For
video flows, the relative prediction error is in the order of
20% for loss rates up to 1% and 0.1%, and RTT of 100ms
and 300ms, respectively. The increase in relative error as
compared to VoIP flows is due to high variability in sender
packet backlog. Video flows have a higher backlog buildup
than VoIP flows since they use higher bit rates.

The modeling mismatches are due to several reasons. First,
the simplifying assumptions made by the model such as
the recovery of multiple losses in a single transmission win-
dow within one round-trip time introduce error. Second,
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Figure 6: The relative modeling error for VoIP and
video flows as a function of loss rate.

although our model accurately captures the backlog size at
round-trip time granularity, it ignores backlog evolution at
smaller time scales. A more detailed discussion of these is-
sues can be found in Section 4.1 and 4.2.

Observe from Figure 6 that the prediction error increases
with the network loss rate. This is because the size of the
state-space of the model is truncated to reduce computa-
tional complexity, as explained in [9]. Further, for video
flows, the jump in the prediction error at loss rate of 0.5%
and 1% for RTT of 100ms and 300ms, respectively, occurs
because the achievable TCP throughput is close to or below
the bit rate of video flow. When the CBR rate is close to
the TCP throughput, the TCP connection increasingly suf-
fers from saw-tooth like transmission behavior, resulting in
large variability in packet backlog buildup. This variability
causes the high modeling error. When the throughput of the
TCP connection is below the CBR rate, the CBR-TCP flow
can be delayed indefinitely. For TCP throughput of at least
twice the bit rate of VoIP and video flows, the modeling
error was below 20%.

In general, the modeling error increases as the rate of
the CBR source approaches the achievable TCP through-
put. The 95th percentile measure pinpoints cases of largest
deviation from the measurement, providing a highly conser-
vative measure for the validity of the model; the average
measure, demonstrates a better match between the model
and the experimental results. Similar results were obtained
for the variance and the maximum TCP delay measures.

5.2 Validation Using Internet Experiments
We performed model validation using the PlanetLab en-
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vironment and hosts connected to residential DSL and cable
modems. We conducted the PlanetLab experiments on ma-
chines located in the US (California, New York, Texas), Eu-
rope (Germany, Italy, UK), and Asia (China, India, Japan,
Taiwan). For each sender and receiver pair, we ran our tool
to generate VoIP and video flows for thirty minutes. The
DSL experiments were conducted from hosts in the US, Is-
rael, and Pakistan to hosts in New York and California.

For the majority of the PlanetLab and DSL experiments
we observed only a handful of losses (<0.5%), whereas in a
few cases, the throughput of the TCP connection did not
meet the rate requirement of the CBR-TCP flow. We there-
fore started multiple FTP flows in tandem with the CBR-
TCP flows, thereby increasing the congestion on the link
and causing the CBR-TCP flows to suffer from higher losses.
Figure 7(a) plots the predicted vs. measured 95th percentile
delay for VoIP and video flows for a range of sites around
the world. The top four settings in the legend of the figure
refer to VoIP flows, and the bottom four refer to video flows.
The network loss rates p and RTTs experienced by the flows
are shown as well. As shown, there is a good match between
the model and the measured delay.

5.3 Validation Using Drop-Tail Routers
We consider a scenario where multiple CBR-TCP flows

compete with FTP and web flows for a bottleneck router
with a drop-tail queueing scheme, as shown in Figure 4(b).
We note that the lines in the figure connecting the data
sources and sinks to the end hosts are for illustration pur-
poses only and do not represent actual links.

We used the test-bed from Section 5.1 and modified NIST
Net to incorporate a drop-tail queue. We devised a multi-
flow setting in which five VoIP CBR-TCP flows compete
with five long-lived FTP and varying number of web flows.
We repeated the experiment for video flows. We used the
SRI and ISI traffic generator [2] to generate exponentially
distributed web traffic with a mean duration of 50ms and a
constant packet size of 512 bytes. The choice of the number
of FTP and web flows, and packet size for web flows was in-
spired by the configuration used to evaluate the performance
of TFRC-small packets [14]. The round-trip propagation de-
lay was set to 100ms for all experiments. The link capacity
was set to 3Mb/s and 30Mb/s for voice and video CBR-
TCP flows, respectively, so that the ratio of cumulative bit
rate of five CBR-TCP flows to link capacity was one to ten.
The drop-tail queue was maintained in packets and config-
ured to hold 100 packets. For each configuration, we ran
the experiment for five minutes, repeated it five times, and
present the average of the results.

