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Abstract
Support for application deployment and monitoring in large-
scale distributed systems such as PlanetLab remains in its
early stages. While a number of solutions exist for specific
subtasks of deployment and monitoring, these tools suffer
from a lack of integration. Most tools were developed specif-
ically to deploy and manage a particular service or applica-
tion on a single platform and were not designed to be general
enough to support different environments. In this paper, we
consider three different classes of PlanetLab applications to
distill a set of requirements for a general application-control
infrastructure. We then discuss initial experiences and lessons
learned during the development and PlanetLab deployment of
Plush, a tool designed to manage applications running over
large-scale distributed systems.

1 Introduction
Emerging distributed computation infrastructures such as
PlanetLab [2, 18] and the Grid [8] hope to support applica-
tions that simultaneously run on hundreds or even thousands
of heterogeneous physical machines distributed across the In-
ternet. Today, however, running even simple jobs across such
infrastructures is typically a cumbersome, manual, and error-
prone process. A number of tasks must be completed be-
fore starting an application, including resource discovery, re-
source allocation, file distribution, and environment config-
uration. Finally, once the application starts up, its execu-
tion must be carefully monitored and controlled. Our ex-
perience indicates that researchers regularly expend a great
deal of time and effort deploying and managing their appli-
cations, considerably complicating the end goal of conduct-
ing research experiments or maintaining an Internet service.
While a number of tools exist to independently address some
of the challenges, their overall utility is limited by their lack
of integration.
There are two options for running individual applications

across heterogeneous distributed environments like Planet-
Lab. Currently, a large number of PlanetLab applications ad-
dress deployment and monitoring in an ad hoc, application-
specific fashion. Such custom implementations can per-
fectly match each application’s semantics and requirements
while providing high performance in certain environments.
The major challenge, of course, is retooling the infrastruc-
ture when application requirements or PlanetLab conditions
change. A second, alternate approach develops a runtime en-
vironment that exports a common set of abstractions to ser-

vice the requirements of a broad range of applications.
One benefit of the latter approach is masking the often

significant complexity associated with executing, configur-
ing, and managing large-scale distributed computations from
end users who would otherwise have to relearn the black
art of reliably deploying and maintaining networked systems
across asynchronous and failure-prone distributed environ-
ments. A second benefit is separating the specification of a
distributed computation—a high-level description of what re-
sources a particular application requires or desires, how the
application should react to failures, and its individual phases
of computation—from the application logic that actually im-
plements the computation. In this manner, we can avoid tools
that ”hardwire” knowledge of a particular distributed environ-
ment’s configuration such as the characteristics of individual
hosts or network links. These attributes inherently change
over time, resulting in brittle tools.
While both approaches have merit in different scenarios

and settings, in this article we explore the benefits of the sec-
ond approach. We present Plush, a framework of components
that, when taken together, provide a unified environment to
support the distributed application design and deployment life
cycle. Plush users describe distributed applications using an
extensible XML specification language. The language allows
users to customize various aspects of the deployment life cy-
cle to fit the needs of an application. This functionality can
be used, for example, to specify a specific resource discovery
or allocation tool to use during application deployment.
Once an application is up and running, Plush monitors it

for failures or application-level errors for the duration of its
execution. Upon detecting a problem, Plush can perform a
number of user-configurable actions, such as restarting the
application, automatically reconfiguring it, or even searching
for alternate resources. For applications requiring wide-area
synchronization, Plush provides a number of efficient syn-
chronization primitives. In particular, Plush provides two new
barrier semantics, which relax traditional barrier semantics
for increased performance and robustness in failure-prone en-
vironments.
The remainder of this article reports our experiences de-

signing and building Plush. Section 2 describes three com-
mon classes of PlanetLab applications. Motivated by these
classes, Section 3 enumerates requirements for a general-
purpose application control infrastructure. Section 4 de-
scribes the architecture of Plush in more detail. In Section 5,
we outline some of the important lessons we have learned



during the development of Plush. We discuss related work in
Section 6 before concluding in Section 7.

