
Fast and Reliable Stream Processing over Wide Area Networks∗

Jeong-Hyon Hwang, Uğur Çetintemel, and Stan Zdonik
Department of Computer Science

Box 1910, Brown University
Providence, RI 02912, USA

Tel: +1-401-863-6192
{jhhwang, ugur, sbz}@cs.brown.edu

Abstract

We present a replication-based approach that enables
both fast and reliable stream processing over wide area net-
works. Our approach replicates stream processing opera-
tors in a manner where operator replicas compete with each
other to make the earliest impact. Therefore, any process-
ing downstream from such replicas can proceed by relying
on the fastest replica without being held back by slow or
failed ones. Furthermore, our approach allows replicas to
produce output in different orders so as to avoid the cost of
forcing an identical execution across replicas, without sac-
rificing correctness.

We first consider semantic issues for correct replicated
stream processing and, based on a formal foundation, ex-
tend common stream-processing primitives. Next, we dis-
cuss strategies for deploying replicas. Finally, we present
preliminary results obtained from experiments on Planet-
Lab that substantiate the potential benefits of our approach.

1 Introduction

Recently, there has been significant interest in applica-
tions where data, continuously generated at various loca-
tions in the world, needs to be processed in a timely fashion.
Such stream-processing applications include financial mar-
ket monitoring, asset tracking, seismic activity monitoring,
call analysis, network monitoring and intrusion detection.
In this application domain, low-latency processing is criti-
cal as it enables swift reaction to real-world events.

Stream processing systems are a class of software sys-
tems that efficiently facilitate implementation of stream pro-
cessing applications [6, 4, 8]. In these systems, process-
ing is typically expressed as an acyclic graph of operators

∗This material is based upon work supported by the National Science
Foundation under Grants No. IIS-0325838 and IIS-0086057. Any opin-
ions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

that transform the data streaming through them. Many such
systems are also geared toward distributed processing be-
cause a large body of applications inherently involve geo-
graphically dispersed data sources and engaging multiple
servers can achieve highly scalable and available process-
ing [9, 16, 20].

In this paper, we assume wide area networks as the sub-
strate for extreme-scale stream processing. In such envi-
ronments, it is possible to exploit a large number of com-
putational elements to realize macroscopic applications that
span diverse areas of the globe. Despite such benefits, the
following reasons make it difficult to consistently guarantee
correct and timely processing:

1. Servers are prone to failures. A server failure has a
serious negative impact because a failed server blocks
data flow and also may lose some state essential to pro-
cessing. As processing involves more servers, the odds
of experiencing failure increases accordingly.

2. Today’s networks are vulnerable to link failure, link
congestion, and malicious attacks. Communication
outages sometimes last tens of minutes or more [7, 14].

3. Stream data often exhibits unexpected behaviors such
as data surges [18, 20]. If a server cannot keep up with
the incoming data, all the processing by subsequent
servers will also be delayed.

To alleviate the limitations stated above, we adopt op-
erator replication as the key mechanism. Specifically, we
allow each operator in the system to receive inputs through
multiple replicated data flows so that it can produce outputs
relying on the fastest input flow and avoid being hindered
by slow or faulty ones.

1.1 Motivating Example

Query. Figure 1(a) depicts a scenario where we are inter-
ested in finding long-latency communication paths among
a subset of PlanetLab servers [2]. Those servers ping each



(a) Non-replicated Stream Processing: In this example, tuple (9:00:00,
A-C) arrives at 1 on time through stream S1. However, 1 cannot im-
mediately process that tuple because its matching tuple (9:00:00, C, 50%)
arrives late as it was delayed on the way through stream S3.

(b) Replicated Stream Processing (Processing after stream S5 is omitted)
: Replicating the input flows of 1 (see that data flows S′1, S′2−S′4, S′3−S′4
and operator U ′ are added) makes 1 run in a more timely fashion. Repli-
cated input flows however introduce duplicate tuples. In order to produce
correct results, 1 has to filter them out (see those stroked-through).

Figure 1. Example of Categorizing Slow Paths

other every second. If a server detects another server that
does not respond in a second, the former reports this in
the form of a data stream. In Figure 1(a), server A reports
that communication path A-C has been slow or down since
9:00:00 and that also A-B became so at 9:00:02. However,
such a delay might have appeared because the remote server
slowly reacted to the ping message due to performing other
important tasks. Therefore, we want to identify latencies re-
sulting from network problems only (i.e., those certainly not
caused by busy remote servers). In the example, the join op-
erator 1 correlates the report of slow paths with the report of
remote servers’ load readings, based on timestamp as well
as server ID. The subsequent filter σ categorizes slow paths
according to the load readings.
Impact of Slow Streams. As illustrated in Figure 1(a), a
slow stream delays all processing downstream from it and

may even delay the processing of other timely streams. In
the example, the processing of a timely tuple (9:00:00, A-
C) is delayed at 1 as its matching tuple (9:00:00, C, 50%)
arrives late.
Benefits of Replication. 1 in the example is a stateful oper-
ator (i.e., the production of an output tuple usually involves
multiple input tuples). For this reason, the timeliness of its
operation is determined by the slowest input flow. As Fig-
ure 1(b) illustrates, replicating input flows allows the opera-
tor to obtain input tuples at earlier times (through the fastest
among the replicated input flows) than in the non-replicated
case. In principle, replication can improve both the perfor-
mance (in terms of end-to-end latency) and reliability (in
terms of the probability that the system satisfactorily per-
forms the intended operation despite changes in the envi-
ronmental conditions).