Since our goal is to validate our model for a given loss
rate and RTT, we measured these parameters in each of
the experiments. The network round-trip time consists of a
round-trip propagation delay of 100ms and a queuing delay
at the router. For the VoIP and video experiments, the mea-
sured RTT was 380ms and 101ms, respectively. Hence, the
congestion was low for the video experiments. The queuing
delays and loss rates are different for these two flows because
the link bandwidths in these two settings were different. Fig-
ure 7(b) presents the measured and predicted 95th percentile
delay for VoIP and video flows. Some of the prediction in-
accuracies in the drop-tail router experiments are caused
by inaccurate characterization of the loss process. In this
environment, as in the PlanetLab case, we run the model
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Figure 7: Model validation using (a) PlanetLab ex-
periments (b) drop-tail router experiments for VoIP
and video flows.

with the assumption of correlated packet losses (see [9]).
However, the actual burstiness of losses experienced by the
CBR-TCP flows varies depending on the level of statistical
multiplexing at the router.

6. DISCUSSION
In this section, we explore the delay performance of real-

time delivery over TCP. We experimentally characterize the
working region for VoIP and live video streaming applica-
tions with bit-rates of 64 kb/s and 573 kb/s, respectively,
and use our model to identify the working region for other
bit-rates. Then, we study the impact of various mechanisms
in TCP on its delay performance. Finally, we use the in-
sights gained to provide guidelines for configuring TCP for
real-time applications.

6.1 Working Region
Here we characterize the working region for VoIP and

live video streaming applications, i.e., the conditions under
which the performance of these applications is satisfactory.
In general, the user perceived media quality is acceptable
when the fraction of packets that arrive beyond their play-
back time is low and the end-to-end delay is low.

For interactive applications, ITU G.114 recommends that
the worst-case one-way delay should be 400ms. Studies
show that 200ms is an acceptable one-way delay limit for
VoIP applications [26]. The choice of the delay limit for
video is more flexible because people can usually tolerate a
few seconds of startup delay. For the analysis we consider
a 5 s startup delay, as suggested by [16]. While VoIP can
usually tolerate up to 5% of packets that miss their playout
deadline without a significant effect on intelligibility [26],
video viewing quality drops rapidly at 0.1% [33]. We follow
these guidelines and define the working region for VoIP and
live video streaming as the range of network loss rates and
RTTs where the 95th percentile and maximum TCP delay
is at most 200ms and 5 s, respectively. We explore how the
performance varies with the delay limit in [9].
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Figure 8: Working region for VoIP and live video
streaming as a function of RTT and packet loss rate.

Figure 8(a) plots the 95th percentile delay for various loss
rates from 0.1% to 10% and RTTs of 20ms, 100ms, and
300ms for a VoIP flow with a bit-rate of 64 kb/s. The re-
sults shown were obtained empirically using the environment
described in Section 5.1. Observe that when the RTT is
100ms, the delay tolerance for VoIP is satisfied when the
network loss rate is at most 2%. However, when the RTT
is only 20ms, the results indicate a tolerance of up to 5%.
At the boundary of the working region, the delay added by
TCP causes 5% of the packets to miss their playback dead-
line. Figure 8(b) plots the maximum delay for a live video
streaming flow with a bit-rate of 573 kb/s. When the RTT
is 100ms, the streaming threshold is satisfied when the loss
rate is at most 3%. For RTT of 300ms, it is satisfied at a
network loss rate of 0.1%. The jump in the maximum delay
at a network loss rate of 0.5% and RTT of 300ms occurs
because the 5 s startup delay is no longer sufficient to com-
pletely mask TCP delays. This knee of the curve typically
occurs when the achievable TCP throughput is close to the
bit rate of the video flow, as explained in Section 5.1. The bit
rates of 64 kb/s and 573 kb/s are the highest among the bit
rates considered in Section 5 for VoIP and video flows and
therefore, they give the most conservative estimate of the
working region. We used the model to compute the working
region for the lower bit rates. While the working region was
less constrained due to the lower bit-rates, the results follow
similar pattern as in Figure 8(b). Further, the working re-
gion can be significantly constrained if the application does
not use delay-friendly TCP settings (see Section 6.5).