2 Usage scenarios
We begin by exploring three different classes of applications
that often run on PlanetLab: a short-lived distributed applica-
tion, a continuously running Internet service, and a Grid-style
parallel application.

2.1 Short-lived applications
One of the most common uses of PlanetLab is to interactively
execute short distributed computations. Applications range
from the simple, where a novice wishes to gain experience
with PlanetLab applications, to the complex, where experi-
enced users wish to test new protocols. Short-lived appli-
cations like these typically run for a few days or less and
are closely monitored by the user. For example, suppose a
user wants to test a file-distribution protocol on 50 PlanetLab
nodes scattered around the world. The user would have to
gain access to PlanetLab, find 50 machines capable of run-
ning the application, install the software on those 50 ma-
chines, run the application, and collect any output files pro-
duced for analysis. We examine this process in more detail.
To then test this new protocol on PlanetLab, the user must

first gain access to PlanetLab resources. Authentication on
PlanetLab is based on public-key cryptography, and access
to PlanetLab machines is achieved through SSH login using
RSA authentication. The user must register with PlanetLab
Central (PLC) to obtain a user account and create an SSH key
pair. Once the user uploads a public key to the PLC database,
she can associate her account with a PlanetLab slice. A slice
is a named set of distributed PlanetLab resources. It forms
the basis for both resource allocation and isolation. The user
binds the slice to a number of physical machines (e.g., using
a Web interface), which causes the user’s public key to be
copied to the nodes and the user to be authorized for login to
the machines.
The next step is to find a suitable set of machines. Re-

source discovery tools like SWORD [15] can be used to help
streamline the process. For our example, the user may issue
a SWORD query for 50 machines with fast processors, large
amounts of free memory, and high pairwise bandwidth. Once
a set of machines has been identified, the user must transfer
any required software to the 50 machines using a file trans-
fer protocol such as scp, Bullet [14], or CoBlitz [17]. The
executable must then be started on all 50 machines at approx-
imately the same time. This is accomplished by connecting to
each machine separately via SSH and then executing the ap-
propriate command. Typically, once the execution completes,
a set of output files must then be copied to a central location
for analysis.

2.2 Long-lived Internet services
Along with short computations, PlanetLab is also used to de-
ploy services that run continuously. Current PlanetLab ser-
vices include CoDeen [16], Coral [9], and OpenDHT [20],
among others. Long-running services must be robust to a va-
riety of failures that short-lived applications generally do not

encounter. Hence, in addition to the tasks described above
for short-lived applications, users who manage services must
perform additional tasks to maintain the service over an ex-
tended period of time. These network services are expected
to run for several months or longer and are often not moni-
tored as closely as those with shorter lifetimes. Further, since
these applications provide a service to others, availability is
critical.
Suppose a user wants to deploy a new resource discovery

service on PlanetLab. The service aims to run on as many
PlanetLab machines as possible to provide accurate informa-
tion to users. To deploy such a service, a user must go through
the same process as described in the previous section for es-
tablishing authentication, adding nodes to a slice, finding a
suitable set of resources, transferring software, and starting
the executable. However, users running short-lived applica-
tions often pick powerful machines that have good connectiv-
ity, i.e., low-latency and high-bandwidth connections. When
running a service on a larger number of machines, a user is
subjected to slow or lossy connections in addition to more
desirable low-latency, high-bandwidth links. Further, some
machines may have slower processors and less free memory.
Thus, choosing nodes to host an Internet service often hinges
on avoiding nodes that frequently perform poorly over rela-
tively long time periods rather than choosing nodes that per-
form well at any given point in time [19].
Once the service is running, the user monitors her pro-

cesses for failures. When running short-lived applications,
users often treat a failure as an aberrant condition and dis-
card the results of the run. For long-running services, failures
are the rule rather than the exception and, therefore, must be
addressed as such. Thus, if a failure does occur, the user at-
tempts to restore the service as quickly as possible to maintain
high availability.