1.2 Problem Statements

Although replication has been extensively used in many
areas, applying it in our framework raises the following re-
search challenges.

1. What kind of execution semantics should replicated
stream processing support?

We take the position that replication must be transpar-
ent to users. Therefore, we aim at guaranteeing that the
results generated from replicated stream processing,
whether or not a failure happens, correspond to what
non-replicated processing would produce. In Section
3, we discuss the details of this semantic guarantee.

2. How should we extend processing primitives for repli-
cated stream processing?

An operator with replicated inputs must filter out
duplicate tuples as 1 does in Figure 1(b). This
is because processing such duplicates wastes pro-
cessing/communication resources and also causes
duplicate-sensitive operators (e.g., sum) to produce in-
correct results. Duplicate filtering must be able to deal
with cases where replicated streams produce different
orders (compare streams S4 and S′4 in Figure 1(b))
and/or a data stream contains multiple identical tuples
(refer to Section 3.5 for details). Furthermore, each
operator should be implemented in a manner that ex-
pedites data flows (i.e., should not unnecessarily block
data flows). We revisit this issue in Section 3.3.

3. How should we deploy replicas?

Replication can improve both the performance and re-
liability of the system at the expense of using more
computation and network resources. The key idea un-
derlying our replica deployment approach is to repli-
cate operators in a manner that most improves the per-
formance and reliability, relative to the additional cost
due to replication. Furthermore, while striving to avoid



overload, our algorithm considers the relative impor-
tance of operators (e.g., how many end-users are de-
pendent on them).

1.3 Road map

The rest of this paper is organized as follows. In Sec-
tion 2, we give an overview of the topic and point out the
contributions of this paper. Then, we devise a semantic
model for correct replicated stream processing and present
extended versions of stream-processing primitives that con-
form to the model (Section 3). In Section 4, we describe our
algorithm for replica deployment. We present preliminary
experimental results in Section 5. Finally, we conclude in
Section 6.

2 Background

In stream processing, a query is expressed as a directed
acyclic graph of operators that define how to transform the
stream data [6, 4, 8]. Some stream operators are directly
borrowed from relational algebra (e.g., Filter, Map, Union)
and others are adapted (e.g., Aggregate, Join) [3]. The lat-
ter execute based on windows over data streams to cope with
the infinite nature of streams (Refer to Section 3.3 for de-
tails). As Figure 1(a) shows, operators can be distributed
over multiple servers for scalable processing [9, 16, 21].

2.1 Previous Work for Reliable Stream Processing

Most high-availability techniques that have been de-
veloped for stream processing [15, 12, 5, 11] assume a
clear distinction between “primary” and “backup (or sec-
ondary)” processes. In such techniques, each primary ex-
ecutes queries and if it fails, a pre-dedicated backup takes
over the failed execution.

Our previous work in [12] presents a broad classifica-
tion of high-availability techniques depending on the way
of maintaining backups: (1) In passive standby, each pri-
mary periodically checkpoints (i.e., copies only the change
that occurred in its state since the last checkpoint) onto its
backup. (2) Active standby uses redundant execution where
each backup also receives and processes input data in par-
allel with its primary. (3) In upstream backup, each pri-
mary logs its output data. If a primary fails, upstream pri-
maries flow their logged output data towards the backup of
the failed one so that the backup can rebuild from scratch
the failed process’s state.

In our recent work [11], we use passive standby as the
backup model for reliable stream processing in local area
clusters. This is because that model has a distinct advan-
tage of withstanding high load situations while gracefully
degrading the recovery speed. Our approach in [11] parti-
tions the query at each server into smaller pieces and backs

them up onto different servers with different checkpoint fre-
quencies so as to maximize the recovery speed. The ap-
proaches in [15, 5] fall into the active standby model. This
model guarantees faster recovery than passive standby in
low load situations where all the backups can also use the
same amount of resources as the primaries. The upstream
backup model incurs very low overhead during failure-free
periods because the backups remain idle. However, it takes
a long time to recover large state queries (e.g., recovering
an aggregate with a window size of 10 minutes requires re-
processing 10 minute worth of tuples).

Recently, Murty and Welsh presented a high-level vision
of a dependable architecture for Internet-scale sensing [13].
They proposed a replication technique that allows replicas
to arbitrarily diverge and then reconciles results from such
replicas by finding a representative value (such as the me-
dian).

2.2 Contributions

In this paper, we assume a wide area network where
some sufficient amount of computation and communication
resources are assigned for stream processing. Given these
resources, we strive to replicate stream processing in order
to improve both the performance and reliability of the sys-
tem. Compared to the previous primary/backup techniques,
our replication-based technique has the following advan-
tages:

1. High Performance: In previous primary/backup ap-
proaches, only the primaries contribute to downstream
processing. Therefore, adding more backups cannot
improve the system performance. In our approach,
replicas compete with each other to produce results
early.

2. No Failover Latency: Previous primary/backup ap-
proaches recover from a failure by failover: (a) a
backup ensures the problem of its primary after wait-
ing for a certain amount of time, (b) sets up out-
put streams to downstream processes on behalf of the
failed one, and (c) starts sending output tuples down-
stream. It should be noticed that this failover proce-
dure blocks data flows until it finishes. By contrast, our
replication approach does not introduce any failover
latency.

