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Abstract

Distributed applications can fail in subtle ways that
depend on the state of multiple parts of a system. This com-
plicates the validation of such systems via fault injection,
since it suggests that faults should be injected based on
the global state of the system. In Loki, fault injection is
performed based on a partial view of the global state of a
distributed system, i.e., faults injected in one node of the
system can depend on the state of other nodes. Once faults
are injected, a post-runtime analysis, using off-line clock
synchronization, is used to place events and injections
on a single global timeline and to determine whether the
intended faults were properly injected. Finally, experiments
containing successful fault injections are used to estimate
the specified measures. In addition to reviewing briefly the
concepts behind Loki and its organization, we detail Loki’s
user interface. In particular, we describe the graphical
user interfaces for specifying state machines and faults, for
executing a campaign, and for verifying whether the faults
were properly injected.

Keywords : Distributed system validation, Experimental
evaluation, Fault injection, State-driven fault injection.

1. Introduction

The increasing use of distributed systems to build criti-
cal applications motivates the development of techniques to
validate their dependability. Fault injection is an important
and effective way to validate such systems. However, fault
injection of distributed systems is a difficult and challenging
task. The reasons for this are as follows. The behavior of a
distributed system depends on the state changes and events
occurring in the system’s different processes. Thus, the
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faults occurring in such a system can depend on its global
state. This necessitates that, while injecting faults in a sys-
tem, the fault injector keep track of its global state to inject
realistic faults and/or errors. One approach would be to syn-
chronize at all state changes in the system, but this would be
far too intrusive, and might affect the behavior of the system
in unacceptable ways. The alternative to synchronization is
to use state change notifications to keep track of the global
state. Though these notifications are less intrusive than syn-
chronization, fault injections based on notifications could
occur in improper states, since the system could change
state between notifications. Measurements based on such
improper injections are not valid.

A fault injector for distributed systems should thus be
able to inject faults based on the global state of the system,
and at the same time not be too intrusive to the system un-
der study. It should also be able to determine whether a
particular set of faults were injected as intended, so mea-
sures can be calculated using only the intended injections.
With these issues in mind, we have developed a global state-
driven fault injector, called Loki, for distributed systems.
Loki injects faults in a distributed system based on a partial
view of its global state obtained using notifications, and can
determine, using a post-analysis, whether each fault was in-
jected as intended. In this paper, we describe the features
of the Loki fault injector and how to use it for conducting
a fault injection campaign. We also provide an overview of
Loki concepts and the Loki runtime architecture.

Other fault injection and measurement tools, includ-
ing EFA [6], Orchestra [5], SPI [2], NFTAPE [8], DOC-
TOR [7], and CESIUM [1], have also focused on distributed
systems. These tools work well for their intended purposes.
However, Loki is unique in that it supports fault injections
based on the global state of the system combined with a
powerful language for defining measures. For a comparison
of these tools with Loki, see [4].

The remainder of the paper is organized as follows. Sec-
tion 2 presents a brief description of the concepts underlying
Loki, namely, partial view of the global state, and off-line
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clock synchronization. Section 3 provides an overview of
the Loki runtime architecture. Sections 4, 5, and 6 illustrate
the use of Loki for performing a fault injection campaign.
In particular, Section 4 describes the specification of a cam-
paign using the Loki interface; Section 5 details the execu-
tion of a campaign using the Loki interface; and Section 6
explains off-line analysis of the execution results and how to
obtain the required measures from them. Finally, Section 7
presents our conclusions.

2. Review of Loki concepts

In this section, we briefly review the basic concepts of
Loki, namely, the partial view of the global state and off-line
clock synchronization. Additionally, we introduce various
terms that are used in the rest of the paper. More details of
what is presented here can be found in [4].

The concept of state is fundamental to Loki. We assume
that at the desired level of abstraction (for fault injection),
the execution of a component of the distributed system un-
der study can be specified as a state machine. The global
state of the system is the vector of the local states of all of
its components. During the fault injection process, it may be
necessary to inject faults in a component based on the state
of other components of the system. It can be seen that to do
this, it is not necessary to keep track of the complete global
state of the system at all times; instead, it is sufficient to
track an “interesting” portion of the global state that is nec-
essary for the injection of the required faults. This interest-
ing portion is called the partial view of the global state, and
its selection depends on the particular system under study
and the faults to be injected.