2.3 Grid-style parallel applications
Though there are many different types of Grid-style applica-
tions, one of the most common usage scenarios is harnessing
resources at one or more sites to execute a computationally
intensive job. A typical Grid application often involves gath-
ering data from specific sites, and then processing this data in
a compute-intensive application to produce the desired result.
Many Grid applications are highly parallelizable: rather than
running on a single machine with one or more processors,
the computation is split up and run across several machines
in parallel. Parallelization has the potential to increase the
overall performance substantially, but only if each machine
involved makes progress. For a researcher running a Grid ap-
plication, choosing the appropriate set of machines is crucial
to achieving good throughput. Experience shows this can be
quite difficult on PlanetLab.
For example, suppose a physicist wants to run EMAN [6]

on PlanetLab. EMAN is a publicly-available software pack-
age used for reconstructing 3-D models of particles using 2-
D electron micrographs. The program takes a 2-D micro-
graph image as input and then runs a “refinement” process on
the image to create a 3-D model. The refinement process is



Figure 1: Basic requirements and flow of control for a dis-
tributed application control infrastructure.

run repeatedly until yielding a result with the desired quality.
Each iteration of refinement consists of both computationally
inexpensive sequential computations and computationally ex-
pensive parallel computations. For multiple iterations of re-
finement, the entire cycle is repeated.
As in the other applications, the researcher running EMAN

has to gain access to PlanetLab, find suitable resources, dis-
tribute the software and data files, install the software, and
start the executable. Unlike the short-lived application or the
long-running service described above, however, the perfor-
mance of EMAN is greatly affected by the computational re-
sources available on the machines hosting the parallel com-
putations. Thus, with each iteration of the refinement pro-
cess, the researcher running the application wants to use the
set of machines that has the most available computational re-
sources. Further, if a machine fails or suddenly becomes over-
loaded during the refinement process, the machine should be
replaced by another with more available resources. In par-
allel applications such as EMAN, the rate of completion for
individual tasks is often delayed by a few slow machines or
processors. Detecting and recovering from these bottlenecks
is both difficult and essential to achieve high performance in
parallel applications.

3 Requirements
In the previous section we investigated the process of execut-
ing three different classes of distributed applications. Though
the low level details for managing the applications were dif-
ferent, at a high level the requirements for each example were
largely similar. Rather than reinvent the same infrastructure
for each application separately, we set out to identify com-
monalities across all three classes of distributed applications,
and build an application control infrastructure that supports
all three types of applications and environments. Based on
the discussion in the previous section, we now extract some
general requirements for a distributed application control in-
frastructure. Together, these requirements define the typical
flow of control for any distributed application, as shown in
Figure 1.
Application Specification. The application specification

identifies all aspects of the execution and environment needed
by the application control infrastructure to successfully de-
ploy, manage, and maintain the application. It describes the
software required to run the application—including how to
access and install it—and processes that will run on each ma-
chine. To support a variety of environments, the user speci-
fies these details using an extensible description language that

captures desired resource specifications, declares how they
should be acquired, and includes any additional information
needed to correctly instantiate and run the application. Any
information required for authentication is also included in this
description.
Resource Discovery and Acquisition. The first step to

successfully running any distributed application is obtaining
a suitable set of resources on which to run. Because resources
in distributed environments are often heterogeneous, users
naturally want to find the set of resources that will best sat-
isfy the requirements of their applications. Even on Planet-
Lab, where the hardware is largely homogeneous, dynamic
characteristics of a node such as available bandwidth, CPU
load, etc., vary greatly over time. The goal of resource dis-
covery is to find the best current set of physical resources for
the distributed application as specified by the user.
The role of the application control infrastructure is to parse

the user’s request for resources and send the request to an ap-
propriate resource discovery mechanism. The resource dis-
covery mechanism interacts directly with the resource acqui-
sition system. Resource acquisition can be accomplished in a
number of ways. For example, if resource reservations are re-
quired, the resource acquisition mechanism is responsible for
submitting a resource request on the user’s behalf and sub-
sequently obtaining a usage lease. Currently, the machines
in PlanetLab are in a “best effort” pool, which means that
no advanced reservations are required for use. Therefore no
further steps for acquisition are typically needed, but supple-
mental requests can be issued to systems like Bellagio [1] or
Sirius [21] if desired.
Application Deployment. Once a set of resources have