3. No Blockage: Previous approaches provide precise re-
covery (i.e., guarantee that the output with failover is
the same as that from a failure-free execution) [12]
in two different ways: (a) Make each primary post-
pone its output until its backup obtains all the informa-
tion necessary to reproduce the output in the exactly
same order (refer to “determinants” in [12] and “out-
put commit” in [10]); (b) Enforce each operator to pro-
duce outputs deterministically (including the order) on
both the primary and backup [5] (for example, each



Union replica postpones passing input tuple t until it
ensures that all the upcoming tuples will have more re-
cent timestamps than t). In principle, these methods
block the flow of each tuple until it is guaranteed that
the tuple will never violate their own invariants for pre-
cise recovery. Our approach does not introduce such
blockage in processing.

In summary, this paper makes the following contribu-
tions:

1. We introduce a novel replication-based framework for
fast and robust stream processing. This framework has
the advantages stated above.

2. We define a semantic criterion for correct replicated
stream processing. Based on this, we redesign pro-
cessing primitives.

3. We discuss the problem of deploying replicas.

4. We present preliminary experimental results obtained
from a prototype running on PlanetLab machines [2].

3 Replication Model

3.1 Assumptions

In this paper, we assume a wide area network with a
sufficient amount of computation and communication re-
sources for stream processing. We assume that the network
layer runs a reliable, in-order, point-to-point message de-
livery protocol such as TCP. We take into account the fail-
stop type of server/network failures and does not consider
Byzantine failures where computers and networks behave
in arbitrarily erroneous ways when there happen hardware
failures, network congestion and disconnection, malicious
attacks, etc.

We also assume that external stream sources connect to
entry points that are scattered all over the world. Each en-
try point forwards input tuples from external sources to the
downstream replicas, while buffering the tuples until all the
downstream replicas receive them. In Figure 1(b), entry
point e2 forwards tuples from B to replicas ∪ and ∪′. To
prepare for failure, each entry point also forwards input tu-
ples to a number of peer entry points. If an external source
loses connection to its current entry point, it redirects its
output to a peer of the entry point. This new destination en-
try point then forwards input tuples to its peer entry points
as well as the downstream replicas. If an entry point cannot
access a downstream replica for a long time (while buffer-
ing input tuples), it may close its output to the replica to
save its buffer space.

Finally, we assume that data sources timestamp tuples if
they are equipped with well-synchronized clocks [1]. Oth-
erwise, we assume that entry points timestamp tuples as
they arrive from external sources. In this paper, we consider

five different types of stream-processing operators, namely
Filter, Map, Union, Aggregate, and Join.

3.2 Concepts

We take the position that replicas of the same query must
produce the same collection of tuples from the same in-
put. This is because different collections of tuples can be
interpreted differently while suggesting conflicting actions
in the real world. However, we allow individual replicas to
produce streams in different orders. As discussed in Sec-
tion 3.3, this relaxation allows multi-way operators, such as
Union and Join, to output tuples immediately, without hold-
ing them to ensure an identical output order across replicas.
This expedites all the related downstream processing.

Although replicas can produce streams in different or-
ders, as illustrated in Section 3.5, we can merge such
streams in a non-blocking manner, while eliminating dupli-
cate tuples. Each stream obtained in this way has the same
collection of tuples as the source streams. However, its or-
der may be different from any one of the source streams. In
Figure 1(b), the stream merged from S4 and S′4 has a differ-
ent order than S4 as well as S′4. This shows that our style of
replication and merging strives to deliver outputs as early as
possible, while introducing disorder in data streams.

In Section 3.3, we describe how we deal with streams
disordered through replication. First, we introduce punc-
tuations in data streams [19, 5]. In this paper, a punctu-
ation is represented as a timestamp value with a guaran-
tee that no more tuples will have a lower timestamp. Us-
ing punctuations, we extend stream-processing operators so
that they can produce, from disordered input streams, the
output tuples that non-replicated processing would produce.
This guarantees that both the replicated processing and non-
replicated processing produce the same collection of tuples,
but possibly in different orders. In particular, as most of
our operators are non-blocking, they usually produce disor-
dered output streams from disordered input streams. As dis-
cussed later, the only exception is the operators with count-
based windows. These operators run in a blocking manner
to enforce an identical ordering across replicas.

The arguments above imply that if punctuations are man-
aged properly, our replication model can deal with order
difference in data streams. If an application at the output
is order-sensitive, we can also sort the streams to the appli-
cation based on the timestamps of tuples and punctuations.
For this reason, we say that data streams are consistent with
each other if they have the same contents (i.e., the same col-
lection of tuples), despite any difference in their orders. We
discuss the details of managing punctuations in Section 3.4.

Conceptually, consistent streams are permutations of the
same collection of tuples. Definitions 1 and 2 formally ex-
press this notion of consistency.

Definition 1 (Contents of Stream) Given a finite stream
S, we define the contents of the stream as C(S) :=



{(t, count(t; S)) : t ∈ S}, where count(t; S) := |{k :
S[k] = t}| is the number of occurrences of tuple t in stream
S and S[k] is the kth tuple in S.

Notice that the contents of a stream correspond to the no-
tion of multiset (or bag) in mathematics [17]. We use this
notion to deal with cases where a stream contains multiple
identical tuples. Notice that a stream with timestamps at too
coarse granularity may contain identical tuples. A projec-
tion of tuples may also yield identical tuples.

Definition 2 (Consistent Streams) Given two finite streams
S and S′, we say that S and S′ are “consistent” if C(S) =
C(S′) (i.e., if they have the same contents). We also express
this as S ≡ S′.

Finally, we say that query Q guarantees “replica consis-
tency” if its replicas are guaranteed to produce consistent
output streams when they completely process consistent in-
put streams. Practically speaking, this means that what a du-
plicate filter produces from parallel replicas of Q will also
be consistent with what a single instance of Q would pro-
duce.