6.2 The Effect of Packet Size on Performance
Our experiments indicate that under the same network

conditions, VoIP flows perform significantly better than video
flows. Figure 9(a) plots the 95% delay for VoIP and video
flows with the same workload in packet per second (pps) but
quite different workload in terms of bits per second (kb/s),
i.e., the VoIP flow has a bit rate of 64 kb/s whereas the video
flow has a bit rate of 573 kb/s. The figure clearly shows a
performance bias towards the VoIP flow. This happens be-
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Figure 9: (a) The delay performance of two TCP
flows having the same load in kb/s but different load
in pps, and a VoIP flow. (b) Delay breakdown: the
portion of TCP-level delays caused by the conges-
tion control mechanism.

cause a video flow has a higher bit rate than a VoIP flow.
Hence, during network-limited periods, a TCP sender trans-
mitting a video flow builds up a larger packet backlog and
consequently, it requires more time to drain this backlog.
For VoIP flows, the TCP sender groups several queued VoIP
packets into one transmission packet as permitted by the
MSS. This further increases the queue drain rate, thereby
reducing the queuing delay at the TCP sender.

An interesting question to ask is that among two flows
having the same workload in kb/s, does TCP have a perfor-
mance bias towards a flow with larger workload in pps? To
address this question, we measured the delay performance
of two flows having the same workload in kb/s but differ-
ent workload in pps. The results are shown by the curves
labeled video and video+split in Figure 9(a). Specifically,
the packet rate of video+split flow is twice of the video flow
but the application-level workload rate in bytes is the same.
Surprisingly, there is a performance bias towards the flow
with twice the packet rate of the other flow.

To illustrate the reason for this performance difference, we
plot the TCP delay and congestion window size for two flows
with the same application-level workload in kb/s in Fig-
ure 10. The flow in Figures 10(a) and (b) corresponds to
an application that sends 100 MSS-sized packets per sec-
ond. The flow in Figures 10(c) and (d) corresponds to an
application that sends 200 half MSS-sized packets per sec-
ond. Both flows operate over a symmetric network with
200ms RTT and experience two close-by losses. Observe
that the flow with half MSS-sized packets experiences lower
delay than the other one. This happens because the AIMD
mechanism updates the congestion control state as a func-
tion of the number of packets sent, rather than as a function
of the number of bytes sent (see Section 3.1). Since TCP
adapts its congestion control state and hence its through-
put based on the number of packets sent, the magnitude of
the throughput fluctuations (in bytes) is smaller for the flow
with smaller packet size and higher packet rate, resulting in
lower delays. For example, the peak delay of the flow with
half MSS-sized packets in Figure 10 is 45% lower than that
of the one with MSS-sized packets. As shown, the perfor-
mance gain of a TCP flow with small packets (e.g., VoIP)
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Figure 10: TCP delay and congestion window evo-
lution for two flows with the same workload in kb/s
but different packet sizes, MSS and half-MSS.

comes from the reduction in the delays caused by the AIMD
mechanism. That is, video flows suffer more from packet
backlogging than VoIP flows. However, reducing the packet
size has side effects such as increased instances of packet
reordering [23].

We analyzed the breakdown of TCP-level delays by com-
puting the time packets are backlogged at the sender (i.e.,
the congestion control delay component) and the time it
takes the TCP sender to get a packet to the receiving appli-
cation (i.e., the retransmission and head-of-line delay com-
ponents). Figure 9(b), shows the delay breakdown in terms
of these two components for VoIP and video flows. As
shown, the delays of a VoIP flow over TCP tend to be dom-
inated by the loss recovery latency, whereas those of a video
flow tend to be dominated by the delays caused by the con-
gestion control mechanism. Similar results were obtained
for CBR sources with other bit rates.