been located, the next step required in most scenarios is de-
ployment. The process of application deployment involves
preparing the physical resources with the correct software and
data files, and then running the executable to start the appli-
cation. This typically involves copying, unpacking, and in-
stalling the software on the hosts that were selected in the
resource discovery and acquisition process. An application
control infrastructure must handle a variety of different file
transfer protocols for each environment, and must provide
support for failures that occur during the transfer of software
or the starting of the executable.
Application Maintenance. Perhaps the most difficult re-

quirement of the application control infrastructure is moni-
toring an application after it has been started. Monitoring
involves probing the hosts for failure due to network outages
or hardware malfunctions, querying the application for indi-
cations of failure during execution, and providing hooks into
application-specific code for observing the progress of an ex-
ecution. The goal of application maintenance is to maintain
application liveness, provide detailed error information, and
achieve forward progress in the face of failures. A robust ap-
plication control infrastructure must be able to adapt to “less-
than-perfect” conditions and continue execution. For exam-
ple, if a user wants to use 50 machines, but only 48 can be
contacted, the application control infrastructure should adapt
appropriately and continue with only 48 machines.



Figure 2: Plush application controller running on a local work-
station connected to light-weight clients running on remote hosts
in different environments.

4 Plush
In this section, we describe Plush, an extensible application
control infrastructure for large-scale distributed systems de-
signed to meet the requirements from Section 3. A primary
goal of Plush is to simplify the develop-deploy-debug cycle
that researchers go through when developing large-scale dis-
tributed applications. Plush achieves this goal through a sim-
ple terminal interface where users can deploy, run, monitor,
and debug their distributed applications running on hundreds
of remote machines through basic terminal commands.
Unlike local clusters, wide-area environments like Planet-

Lab and the Grid typically do not use a common file system
that is shared among all machines. This introduces challenges
related to maintaining specific versions of code, setting up
environment variables, or gathering output from all machines
hosting the experiment. The result is that researchers who test
applications in wide-area environments often end up spend-
ing more time in the cycle’s deploy and debug phases than in
development. Plush provides much of the needed functional-
ity to ease the burden of deploying and debugging distributed
applications, allowing users to spend more time developing.

4.1 Architecture
The main components of Plush are an application controller
that typically runs on a user’s workstation and a lightweight
client process that runs on all nodes hosting the application.
Though the remainder of this discussion focuses on Planet-
Lab, the set of managed clients is not limited to one platform.
The same controller has the ability to manage clients across
all supported platforms, including PlanetLab, the Grid, and
any local clusters maintained at the users’ site. Figure 2 de-
picts this architecture.
The application controller is the center of control for all

Plush-managed applications1. Using authentication informa-
tion provided by the user, Plush determines an available pool
of resources at startup. For PlanetLab, the user specifies the
slice name and Plush looks up all hosts assigned to the slice
and automatically adds them to the user’s resource pool. If
other resources are desired, such as machines in a local clus-
ter, these are specified separately by the user.
To run an application, the controller parses an application

1One or more backup controllers can be specified to handle controller
failures. The details are omitted for clarity.

<plush>
<project name="demo_proj">

<software name="demo_soft" type="tar">
<package name="demo.tar" type="web">

<path>http://plush.ucsd.edu/demo.tar</path>
</package>

</software>
<configuration name="demo_conf">

<cluster name="demo_group">
<software name="demo_soft"/>
<rspec>

<num hosts>50</num hosts>
</rspec>
<execution>

<process name="demo">
<path>./demo.exe</path>
<cmdline><arg>300</arg></cmdline>

</process>
</execution>

</cluster>
<resources>

<resource type="plab" group="ucsd_3"/>
</resources>

</configuration>
<application name="demo_app">

<execution>
<configuration name="demo_conf"/>

</execution>
</application>

</project>

</plush>

Figure 3: Sample application specification that defines a process
(demo.exe) that will run for 300 seconds on 50 remote Planet-
Lab hosts assigned to slice ucsd 3.