Definition 3 (Replica Consistency) Let Q denote a query
with n inputs and one output. Given a replica R
of Q, let R(S1, S2, · · · , Sn) denote the output stream
that R produces when it completely processes finite in-
put streams S1, S2, · · · , Sn. We say that Q guarantees
replica consistency if it is always that R(S1, S2, · · · , Sn) ≡
R′(S′1, S

′
2, · · · , S′n) for any replicas R and R′ of Q and

for any finite input streams {Si}n
i=1 and {S′i}n

i=1 such that
Si ≡ S′i (1 ≤ i ≤ n).

3.3 Operators

In this section, we discuss how we redesign stream-
processing operators for replica consistency.

Theorem 1 shows that a query must guarantee replica
consistency if all its constituting operators guarantee replica
consistency.

Theorem 1 Let Q denote a query with n inputs and one
output. If all the constituent operators of Q guarantee
replica consistency, Q also guarantees replica consistency
(i.e., R(S1, S2, · · · , Sn) ≡ R′(S′1, S

′
2, · · · , S′n) for any

replicas R and R′ of Q and any input streams {Si}n
i=1 and

{S′i}n
i=1 such that Si ≡ S′i).

Proof: If Q contains only one operator, trivially Q guar-
antees replica consistency. Otherwise, denote the terminal
operator of Q as o (i.e., o produces the output stream of
Q). Then, for each input j (1 ≤ j ≤ m) of operator o, let
Qj be the query that consists of operators upstream from
j. For a replica R of Q, let Rj(S1, S2, · · · , Sn) denote the
sequence of tuples that have appeared on j until R com-
pletely processes input streams S1, S2, · · · , Sn. Since each

Qj has less operators than Q (note that o /∈ Qj ⊆ Q), by
the induction hypothesis, we get that Rj(S1, S2, · · · , Sn) ≡
R′j(S

′
1, S

′
2, · · · , S′n) for another replica R′ of Q and input

streams {Si}n
i=1 and {S′i}n

i=1 such that Si ≡ S′i (1 ≤ i ≤
n). Since o also guarantees replica consistency, the replicas
of o in R and R′ produce consistent output streams as they
receive consistent input streams {Rj(S1, S2, · · · , Sn)}m

j=1

and {R′j(S′1, S′2, · · · , S′n)}m
j=1, respectively. As a result, we

get that R(S1, S2, · · · , Sn) ≡ R′(S′1, S
′
2, · · · , S′n). 2

Theorem 1 can be generalized for a query with multiple
outputs by forming sub-queries consisting of operators up-
stream from each output and applying the theorem to such
sub-queries. Hereafter, we revisit stream-processing opera-
tors and extend them (if necessary) for replica consistency.

3.3.1 Stateless Operators

Stateless operators are those that produce each output tu-
ple based on only the most recent input tuple. Filter, Map,
Union belong to this category. Filter outputs a tuple from
its input stream if the tuple satisfies a pre-defined predicate.
Map converts each input tuple into an output tuple of a dif-
ferent format. Union merges two or more streams into a
single output stream.

It should be noted that stateless operators guarantee
replica consistency without extension. This is because they
always make a deterministic decision (i.e., replicas are guar-
anteed to make the same decision) for each input tuple re-
gardless of the orders (and also the inter-arrival orders) of
input tuples. For example, Union each time passes the exact
input tuple that it received. Notice that Filter and Map are
deterministic because they always produce a unique output
stream from an input stream. On the contrary, our imple-
mentation of Union can produce different output streams
(in terms of order) from the same set of input streams as
it immediately outputs whichever input tuple comes first.
In this sense, Union is non-blocking and also nondetermin-
istic. Union can introduce disorder into its output stream
even when its input streams are ordered.

3.3.2 Join

Join has two inputs I1 and I2. Whenever a tuple appears on
one input, Join searches for matching tuples among those
that have appeared on the other input (for each input Ii,
Join has a buffer Bi to remember past tuples). We say that a
pair of input tuples t1 and t2 (from I1 and I2, respectively)
match if (a) they belong to the same time window w (i.e.,
|t1.timestamp − t2.timestamp| < w) and (b) they sat-
isfy predicate P associated with the operator (i.e., P (t1, t2)
holds). When this operator finds such matching input tuples
t1 and t2, it immediately produces the concatenation t1⊗ t2
of them as an output tuple (in this sense, our implementation
of Join is non-blocking). This Join algorithm is summarized
in Figure 2.



When 1 receives input tuple t1 via input I1
(Input tuples via I2 are processed symmetrically; lines 06-08 are
for garbage collection)
01. For each t2 ∈ B2 such that
02. |t1.timestamp− t2.timestamp| < w and P (t1, t2),
04. output t1 ⊗ t2;
05. B1 ← B1 ∪ {t1};
06. I1.S[t1.source id]← t1.punctuation;
07. I1.punctuation← I1.S.get min punctuation();
08. B2 ← B2 − {t2 ∈ B2 :

t2.timestamp < I1.punctuation− w};

Figure 2. Join Algorithm

In this paper, we assume that Join sets the timestamp of
each output tuple to the most recent timestamp of the match-
ing input tuples. This is to compute the end-to-end latency
of each output tuple based on its timestamp. Notice that, in
an ideal setting where all the processing and transmission
tasks do not cause any latency, each output tuple would be
generated as soon as the last related input tuple is produced.
The timestamp of each output tuple captures this ideally ear-
liest generation time of the tuple.