6.3 Sensitivity to Byte-counting
In order to provide a measured response to ACKs that

cover only small amounts of data, [3] proposes to increase the
congestion window based on the number of bytes acknowl-
edged by each incoming ACK rather than on the number of
ACKs received. This mechanism is known as byte-counting.
Byte-counting is configured on a per-system rather than per-
connection basis in Linux, and is disabled by default. It is
not implemented in Windows XP. A question arises how does
the performance of VoIP flows change when TCP increases
its congestion window by the number of bytes sent.

To answer this question, we measured the delay of five
VoIP flows competing with five long-lived TCP flows and
varying number of web flows in a drop-tail queue environ-
ment (see Section 5.3). Figure 11 shows 95th percentile
and maximum delay for a VoIP flow using ACK and byte-
counting. It highlights the gain of a VoIP flow when byte-
counting is not used. On average, the use of byte-counting
increases the TCP delay by 10-20%. The delay increases
because TCP with byte-counting increases its sending rate
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Figure 11: 95% and maximum delay for a VoIP flow
using ACK and byte-counting.

in proportion to the number of bytes sent. Hence, a byte-
counting TCP can be viewed as more fair than ACK-counting
TCP with respect to the congestion control behavior. The
support for byte-based congestion control mechanism must
come from the underlying operating system. However, since
Linux and Windows XP use ACK-counting by default, VoIP
flows implicitly benefit from it.

6.4 The Effect of Timeouts on Performance
Since a real-time flow is rate-limited, it has the potential

of causing the connection’s congestion window to be small.
Hence, the chance of sending enough segments for the re-
ceiver to generate the three duplicate ACKs becomes small,
too. This can harm the delay performance as the sender may
need to rely on lengthy retransmission timeouts for loss re-
covery. Nonetheless, our traces show that the likelihood of
timeouts is low.

The likelihood of timeouts is directly effected by the be-
havior of TCP during application-limited periods. Accord-
ing to [18] there are three possibilities. A TCP sender can
reduce the congestion window so that it would reflect the
actual amount of data sent, as suggested by the window
validation extension [18]. It may increase the congestion
window, resulting in an arbitrarily large window value, or
it may maintain the same congestion window, resulting in
an invalid window value. We focus on the latter case, as it
is the one observed in our measurements for Windows XP
and Linux systems. The invalid congestion window overesti-
mates the actual amount of data sent, and hence reduces the
likelihood of timeouts. This overestimation happens implic-
itly for CBR-TCP flows, because during application-limited
periods, the TCP sender retains memory of an ‘inflated’ con-
gestion window used to clear the recent data backlog. The
congestion window behavior can be observed in Figure 10(b)
and (d). The window value overestimates the actual load by
30% and 40%, respectively, for the flow with MSS-byte and
MSS/2-byte packets. The other factor that influences the
likelihood of retransmission timeouts is the limited transmit
mechanism [4], which is enabled by default in Linux 2.6 and
Windows XP. This mechanism allows a TCP sender to send
a new data segment upon the receipt of each of the first two
duplicate ACKs, thereby increasing the chances of the three
duplicate ACKs to arrive.

To quantify the impact of these mechanisms (i.e., limited
transmit and invalid congestion window) on TCP’s loss re-
covery efficiency, we compared the timeout probability pre-
dicted by of our model to that predicted by a recent detailed
loss recovery model proposed by Beomjoon et al. [8]. The
latter model does not consider the impact of the two mech-
anisms. We show the results in Figure 12 for a window size
of three and an overestimation factor of 30%. To validate
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the results we measured the timeout probability of several
VoIP flows with an average window size of three in an envi-
ronment with random packet losses. The figure shows that
for small windows the absence of limited transmit and in-
valid congestion window has a non-negligible impact on the
timeout probability.

6.5 TCP and OS Settings
We provide a comprehensive set of guidelines for delay-

friendly settings of TCP and OS parameters. While several
settings such as disabling Nagle’s algorithm and using large
receive buffers are common practices in delay-sensitive appli-
cations, the impact of others, specifically, window validation,
byte counting and limited transmit is less obvious.

As discussed in Section 3, Nagle’s algorithm should be
disabled as it introduces transmission delays at the TCP
sender. CBR-TCP applications should set a large receive
buffer and operate with non-blocking sockets so that the
TCP transmission is not limited by the flow control mecha-
nism. To increase the loss efficiency of TCP, SACK should
be enabled [11] and limited transmit be used. The latter is
applicable for a TCP connection with small windows. Con-
gestion window validation during application-limited peri-
ods, and byte-counting should be disabled. These settings
are disabled by default on Linux and Windows XP systems.
The initial window size should be set to four segments as it
can remove delays up to three RTTs and a timeout during
the initial slow-start period [5].