In Loki, the distributed system (under study) is divided
into basic units (i.e., processes) from each of which state
information is collected and into each of which faults are
injected. Such a basic unit of the distributed system along
with the Loki runtime attached to it is called a node. The
Loki runtime maintains the partial view of the global state
for each of these nodes and injects faults in them when nec-
essary. It also records state changes and fault injections
along with their occurrence times. The runtime only uses
the necessary state change notifications between nodes to
keep track of the partial view of the global state. Also, to be
as non-intrusive to the system as possible, the runtime does
not block the system while these notifications are in transit.
This means that the system could change state while the no-
tification is in transit, implying that the partial view could
sometimes be out-of-date. This could lead to incorrect fault
injections and hence incorrect measures.

To avoid such errors, Loki performs a post-runtime
check on every fault injection to determine whether it has
indeed been performed in the desired state (an off-line
check is used to avoid the expense and intrusiveness of an

on-line check). Only the correct fault injections are then
used in computing the measures. The post-runtime check
involves placing the local times from each of the nodes into
a single global timeline and then determining whether the
fault was injected in the right state. Loki uses an off-line
clock synchronization algorithm to translate the local times
to a global timeline. Synchronization messages, which are
used by this algorithm, are generated by the runtime be-
fore and after the application execution. These messages
are non-intrusive, since they are generated when the appli-
cation is not executing. This algorithm assumes that the
drifts of the system clocks are linear. A more detailed ex-
planation of the algorithm, along with its use in Loki, can
be found in [4].

3. Overview of Loki runtime architecture

In this section, we provide a short overview of the Loki
runtime architecture. The runtime executes along with the
distributed system and maintains the partial view of the
global state necessary for fault injections. It also performs
fault injections when the system transitions to the desired
states and collects information regarding state changes,
fault injections, and their occurrence times.

As shown in Figure 1, there is a Loki runtime for each
of the nodes in the distributed system. The runtime can
be divided into two main parts: one that is independent
of the system under study and one that is dependent on it.
The state machine, state machine transport, fault parser,
and recorder constitute the system-independent part, while
the probe is the system-dependent part. The state machine
keeps track of the partial view of the global state necessary
for its node. It receives local state change notifications from
the probe, and state change notifications of remote nodes
from remote state machines. The state machines of differ-
ent nodes send state change notifications to each other using
the state machine transport. The recorder records the state
changes and fault injections along with their times of oc-
currence. Boolean fault expressions are used to trigger fault
injections. The fault parser parses these fault expressions on
every state change and instructs the probe to inject the corre-
sponding fault when an expression is satisfied. The probe in
Loki has to be implemented by the system designer. The de-
signer can either select a probe among the pre-implemented
probes in Loki, or develop his/her own probe. Therefore,
the designer will have considerable freedom in selecting the
type of faults to inject into the system. The probe monitors
the local node for state transitions and notifies the state ma-
chine of them. Also, it is the probe that performs the actual
fault injections when the fault parser instructs it to do so.
For more details regarding the runtime, its components, and
their functions, refer to [4].

The evaluation of a system using Loki can be divided
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Figure 1. Loki runtime architecture

into five main phases, namely,

1. An initial synchronization-message-passing phase,

2. A fault injection and observation collection phase,

3. A second synchronization-message-passing phase,

4. Determination of experiments with properly injected
faults, and

5. Computation of measures using these experiments.

In the remainder of this paper, we show how a system
designer can use Loki to evaluate a system, by providing in-
formation about the five phases of evaluation in Loki. More
specifically, we describe specification and execution of fault
injection campaigns and off-line processing using the Loki
graphical user interface.

4. Campaign specification

Loki is based on the concept of a fault injection cam-
paign. A fault injection campaign for a distributed system is
made up of one or more studies. At the study level, the sys-
tem is described using state machines, which are defined by
a state machine specification and a fault specification. Each
study consists of a set of experiments, each of which is one
run of the distributed application along with the fault injec-
tions corresponding to the study. Campaigns can be defined
using Loki’s graphical user interface, the Loki interface.

The Loki Manager, shown in Figure 2, controls the main
functionality of the Loki interface. The panel of buttons
along the bottom of the Loki Manager allows a campaign to
be imported, exported, created, deleted, or copied. After a
campaign is created, it can be specified with the “Edit Cam-
paign” button. This launches a Campaign Manager window,
which is similar to the Loki Manager, using which studies
for the selected campaign can be created, deleted, copied,
or edited. If a study is edited, a Study Manager is launched,
which is also similar to the Loki Manager. Three parameters

Figure 2. The Loki manager

of the study must be specified in the Study Manager: the
number of experiments in the study, the time between ex-
periments, and the application timeout. The Study Manager
also allows state machines to be created, deleted, copied,
and edited. After the state machines for a study have been
created, each state machine must be defined with a state
machine specification and a fault specification, and the dis-
tributed system must be instrumented for the study.