It is easy to see that Join guarantees replica consistency
because, for each pair of matching input tuples, each replica
exactly once produces the concatenation of those tuples re-
gardless of the inter-arrival order of the input streams. Since
each output tuple is produced only when the last contribut-
ing tuple arrives, the pace of Join is very sensitive to the
slowest input. In Section 5, we experimentally demonstrate
this point. It should be also noticed that Join, similarly to
Union, is nondeterministic and also can introduce disorder.

One question that arises at this point is how to determine
and remove (to save space) input tuples that will no longer
be used. We need to solve this garbage collection prob-
lem even when the input streams are disordered by Unions
and Joins upstream. We solve this problem by annotating
each tuple on input Ii with (source id,punctuation). This
pair guarantees that input Ii will never receive tuples that
(1) originated from stream source source id and (2) have
timestamps earlier than punctuation. In other words, this
means that Ii has already seen the entirety of the tuples with
origin at source id and timestamps upto punctuation − ε,
where ε is the unit of timetamp. In Section 3.4, we discuss
this notion of bounded entirety in detail. For garbage col-
lection, we also assume that input Ii knows the set Ii.S of
stream sources that are upstream from Ii. Based on this, we
can find the smallest punctuation across the stream sources
in Ii.S (see I1.punctuation in line 07 of Figure 2). Be-
cause none of the tuples incoming via Ii will have times-
tamps earlier than Ii.punctuation, we can then find (and
discard) the tuples on the other input that will never be used
for processing (see line 08 in Figure 2). Finally, it should be
noted that steps in lines 06 and 07 can be done with a low
cost if we implement Ii.S as a heap that places the smallest
punctuation value at the root. In this case, the complexities

When receives input tuple t belonging to group g
01. for each w ∈ W(t.timestamp)
02. g.windows[w].update(t);
03. g.S[t1.source id]← t1.punctuation;
04. g.punctuation← g.S.get min punctuation();
05. for each w ∈ g.windows such that w < g.punctuation;
06. output w.get summary();
07. g.windows← g.windows− {w};

Figure 3. Agg. with Time-based Windows

of the steps are log(|Ii.S|) and log(1), respectively.

3.3.3 Aggregate

Aggregate splits input stream I into substreams {I[g] : g ∈
G}where G is the set of all groups and I[g] is a subsequence
of I that contains tuples belonging to group g. For each
substream I[g], this operator assumes windows (sets of tu-
ples) that are typically defined based on either timestamps
or count of tuples. If a window expires, Aggregate produces
an output tuple computed from the tuples that belonged to
the window. It is easy to see that Aggregate will guarantee
replica consistency if it deterministically forms and closes
windows (i.e., if the corresponding windows across replicas
are guaranteed to obtain the same collection of tuples until
they expire). In this case, Aggregate will also become de-
terministic as it will always produce a unique output stream
from the same input stream.
Aggregate with Time-Based Windows. In this case, each
group g forms windows of w seconds every s seconds.
Therefore, for each input tuple t, g can determine the set
of windows W(t.timestamp) that t belongs to. For exam-
ple, when w = 10 (sec) and s = 5 (sec), for a tuple with
timestamp of 9:00:43, we get W(9:00:43) = {[9:00:35,
9:00:45), [9:00:40, 9:00:50)} (see line 01 in Figure 3).
Then, for each window found above, g updates (based on
tuple t) the aggregate value that the window has maintained
so far (see line 02 in Figure 3). For replica consistency, we
let each window w expire only when it is certain that w will
no longer see a new tuple. As we did for Join, we assume
that each group g knows the set g.S of stream sources that
produce tuples belonging to g. Given this knowledge, group
g can find its current punctuation (line 04) and then safely
closes any window w whose expiration time precedes the
punctuation (lines 05-07). The timestamp of each output
tuple is set to the expiration time of the window because
this is the ideally earliest generation time of that tuple.
Aggregate with Count-Based Windows. This operator
maintains, for each group g, a window of w tuples that skips
every s tuples each time it moves. As the execution of this
operator is sensitive to the order of input tuples, this opera-
tor sorts the input tuples, before processing them, according
to a deterministic ordering rule (e.g., for deterministic or-
dering, this rule may break tie in timestamp by source ID).
Notice that this is to reconstruct a sequence of input tuples



When receives input tuple t belonging to group g
01. g.B ← g.B ∪ {t};
02. find g.punctuation as in lines 03 and 04 of Figure 3;
03. L← sort({t ∈ g.B : t.timestamp < g.punctuation})
04. while ∃(t← L.front())
05. count← count + 1;
06. for each w ∈ W(count)
07. g.windows[w].update(t);
08. for w ∈ g.windows such that w < count;
09. output w.get summary();
10. g.windows← g.windows− {w};

Figure 4. Agg. with Count-based Windows

that would appear if none of the upstream components in-
troduce latency. Figure 4 shows the detailed algorithm for
this operator.

3.4 Bounded Entirety

As described in Section 3.3, our stream-processing oper-
ators realize replica consistency as well as garbage collec-
tion, based on (source id, punctuation) annotated to each
tuple. Conceptually, such annotation turns a stream S into
sub-streams with a guarantee that the entirety of sub-stream
S[source id] is seen up to timestamp (punctuation−ε). In
this section, we discuss how we can preserve such a guar-
antee of bounded entirety at every operator in the query.