description (see Figure 3) and executes the specified actions.
The XML description language is hierarchical. Projects are
defined at the highest level, and they contain software, config-
uration, and application components. Software components
describe where to locate the desired software packages, and
how to transfer and unpack the files on the remote machines.
Configurations contain “cluster” components that describe
one or more clusters of machines. Clusters define exactly
what physical resources are desired for each group of ma-
chines requested. Each cluster component also specifies what
previously defined software components should be installed,
in addition to specifying what exact commands should be run
on each host during execution, and what resource pool to use
for locating resources. The application components of the
project specify the configurations that should be run. By us-
ing multiple configurations it is possible to define multiple
applications at once and execute them sequentially at runtime.
After creating an available resource pool and parsing an

abstract application description, the controller determines the
resources that should host the application. Plush passes the
required resource description to a user-selectable resource
discovery package, which returns a set of physical machines
that match the user’s requirements. To bootstrap deploy-
ment, the Plush controller connects to the selected resources
and copies the client to all remote hosts–thereby creating an
underlying communication mesh–and then starts the client
Plush processes. The application controller then installs the
required software on all remote hosts. Several common
file transfer protocols are supported by Plush, including scp,



Figure 4: Steps taken by Plush controller.

wget, and rsync. When the controller is ready to start the
application, it instructs the clients to execute the appropriate
command on each remote host.
Once the application is running, the clients communicate

with the application controller to notify it of status updates
and potential failures. If a failure is detected, the controller
attempts to recover from it according to the actions enumer-
ated in the user’s application specification. Since many fail-
ures are application-specific, Plush exports optional callbacks
to the application itself to determine the appropriate reaction.
Plush provides a set of monitoring tools to help the user

better understand status on the remote hosts. For example,
Plush provides a shell interface that allows users to issue a
command on all hosts simultaneously. Users also have the op-
tion of redirecting the stdout from the remote hosts, so that
all output from all hosts is streamed back to the controller’s
terminal. Further, Plush monitors the liveness of nodes au-
tomatically and notifies the user when a node fails. When
the application completes (or upon a user command), Plush
stops all associated processes, transfers output data back to
the controller’s local disk, performs user-specified cleanup
actions, kills the client processes, and disconnects the hosts
from the communication mesh. The entire process is shown
in Figure 4.

4.2 Barriers
Plush separates an application’s lifecycle phases with syn-
chronization barriers. Traditionally, synchronization barri-
ers separate different phases of computation across multi-
ple processes. Barriers were first introduced as a parallel-
programming construct to synchronize individual processors
interconnected by a high-speed network [13]. In the context
of a Plush-managed application, barriers separate phases of
execution across a set of remote machines. Barriers require
all hosts involved in a distributed application to reach a spe-
cific point of execution before continuing to the next phase.
For example, barriers separate the file transfer phase from the
execution phase to ensure that a suitable set of resources is
found and prepared with the appropriate software before at-
tempting to start the application. In this same manner, bar-
riers can be used to loosely synchronize the beginning of an
execution across all remote hosts. Barriers can also separate
different phases of staged executions, as are often present in
Grid-style applications like EMAN.
Traditional barriers are not well suited for volatile, wide-

area network conditions; the semantics are simply too strict.

In order to achieve better resilience in the presence of failures,
Plush extends traditional barrier semantics with two new re-
laxations. The first relaxation primitive, early entry, allows
hosts that reach a barrier to be released before all hosts have
entered. This prevents progress from stalling due to a small
subset of delayed hosts. The second primitive, throttled re-
lease, allows the user to control the rate of release from a
barrier. These relaxations are discussed in detail in Section 5.