7. DELAY REDUCTION APPROACHES
Here we discuss application-level heuristics that can im-

prove the performance of real-time media applications with-
out additional help from the network. We analyze whether
the delay reduction comes at the expense of other flows, in
particular FTP flows. In the following, we first discuss a
packet splitting scheme and then consider the use of parallel
connections. We show that both schemes are effective for
video flows but have only a marginal impact on VoIP flows.

7.1 Packet Splitting
As described in Section 6.2, the congestion control mech-

anism of TCP results in a performance bias in favor of flows
with small packets. A question of interest is whether the de-
lay performance of real-time applications can be improved
by masquerading TCP flows with large packets as flows with
small packets. The application can split every large packet
into a few smaller ones, while maintaining the same work-
load in bytes per second. We call this scheme split-N, where
N is the packet split factor. Packet splitting, however, may
also backfire: if all CBR-TCP flows started using packet
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Figure 13: (a) The reduction in the 95th delay per-
centile of a video flow using split-N in a drop-tail
queue environment (b) Throughput of background
FTP flows in the same environment.

splitting, the network could quickly become congested due
to the TCP header overhead. Hence, a wide-scale adoption
of such an approach runs the risk of degrading the perfor-
mance of all flows. Further, reducing the packet size can
increase instances of packet reordering [23].

We analyzed the upper bound on the delay reduction of
a split-N scheme for both video and VoIP flows by apply-
ing our model in the configured drop rates environment de-
scribed in Section 5.1. Though not shown due to lack of
space, the split-2 scheme reduced the 95th delay percentile
by 60% on average. This is consistent with the observation
made in Section 6.2 that a TCP flow with small packets
experiences smaller packet backlogs, and hence smaller de-
lays, than that of a flow with large packets. For VoIP flows,
the scheme yielded diminishing gains due to the low backlog
levels experienced by these flows.

To understand the performance of split-N in a wide-scale
deployment, we measured the delay of a video flow (i.e., a
573 kb/s video source) in an environment with a drop-tail
queue described in Section 5.3. As shown in Figure 13(a),
the split-2 scheme reduces TCP delay by up to 30% under
low and moderate loss rates, whereas schemes with higher
split factors yield diminishing gains or perform even worse
than a no-split scheme. The performance degradation is par-
tially due to the increase in the burstiness of the flow with
packet splitting. This burstiness can be reduced to some ex-
tent by evenly spacing split-packets over the packetization
interval. However, perfect pacing may be difficult to achieve
at the application layer due to the small packetization inter-
vals (e.g., 20ms) used in practice.

During periods of high congestion (100 web flows), a TCP
sender using a split-N scheme is heavily backlogged and
hence it is unable to obtain a performance bias by using a
split-N backlogged scheme. We used the drop-tail queue en-
vironment to study the fairness implications of this scheme.
In particular, we measured the throughput of long-lived TCP
flows that share a congested link with video flows employ-
ing packet splitting. As shown in Figure 13(b), the split-N
scheme impacts the throughput of the long-lived TCP flows.
For example, the use of split-4 reduces the throughput of a
background TCP flow by 27% on average. From the plot,
we observe that the throughput reduction quickly increases
with the split factor.

7.2 Parallel Connections
A straightforward approach to improve the delay perfor-

mance of a CBR-TCP flow is to stripe its load across paral-
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lel TCP connections. The idea is that several TCP streams
are more aggressive than one TCP stream with respect to
the congestion control behavior [34], which can result in
lower TCP delays. The use of parallel TCP connections
for streaming and data-intensive applications has mainly fo-
cused on enhancing the throughput. However, we focus on
reducing the delay. Specifically, we provide insights on the
delay performance of parallel connection schemes for real-
time applications.