4.1. State machine specification

State machine specification is done using the State Ma-
chine Editor which can be seen in Figure 3, and is launched
from the Study Manager. The State Machine Editor’s “File”
menu allows the user to save and close the editor. The
“Edit” menu provides undo functionality for the state ma-
chine canvas and the ability to set the state machine’s prop-
erties. The third menu item is the “Panel” menu; and it
determines the control mode to be used when editing on
the state machine canvas. The last menu item is the “Panel
Size” menu, which allows the size of the canvas to be in-
creased or decreased.

The three basic components that can be placed on the
state machine canvas are states, event-triggered state transi-
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Figure 3. The state machine editor

tions, and comment boxes. States are represented on the
canvas by named nodes. The state transitions are repre-
sented by connection lines between two states. The con-
nection lines are associated with events that trigger the tran-
sitions. The comment boxes are text areas that can be used
to note additional information about the state machine. The
type of components that are placed on the canvas is deter-
mined by the control mode that is selected from the “Panel”
menu, e.g., in the “State” mode, states can be placed on the
canvas. When a state is created, it is given a name, and a list
is designated of state machines that should be notified when
the state machine enters the state. This list helps the state
machines to maintain the partial view of the global state.
When a state transition is created, the event that triggers the
transition must also be provided by the user.

4.2. Fault specification

After the state machines have been specified, the fault
specifications should be defined. The Fault Specification
Editor is launched from the Study Manager at the same
time as the State Machine Editor. It shows a listing of all
the faults that should be injected into the state machine’s
corresponding application. The fault specification of each
fault consists of three parameters. They are the fault name,
a fault expression that determines when the fault should be
injected, and an indication of whether the fault should be in-
jected only the first time that the expression is true, or every
time that the expression becomes true. As described ear-
lier, the actual fault injection code is called a “probe.” The
method for specifying a probe is given in Section 4.3.

The main part of the fault specification is the fault
expression that triggers the fault. The expression represents
some partial view of the global state in the distributed
system. The variables in the fault expression are (state

machine:state) pairs. The expressions make use of ‘&’ for
an AND, ‘|’ for an OR, and ‘˜’ for a NOT. An example
expression is:

((StateMachine1:State5)&(˜(StateMachine3:

State3)))

This indicates that a fault should be injected when
StateMachine1 is in State5 and StateMachine3 is not in
State3.

4.3. Instrumenting the distributed system

After the state machine and fault specifications in a study
have been defined, the application corresponding to each
state machine must be instrumented. The Loki runtime is
implemented in C++; therefore, the instrumented portion
must also be programmed in C++. There are three steps to
instrument an application:

� Probe Implementation

� Event Notification

� Use of appMain()

A probe must be defined for the application, and its in-
jectFault() function must be implemented. This func-
tion takes in a fault name (which corresponds to the name
given in the fault specification), implements injection of the
fault, and returns the time when the fault is actually injected.
By having the Loki user write the injectFault() code,
Loki is capable of providing a high degree of freedom in
the types of faults injected. The probe should also indicate
to the state machine the occurrence of events that were spec-
ified in the state machine specification. This is done using
the notifyEvent()method of the state machine and pass-
ing the event name and the time at which the event occurred
as parameters. Another requirement is that appMain(), in-
stead of main() must be used to start the application.

The instrumentation can be performed both when the ap-
plication’s source code is available and when it is not. If it
is available, then the probe can be integrated into the ap-
plication code. notifyEvent() and injectFault() can
directly be a part of the application’s source code. For this
to be done, the application’s main() function should be re-
named to appMain(). If the source code is not available,
the probe can be used as a monitor for the application. The
probe’s appMain() function is used to start the applica-
tion, and it can monitor the application’s input and output
for events. These events are then communicated to the state
machine using the notifyEvent()method. The inject-
Fault() method can inject faults from outside the applica-
tion. The first approach provides more accurate event noti-
fication and fault injection, but it is more intrusive than the
second approach.
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Figure 4. The experiment manager

5. Campaign execution

After a campaign is fully specified, it can be executed.
To do this, the Experiment Manager, shown in Figure 4, is
launched from the Loki Manager. There are six parame-
ters in the top panel of the Experiment Manager that must
be set before a campaign is executed. The Loki runtime
passes synchronization messages for the off-line clock syn-
chronization as discussed in Section 2. These messages
are passed between all the hosts in the distributed system.
The first two parameters represent the number of synchro-
nization messages that should be passed before each exper-
iment, and the delay between those messages. The next two
parameters are similar, but correspond to synchronization
messages that are passed after experiments. The fifth pa-
rameter indicates the port number that the synchronization
messages should be passed on. The last parameter specifies
whether the synchronization messages are to be passed after
each experiment, or after each study.