5 Challenges
While Plush addresses some of the requirements described in
Section 3, outstanding issues remain. This section describes a
few of the challenges we have faced and the lessons we have
learned thus far in our development of Plush.
Challenge: Create a language capable of succinctly de-

scribing application requirements. The language must be
easy to understand but also expressive enough to support
complex scenarios. Additionally, users will need to define
each phase of an application’s lifecycle within the language.
Based on user experiences, we know that it is important to
establish a balance between functionality and usability in the
design of the application specification language. If the lan-
guage gets too complicated, novice users may become intim-
idated by the complexity and give up. However, without sup-
port for advanced features, experienced users will be unable
to express all of their requirements.
When designing the XML syntax for the application speci-

fication language of Plush, we decided to require only a small
set of easily defined attributes, while also supporting a vari-
ety of specialized features. We believe that this establishes a
balance between functionality and ease of use. We separated
the various components of a distributed application and de-
scribed them using an extensible schema that allows users to
make the application specifications as complicated or basic as
desired. In the simplest case, the user only needs to define the
required software (if any), the number of machines desired,
and the command to run on the remote machines.
In the future, we plan to provide a graphical user interface

(GUI) for Plush. Part of this GUI will allow users to create
application descriptions without writing XML. In the early
stages of the development of Plush, we designed and built a
simple GUI that allowed users to run and monitor applica-
tions, create application descriptions, and visualize various
statistics about the status of the remote hosts. However we
found that as we continued to develop Plush, the rapid rate of
change of the code and design of the internal data structures
made it difficult to maintain a functional GUI. Small changes
in a data structure typically required significant changes to
the layout of the GUI. The development of the GUI has since
been postponed and will be resumed again in the upcoming
months.
Challenge: Build a generic infrastructure that meets

the demands of a variety of distributed applications and
is as powerful as tools designed specifically for a single
application. Our goal during the development of Plush was
to build a general infrastructure for application management
that controls all aspects of the distributed application lifecycle



without sacrificing important features available in specialized
tools. We quickly realized that the best way to do this was
to use the existing tools directly, rather than trying to rein-
vent them. Hence, Plush is a customizable framework that
provides the ability to incorporate existing tools. Users can
modify their application description to plug in the specialized
tools they need to execute and manage their applications. It is
this “pluggable” aspect of Plush that allows users to run their
applications in a variety of environments.
One challenge in designing an infrastructure that supports

the ability to plug in arbitrary existing tools is implementing
the glue code necessary to integrate each tool into Plush. Un-
fortunately, there are no official standards or common APIs
to which developers adhere on PlanetLab. Hence, the inte-
gration of each tool must be addressed separately.
Challenge: Design an application control infrastruc-

ture that scales to hundreds or even thousands of het-
erogeneous machines. Currently, PlanetLab consists of
over 600 machines at approximately 300 different locations
around the world. Many Grid environments contain thou-
sands of machines distributed worldwide. In order for an
application control infrastructure to support distributed ap-
plications in these environments, it must scale to potentially
thousands of machines while maintaining acceptable levels of
performance. The initial design of Plush uses a star topology
(as opposed to, say, a mesh) for communication, so every host
running the application connects directly to the controller 2.
The limiting factor in the star design (and one that also cir-
cumscribes Plush’s scalability) is the number of simultaneous
connections the controller can support.
During the development of Plush, we experimented with

several different designs that exhibited varying degrees of
success with respect to scalability and performance. First,
we used a fixed-size pool of threads and looped through re-
mote connections. The problem with this approach is that the
progress of the entire application was limited by a few slow
hosts. Although we could scale to several hundred machines,
the performance was unacceptable. To avoid the potential
bottleneck created by slow hosts, we increased the number
of threads in use so that each connection used two separate
threads. The performance of this technique was much im-
proved over the fixed-size thread pool. However this ap-
proach suffered from a variety of new problems, and ulti-
mately could not scale beyond approximately 200 connec-
tions before some machines ran out of threads. Finally, we
moved to the current event-driven design that uses a single
thread and an event loop for execution. The performance
of this approach is good, and the number of connections can
scale to approximately 800. The limiting factor currently is
the processor overhead required for XML serialization. We
are working on ways to trim the XML and reduce this over-
head, and hopefully increase the scalability further.
Another problem that arises in heterogeneous environ-

ments is inconsistencies in execution environments. This is
particularly problematic when executables are dynamically

2In future versions of Plush, we plan to remove the star and build a more
scalable topology, perhaps based on a tree.