We first assume that tuples are initially timestamped in
the ascending order at data sources (or at entry points). In
this case, source id of each tuple t is set to the identifier of
the source and t.punctuation is set to t.timestamp. Notice
that streams formed in that way provide the guarantee of
bounded entirety. Hereafter, we describe how each operator
relays this guarantee from its input streams to output stream.
Filter & Map. These operators are FIFO (i.e., order-
preserving) unary operators. Thus, we set the punctuation
of each output tuple to the punctuation of the input tuple
Union. If inputs of this operator are commonly downstream
from the same stream source, the punctuation for a tuple is
set to the minimum among the most recent punctuations,
one for each input of the operator. Otherwise, we leave the
punctuation of each tuple as it is.
Join. Because each output tuple t is contributed by
two input tuples t1 and t2 (i.e., two source id are in-
volved), we introduce a new source id for each pair of
source ids. In other words, given such a mapping µ, we set
t.source id to µ(t1.source id, t2.source id). Notice that
tuples of origin at either t1.source id or t2.source id will
never have timestamps earlier than both t1.punctuation
and t2.punctuation. Therefore, we set t.punctuation to
min(t1.punctuation, t2.punctuation).
Aggregate. Output tuples of the same group are produced
in the ascending order of timestamps. Therefore, we assign
a new source id for each group and set t.punctuation of
each output tuple t to t.timestamp.

When receives tuple t through a replicated stream Si

01. R[t.source id][i]← t.punctuation;
02. w ← R[t.source id].get max punctuation();
03. if t.timestamp ≥ w
04. count[t][i]← count[t][i] + 1;
05. if count[t][i] > max count[t]
06. pass t to operator o;
07. max count[t]← count[t][i];

Figure 5. Duplicate Filtering

3.5 Duplicate Filtering

As described in Section 1, our replication model al-
lows each operator to obtain tuples from replicated input
flows. For such an operator to run as it would do with non-
replicated inputs, we need to filter out duplicate tuples as
they arrive. Conceptually, duplicate tuples are those that
arrive later than the corresponding tuples from other repli-
cated streams.

We implement duplicate filters based on the fact that
each replica is guaranteed to produce the same collection
of output tuples. As pointed out in Section 1.2, a duplicate
filter must be able to deal with different orders of replicated
streams as well as multiple occurrences of identical tuples
on data streams. Furthermore, it should not block data flow.

Figure 5 describes our algorithm for duplicate filtering.
Complying with the multiset-based notion of stream con-
tents (refer to Definition 1), we use a variable count[t][i] to
count how many times each tuple t appears on a replicated
stream Si (see line 04). If another replicated stream has al-
ready flowed t more often than Si, we filter out t (i.e., do not
pass t to the next the operator). Notice that the current tuple
t in this case is considered as duplicate because it arrived
later than some other (line 05). Lines 01-03 are to rule out
duplicates at an early stage, without using count variables.
They are based on the reasoning that if the punctuation of
another replicated stream succeeds the timestamp of tuple
t, that stream must have completed sending t (i.e., the cur-
rent tuple t is duplicate). Such a punctuation can also be
used to discard counters that will no longer be used after-
wards (details are omitted in Figure 5). Theorem 2 proves
the correctness of the duplicate filtering algorithm

Theorem 2 Let D(S1, S2, · · · , Sn) denote the sequence
of tuples that duplicate filter D has output from streams
S1, S2, · · · , Sn. If those streams are consistent with each
other, D(S1, S2, · · · , Sn) is also consistent with those
streams (i.e., D(S1, S2, · · · , Sn) ≡ Si for all 1 ≤ i ≤ n).

Proof: It is sufficient to prove that D outputs each tuple t
count(t;Si) times. Let m := count(t;Si). (1) if m = 0,
none of the streams {Si} contains tuple t. Therefore, D
does not output t. (2) For m > 0, without loss of generality,
let stream S1 pass its mth instance of t to D earlier than any
other stream. Since t.punctuation ≤ t.timestamp, we get



01. G(Q)← {(q1, q2, · · · , qm) : qi ⊂ Q,
02. loadi + ∆loadi(qi) < αCi,
03. latency(S) < θ for any stream S related to (qi)

m
i=1

04. Find (q∗1 , q∗2 , · · · , q∗m) ∈ G(Q) such that

05. gain(q∗1 ,q∗2 ,···,q∗m)

cost(q∗1 ,q∗2 ,···,q∗m)
≥ gain(q1,q2,···,qm)

cost(q1,q2,···,qm)
,∀(qi) ∈ G(Q)

06. where gain(qi) := ∆Ulat(qi) ·∆Urel(qi),
07. cost(qi) :=

Pm
i=1 ∆loadi(qi)Pm

i=1 (αCi−loadi(qi))
· ∆B(qi)

αB̂−B
.

Figure 6. Replica Deployment

that R[t.source id][1] ≤ t.timestamp (refer to line 01 in
Figure 5). As other streams will flow t later, we also get
that R[t.source id][i] ≤ t.timestamp for all 1 < i ≤ n.
Thus, w ≤ t.timestamp (line 02). Then, it is easy to see
that D will output t (lines 03-06). Also note that this is
the mth output of t because, by the induction hypothesis, D
must have output t, (m− 1) times before. D then sets both
count[t][1] and max count[t] to m. It is easy to see that
D will filter out t afterwards because, for all 1 < i ≤ n,
count[t][i] cannot be larger than max count[t] = m.

4 Replica Deployment

In this paper, we assume that servers are grouped into
logical clusters. We also assume that servers {Si}m

i=1 in
a group G elect a coordinator that keeps track of the CPU
utilization as well as the network utilization of them. Here-
after, using the algorithm in Figure 6, we sketch our algo-
rithm for replicating operators in query network Q. We de-
note a replica deployment plan with (q1, q2, · · · , qm). Each
qi ⊂ Q represents the operators that server Si will execute.