Packet striping can be done in delay-agnostic or delay-
aware fashion. The simplest approach is to use a delay-
agnostic (‘blind’) parallel connection scheme that sends pack-
ets over parallel TCP connections in a round-robin fashion.
Due to limited space, we only show the performance im-
provement and fairness impact of this scheme for video flows
in the drop-tail queue environment described in Section 5.3.
Figure 14(a) shows that five parallel connections reduce the
95th delay percentile by 90% on average. The delay re-
duction stems from lowering the load per connection, which
in turn reduces sender backlog buildup and receiver head-
of-line blocking per connection, and hence the TCP delay.
Though not shown, the performance gain was negligible for
VoIP flows. The gain was negligible because the delay reduc-
tion is offset by the decrease in TCP’s loss recovery efficiency
caused by small congestion windows (see Section 6.4). The
small congestion windows are due to the low load per con-
nection. We note that the scheme yielded diminishing gains
when more than five connections were used.

We propose a delay-aware (‘intelligent’) scheme which se-
lects a connection for packet transmission that has the small-
est TCP send queue and is not in the timeout state and show
the results in Figure 14(a). The ‘intelligent’ scheme out-
performs the ‘blind’ scheme because it dynamically avoids
connections with large queues and in timeout states. Fur-
ther, due to its dynamic nature, this scheme copes better
with connections with small congestion windows. Similar
to the ‘blind’ scheme, we observe that using more than five
parallel connections results in diminishing gains. We note
that the parallelization spectrum ranges from a single flow
to having as many flows as the packet rate per RTT. Simi-
lar to packet splitting, we study the fairness impact of these
schemes on the background traffic using a drop-tail queue
environment. We present the results in Figure 14(b). As
shown, both ‘intelligent’ and ‘blind’ schemes have a negligi-
ble impact on the throughput of the background long-lived
FTP flows. The impact is negligible because these schemes

do not introduce additional traffic besides session setup and
teardown. Though parallel TCP streams are more aggres-
sive than a single TCP stream, their aggregated throughput
is still limited by the rate of the CBR source.

8. RELATED WORK
There is an extensive literature on analytical and exper-

imental evaluation of TCP. We present only those studies
closely related to ours and refer the reader to [28] for a
comprehensive survey of TCP modeling. The majority of
TCP modeling studies are geared towards file transfers as-
suming either persistent [29] or short-lived flows [10]. Our
work differs from past work in that we consider non-greedy
rate-limited flows with real-time delivery constraints. More
recently, the performance of TCP-based video streaming has
been analytically analyzed by [33]. The receive buffer size
requirement for TCP streaming has been determined in [19].
These papers combine TCP throughput and application-
layer buffering models to compute the portion of late pack-
ets, whereas we directly model the transport-layer delay of
TCP. Our work further differs from those above in that we
consider applications with tight delay constraints such as
VoIP. Wang et al. [34] have performed a comprehensive an-
alytical study of the performance of multipath video stream-
ing using TCP. This work explains that the performance of
TCP streaming increases as the ratio of the aggregated TCP
throughput to video encoding rate increases. However, our
contribution is the insights on the TCP delay performance.

Goel et al. [15] present an empirical study of kernel-level
TCP enhancements to reduce the delays induced by congestion-
control for streaming flows. The performance of TCP for
real-time flows has also been considered by [22, 25]. How-
ever, unlike our study, these papers propose a modification
to the TCP stack. Application-layer heuristics for improving
the loss recovery latency of TCP have been suggested [24].
These heuristics are geared towards bursty traffic flows and
hence may not be effective for real-time flows.

9. CONCLUSION AND FUTURE WORK
We have presented a Markov-chain TCP delay model for

CBR-TCP flows. The model captures the behavior of VoIP
and streaming flows. We used experiments and the model
to derive the working region of these flows. We verified the
model in a test-bed and in PlanetLab. We explored the
impact of TCP mechanisms and presented guidelines for
improving the delay friendliness of CBR-TCP applications.
The delay performance of a video flow can be improved using
packet splitting or parallel connection heuristics.

This study provides insights on the use of TCP for VoIP
and live-video streaming applications. A direct comparison
of real-time delivery over TCP versus unreliable protocols is
left for future work. We have used delay percentiles to eval-
uate the performance of CBR-TCP flows. However, Mean
Opinion Score (MOS) is considered a better metric for evalu-
ating user-perceived performance. This is another potential
topic for future work.
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