linked to system libraries. We found that statically linking the
client executable that runs on remote hosts helped solve this
problem in most cases. When statically linking executables,
however, it is important to avoid architecture-specific system
calls, such as some cryptographic random number generators.
Challenge: Achieve forward progress in potentially

volatile environments. Wide-area environments tend to be
erratic, with failures both common and expected. Numerous
errors can and often do occur that make it difficult to achieve
forward progress. These errors include hardware failures,
software configuration errors, network outages and conges-
tion, and application failures. Sometimes even simple tasks,
such as connecting to 100 PlanetLab machines and running
the command “hostname,” can prove troublesome to users.
Further, machines can fail at any point during execution.
After experimenting with the use of barriers in Plush on

PlanetLab, we found that traditional barrier semantics are too
strict to be effective for many applications in volatile envi-
ronments. We have found that the distribution of completion
times for common actions (including file transfers and appli-
cation execution) across a large set of PlanetLab hosts often
exhibits a heavy tail. The majority of hosts finish the task in
a reasonable time period, while a few hosts typically take or-
ders of magnitudemore time to complete the same task. Thus,
requiring all hosts to reach a barrier before being simultane-
ously released often resulted in unacceptable performance.
Section 4 presented two relaxations (early entry and throt-

tled release) for large-scale distributed computations where
maintaining a large set of working machines is often diffi-
cult due to the failures and intermittent connectivity inherent
to the environment. We discovered that by using early en-
try (which releases the barrier before all hosts have entered),
progress is not delayed because of a few slow hosts. For ex-
ample, if 98 out of 100 requested machines have installed
the required software and are ready to execute, an early-entry
barrier may release the 98 hosts after some timeout period
without waiting an unbounded amount of time for the two
remaining delayed hosts. For increased adaptability, Plush
gives users the option of using a “knee-detecting” algorithm
to dynamically determine the knee of the completion time cu-
mulative distribution function, which triggers the release of
the barrier early without waiting for the remaining hosts. This
saves users from having to specify a static timeout period.
Further, the user can register an application specific callback
with Plush to specify the exact course of action desired to deal
with the slow machines.
The second relaxation, throttled release, is analogous to

a counting semaphore. With throttled release, nodes are re-
leased from the barrier at a controlled rate, rather than releas-
ing all nodes simultaneously. This may be used, for exam-
ple, to limit the number of nodes that simultaneously perform
network measurements or software downloads. During the
barrier configuration phase, users can specify an exact rate
of release from the barrier, or they can choose to let Plush
dynamically determine the optimal release rate. In the lat-
ter case, Plush adapts to changing conditions in at attempt to
find the release rate that provides the most throughput for the
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Figure 5: Software transfer (10 MB file) completion time from
a local host to 100 PlanetLab hosts using throttled release to
limit the number of simultaneous file transfers. 25 simultane-
ous transfers completes quicker than 100 simultaneous trans-
fers. The “adaptive” curve shows the results of letting Plush
dynamically determine the release rate based on the current net-
work conditions.

application. Figure 5 shows the benefits achieved using this
semantic for simultaneous file transfers.
Even though the file transfer example shown in Figure 5

can achieve better performance with a statically defined re-
lease rate, it is important for Plush to have the capability to
adapt to changing conditions (shown in the “adaptive” curve
in the graph). It is difficult to predict what the network condi-
tions will be like in the future, and while using 25 simultane-
ous transfers completed the fastest in the experiment shown,
it is very likely that the same setting will not perform best at
all times. In most cases the user does not know what the opti-
mal release rate should be before running the application. In
addition, the use of throttled release barriers is not limited to
just file transfers across the wide area. It may be even more
difficult to accurately predict a release rate for other uses of
throttled release barriers.