Our first criterion for replica deployment is that the de-
ployment plan must be feasible. In other words, the replica
must not overload any server in the system. We represent
this condition as loadi + ∆loadi(qi) < αCi (see line 02),
where loadi is the current load of server Si and ∆loadi(qi)
is the the expected amount of load that will increase when
Si runs qi. Ci represents the processing capacity of server
Si and α < 1 is a constant to have headroom in CPU avail-
ability. If a server becomes overloaded, the sever may aban-
don replicas selectively (e.g., those less important than oth-
ers or those more replicated than others).

We also note that the replica to deploy must not be hin-
dered by slow communication paths. In other words, for
any data stream S related to the replica, the transmission la-
tency latency(S) must be kept low (line 03). In Figure 6,
G(Q) represents the theoretical collection of all feasible de-
ployment plans.

As pointed out in Section 1.2, replica deployment should
be done carefully, while considering both the gain in terms
of performance and reliability, as well as the cost of us-
ing more network and computation resources. We use end-
to-end latency as the main metric for system performance.
However, as this quantity usually has a long tailed distri-

bution [14] (also refer to Figure 8), we use a representa-
tive value with cutoff (e.g., average under pth percentile).
For a replica deployment plan (q1, q2, · · · , qm), we first es-
timate how much latency the replica will reduce in terms of
the metric described above. Then, we evaluate the gain in
performance, while also considering the popularity of the
replica (i.e., how many users will eventually benefit from
the replica). In Figure 6, ∆Ulat(qi) represents this esti-
mated gain in performance.

We also assume that users are tolerant to latencies only
to a certain point (e.g., latencies of 10 seconds or more im-
ply the failure of service, for whatever reasons they appear).
Based on this, we define reliability as the probability that
latencies remain under the threshold. We also estimate the
benefit ∆Urel(qi) in terms of reliability for the case of de-
ploying replica (q1, q2, · · · , qm).

Finally, we capture the cost of adding a replica by con-
sidering the increase in utilization for both the computation
and network resources, relative to their current availability.
In Figure 6, ∆loadi(qi) and ∆B(q1, q2, · · · , cm) denote the
estimated increase in the processing load of server Si due
to running qi and the increase in network utilization due to
the message traffic for replica (q1, q2, · · · , qm), respectively.
αCi − loadi(qi) represents the current CPU availability of
server Si. αB̂ −B represents the current bandwidth avail-
ability of the network.
Discussion. As Figure 6 shows, our replica deployment
algorithm chooses a deployment plan with the highest
“gain/cost” ratio. We can see that this algorithm will pre-
fer operators sensitive to slow input flows (e.g., Join) over
other operators (e.g., Union) as the former will get more
benefit from replicated input flows than the latter (refer to
Figure 8 for the sensitivity of these operators to slow input
flows). We can also see that the algorithm will favor popu-
lar operators. This also means that upstream operators are
in general more preferred to downstream operators because
they affect more end-users. We are currently looking for a
heuristic that efficiently finds the set of operators that will
lead to the highest benefit, relative to the overhead of repli-
cating them.

5 Experimental Results

In this section, we present preliminary results obtained
from experiments on PlanetLab machines [2]. For all the
experiments that we conducted, we used the servers illus-
trated in Figure 7. In more detail, each server at MIT, UW,
UCSD, and UFL instantiated two stream generators, one
that reports the server’s CPU utilization every half a second
and the other that reports the ping latency from the server to
other servers again every half a second. The load readings
of those servers were sent to a Union ∪1 at WISC while the
latencies to remote servers were sent to another Union ∪2

at Purdue. Then, the Join operator 1 at OSU correlated the
load readings and latencies, based on both timestamp and



Figure 7. Experimental Setup

0.095 0.15 0.2 0.3 0.4 0.5
0

20

40

60

80

100

latency (sec)

pe
rc

en
til

e

 

 

input 1
input 2
Union
Join

Figure 8. Sensitivity to Slow Input Streams

server ID. Notice that we set up the experiment similarly
to the example in Section 1 except that input tuples were
generated every half a second.

5.1 Sensitivity to Slow Inputs

In the first experiment, we study the sensitivity of stream
processing operators to slow inputs. Figure 8 illustrates the
results for two representative multi-way operators, namely
Union and Join. In the experiment, we placed these oper-
ators at OSU and let both of them receive inputs from ∪1

and ∪2. In the figure, a point (x, y) on a curve represents
that the latency of x seconds is the yth percentile, for the
output tuples that have appeared for an hour on the speci-
fied stream. For example, the figure shows that the smallest
latency at the output of Union was 95 (msec) whereas that
at the output of Join was 150 (msec). It also shows that the
median latencies of them, however, get closer to each other
(notice that the 50th percentile means the median latency).
In summary, we can see that the pace of Join is indeed de-
termined by the slowest input (i.e., input 2 in the figure).
This is because this operator cannot produce an output tu-
ple until both the contributing input tuples arrive, one from

40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

time (sec)

la
te

nc
y 

(s
ec

)

 

 

no replication
replication
synchronization
deterministic

Failover Latency

Latency due to
Load Spike

Failure

Figure 9. Latency under Different High-
Availability Techniques

each input. By contrast, Union is less sensitive than Join
in the sense that it immediately outputs whichever comes
first. Note that replicating the data flow to input 2 may al-
low those operators output at earlier times than before. If
that happens, Join will get more benefit than Union.