Once all the parameters are set, the campaign can be exe-
cuted with the “Execute Campaign” button. It executes each
study one after another. Within each study it executes the
specified number of experiments, passing synchronization
messages as indicated above. During execution, the mid-
dle panel of the Experiment Manager indicates the current
study and displays the experiment’s progress. The bottom
panel indicates whether studies and experiments were suc-
cessfully executed.

6. Off-line processing

Off-line processing consists of two steps: campaign
analysis and measure estimation. The campaign analysis

Figure 5. Analysis window for an experiment

creates global timelines for the different experiments, and
determines whether the faults were properly injected. Mea-
sure estimation in Loki uses the results of these proper fault
injections to calculate statistically representative measures.

6.1. Campaign analysis

Two windows are used during campaign analysis: “Anal-
ysis,” which performs analysis computations for a campaign
and displays preliminary results for a study, and “Exper-
iment Analysis,” which shows the details for a particular
experiment. The conversion to global timeline is done only
once for each study. When the analysis is run for the first
time, the “Analysis” window is disabled, and a dialog box
shows the progress of the conversion to a global timeline. If
the conversion to the global timeline has already been per-
formed, the “Analysis” window allows the user to select a
study in order to obtain a report of how many faults were
correctly injected, incorrectly injected, and not injected at
all for each state machine in the study. The user can also
focus on one particular experiment of the study by clicking
the “Examine Analysis” button.

The “Experiment Analysis” window, shown in Figure 5,
presents detailed information on each experiment. The top
part of the window gives the clock synchronization results
for the different machines. For the meaning of these results,
refer to [4]. The second part of the window shows informa-
tion on each state of the selected state machine. Each entry
consists of the event name, the time in clock ticks, and an
indication of whether the time is an upper or lower bound of
the event. Note that a time instant on a local timeline, when
projected to the global timeline, becomes a time interval
defined by a lower and upper bound. Hence, there are two
entries for each event. The third part of the window shows
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all the occurrences of a fault in the selected state machine.
For each fault occurrence, there is an indication of whether
the fault was injected properly, not injected properly, or not
injected at all. The two bounds related to each fault are
also shown. The last part of the window shows the global
timeline for the given experiment. The first column indi-
cates the event type (state transition or fault injection). The
second column shows the state machine in which the event
occurred. If the event is a state transition, the third column
indicates the ending state of the state change, and the fourth
column indicates the event that triggered the transition. If a
fault was injected, the third column contains the fault name.
For both cases, the next column shows the time in clock
ticks, and the last column indicates whether the time shown
is a lower or upper bound.

6.2. Measure estimation

The goal of measure estimation in Loki is to provide a
mechanism to obtain statistically representative measures
which are interesting to the user. Loki uses a flexible lan-
guage to describe these measures. The definition of mea-
sures is done at two levels, namely, at the study level and at
the campaign level.

Each of the measures specified at the study level con-
sists of an ordered sequence of (subset selection, predicate,
observation function) triples, and is defined for a particu-
lar study. The subset selection is used to select a subset of
experiments based on the observation function outcomes of
the previous triple. Note that the subset selection of the first
triple would select all the experiments of the study. The
predicate is a Boolean expression containing queries of the
form (state machine, state, time), and (state machine, start
state, event, time), combined with AND, OR, and NOT. The
outcome of the predicate applied to the global timeline of
an experiment is called the predicate value timeline and is a
combination of impulses and steps. The observation func-
tion is defined on the predicate value timeline and its out-
come is called the observation value. The above triples are
applied, in the specified order, to each of the global time-
lines in the study to obtain the corresponding final observa-
tion values.

Measures at the campaign level are obtained by collating
the final observation values of different experiments. De-
pending on the method of collation, and the observations
used during collation, statistically significant results such as
the first four moments, and percentiles for various �-levels
can be computed for these measures.

7. Conclusions

This paper describes Loki, a state-based fault injector for
distributed systems. Loki is unique in its ability to inject

faults based on a partial view of the global state of a dis-
tributed system and its ability to check afterwards whether
the faults were correctly injected. Moreover, Loki provides
a powerful language to define sophisticated measures. We
have shown in this paper how a user can, by using the Loki
interface, specify the fault injection campaign and the faults
to be injected, execute a campaign, and analyze the obtained
results to verify whether the faults were properly injected.
Preliminary performance results using a simple example [4]
showed that, depending on the application and the OS, high
probabilities of correct fault injection can be expected for
states in which the application will remain for at least sev-
eral OS time-slices.
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