6 Related work
Several tools are available for easing remote job execution,
including cfengine [5], gexec [10], and vxargs [22] among
others. In general, these products provide a subset of the
functionality that Plush provides. In addition to remote job
execution, Plush reacts to a variety of failure conditions, and
provides methods for automatic reconfiguration in response
to changing conditions. Further, existing tools for resource
discovery and allocation can be plugged into Plush, providing
more advanced functionality than most remote job execution
tools provide.
Aside from general-purpose remote job execution tools,

there are a few projects that focus onmanaging distributed ap-
plications. The PlanetLabApplicationManager [12] provides
many of the same features as Plush does for long-running ser-
vices on PlanetLab, but does not support short-lived applica-
tions as easily. It is designed to help maintain applications
that provide a service and require high availability. It does
not provide a way to interactively execute commands on re-

mote machines, and scripts must be manually created for each
managed application.
SmartFrog [11] also manages distributed applications. It

is a framework for describing, deploying, and controlling dis-
tributed applications. It consists of a description language and
a collection of daemons that manage distributed applications.
Unlike Plush, SmartFrog is not a tool that can be used to in-
teractively control distributed applications. It is a framework
for building configurable systems and has components with
similar functionality to those in Plush, but does not provide a
packaged product or solution for managing applications.
In the Grid community, there are several projects that have

similar goals as Plush. Condor [4] is a workload manage-
ment system for compute-intensive jobs. Plush is similar to
Condor in that both deploy and manage distributed execu-
tions. Condor is optimized for leveraging underutilized cy-
cles in desktop machines in an organization, where each job
or application is generally compute-bound and highly par-
allelizable. On the other hand, Plush is designed to deploy
and manage naturally distributed tasks, which may include
requirements for the concurrent scheduling of resources over
several sites. Condor provides its own batch scheduler, and
can schedule resources with a much greater efficiency than
can Plush. Plush supports a wider range of scheduling poli-
cies, however, pushing those decisions to external resource
allocators. Since Plush does not focus on a single class of
distributed applications, it supports a wider range of reactions
to failure than Condor.
GrADS/vGrADS [3] is another Grid project that provides

a set of programming tools and an execution environment
for easing program development in computational grids. In
particular, GrADS focuses on applications where resource
requirements change during execution. The task deploy-
ment process in GrADS is similar to Plush. Once the appli-
cation starts execution, GrADS maintains resource require-
ments for compute intensive scientific applications through a
stop/migrate/restart cycle. There is less support for a broader
range of failure recovery actions than in Plush. vGrADS is
an extension of the GrADS project that adds an abstraction
layer for “virtual grids,” and provides added support for Grid
economies.
Perhaps themost widely used software package for grid de-

velopment, the Globus Toolkit [7] is a framework for build-
ing Grid systems and applications. Several components of
Globus are similar to Plush. The Globus Resource Speci-
fication Language (RSL) provides an abstract language for
describing resources. It is very similar in design to our ap-
plication description language. The Globus Resource Alloca-
tion Manager (GRAM) also provides much of the same func-
tionality as Plush does. It processes requests for resources,
allocates the resources, and manages active jobs in Grid en-
vironments. The main difference between Plush and the tools
in Globus is that Plush provides a user interface where users
can directly interact with their applications. Since Globus is a
framework, each application must use the APIs to create the
desired functionality. In the future, we plan to integrate Plush
with some of the Globus tools, such as GRAM and RSL. In



this scenario Plush will act as a front-end user interface for
the tools available in Globus.

7 Status and conclusion
Plush is designed to meet the needs of a wide range of Plan-
etLab users. By explicitly considering three different classes
of distributed applications that often run in large-scale het-
erogeneous environments such as PlanetLab, we attempted
to extract a general set of requirements for application man-
agement. While these requirements are admittedly challeng-
ing, Plush represents the culmination of two years of devel-
opment aimed at addressing these challenges in a streamlined
and powerful manner.
Plush is far from a panacea; experience has repeatedly

shown that completeness and ease of use are often at odds.
In these instances, Plush attempts to err on the side of usabil-
ity, instead leveraging the ability to interface with external,
third-party tools where appropriate. Plush eases the burden
of deploying and maintaining distributed applications by fo-
cusing on providing the following key functionality:

• An extensible specification language for describing a va-
riety of distributed applications

• Interfaces for defining application-specific tools for var-
ious stages of the distributed-application life cycle

• Automated application monitoring and reconfiguration
• Relaxed synchronization semantics for failure-prone
wide-area environments

Plush is currently in daily use. Source, binaries, and more
information can be found at http://sysnet.ucsd.
edu/plush/.
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