5.2 Comparison of Techniques for Reliable
Stream Processing

In this section, we compare techniques proposed for re-
liable stream processing. In Figure 9, the curve for “no
replication” represents how the latency varies over time for
the tuples coming out of 1 at OSU. In the experiment, we
crashed the stream processing engine at WISC at time 60.
Therefore, 1 does not produce output tuples as it no longer
receives input tuples from ∪1. By contrast, other curves
show that reliability techniques indeed protect stream pro-
cessing from failure. The curve for “replication” shows that
our replication technique, as expected, provides reliability
against failure but also reduces latency. For this case, we
set up a butterfly network where replicas ∪′1 and ∪′2 of ∪1

and ∪2, respectively, are located at Purdue and WISC. No-
tice that the latency increases after failure at time 60 as 1

no longer can benefit from replication due to the loss of ∪1

and ∪′2. In Figure 9, “synchronization” corresponds to the
case where primary ∪1 and its backup ∪′1 (and also ∪2 and
∪′2) enforce an identical ordering between them by use of
determinants (refer to Section 2.2 and also [12]). In this
case, each primary holds output tuples until it turns out that
the related determinants have arrived at the backup, while
in principle trading off reliability against latency. At time
60, the curve for this case drops down to that for “replica-
tion” because ∪′1 and ∪2 at Purdue do not have partners to
synchronize with. Finally, “deterministic” shows the cost in
latency incurred by the method in [5]. In this case, as de-
scribed in Section 2.2, both primary ∪1 and its backup ∪′1



(and also primary ∪2 and its backup ∪′2) run deterministi-
cally (including the order) by holding tuples until they as-
sure an identical ordering of those tuples. In the figure, the
increase in latency is mainly due to the interval of generat-
ing input tuples at the remote data sources. For this reason,
this extra latency will decrease as the data rate increases
(i.e., the interval decreases). However, such a reduction
in latency will eventually be bounded by the latency of the
slowest input to the Unions.

In summary, our replication-based approach improves
both performance as well as reliability when extra resources
are available. This sharply contrasts with previous ap-
proaches that can only trade off reliability against perfor-
mance. As illustrated in Figure 9, our approach does not
introduce failover latency.

6 Conclusion

In this paper, we introduce a replication-based approach
to achieve fast and reliable stream processing over wide
area networks. Our technique provides replica transparency,
guaranteeing that replicated processing, regardless of fail-
ures and congestions, will produce what non-replicated pro-
cessing would produce if all the system components are free
from failure and latency. In our approach, replicas compete
with each other to make the earliest impact, while guaran-
teeing that they will eventually produce the same collec-
tion of tuples. These replicas, however, can run in differ-
ent orders so as to avoid the overhead of other previous ap-
proaches. Our technique can merge replicated streams into
a single stream, while filtering out duplicates. If required
by the end application, it can also be instructed to restore
the order of the stream that non-replicated processing would
produce.

The contributions of this paper include: (1) a model for
replica transparency, (2) re-designed stream processing op-
erators that comply with the replication model, (3) a mech-
anism for duplicate filtering, (4) discussion on deploying
replicas, and finally (5) preliminary experimental results.

We currently have a prototype system that enables man-
ual allocation of stream-processing operators over Planet-
Lab machines. We intend to extend the system while im-
plementing the replica placement strategy described in the
paper. We also plan to conduct a comprehensive set of ex-
periments to characterize the run-time behavior and perfor-
mance of our approach.

References

[1] http://www.ntp.org.
[2] http://www.planet-lab.org.
[3] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A new model and architecture for data stream man-
agement. The VLDB Journal, Sep 2003.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. of 2002
ACM PODS, June 2002.

[5] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stone-
braker. Fault-tolerance in the borealis distributed stream pro-
cessing system. In Proc. of the 2005 ACM SIGMOD, June
2005.

[6] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams: A new class of data management ap-
plications. In Proc. of the 28th VLDB, Aug. 2002.

[7] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
wan service availability. In In Proc. of the 3rd USITS, San
Francisco, CA, pages 97–108, 2001.

[8] S. Chandrasekaran, A. Deshpande, M. Franklin, and
J. Hellerstein. TelegraphCQ: Continuous dataflow process-
ing for an uncertain world. In Proc. of the 1st CIDR, Jan.
2003.

[9] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. In Proc. of the 1st CIDR, 2003.

[10] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

[11] J.-H. Hwang, , U. Çetintemel, and S. Zdonik. A cooper-
ative, self-configuring high-availability solution for stream
processing. In Proc. of the 23th ICDE, 2007.

[12] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-availability algorithms
for distributed stream processing. In Proc. of the 21th ICDE,
2005.

[13] R. N. Murty and M. Welsh. Towards a dependable archi-
tecture for internet-scale sensing. In 2nd Workshop on Hot
Topics in Dependability (HotDep’06),, 2006.

[14] V. Paxon. End-to-end routing behavior in the internet. IEEE
ACM Transactions on Networking, 5(5):601–615, 1997.

[15] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly-
available, fault-tolerant, parallel dataflows. In Proc. of the
2004 ACM SIGMOD, June 2004.

[16] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
Franklin. Flux: An adaptive partitioning operator for contin-
uous query systems. In Proc. of the 19th ICDE, Mar. 2003.

[17] R. P. Stanley. Enumerative Combinatorics. Cambridge Uni-
versity Press, 1997.

[18] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager.
In Proc. of the 29th VLDB, Aug. 2003.

[19] P. Tucker, D. Maier, T. Shreard, and L. Fegaras. Exploit-
ing punctuation semantics in continuous data streams. IEEE
TKDE, 15(3):555–568, 2003.

[20] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. Zdonik. Pro-
viding resiliency to load variations in distributed stream pro-
cessing. In Proc. of the 32th VLDB, Sept. 2006.

[21] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distri-
bution in the borealis stream processor. In Proc. of the 21th
ICDE, Mar. 2005.


