
PIPELINES: HOW CMS GOT ITS PLUMBING FIXED

JOHN P. HARTMANN
IBM

82

How CMS Got 1t.s Plumbing Fixed

.John 1’. 1Iartm;tnn 113M FSC, Nymmllevej 8 5 , 1)K-2800 I,yngby, T>enmark

Abstract
An overview of pipeline conc~:pts is followed by a clescription o f llow these concepts were adapted to
single-tasking CMS, and how the implementation cvolved.

The data flow model of programming is well stlitcd for many (hut not all) programming problerns. C‘MS
Pipelines is a simple, robust, and efficient tool to use (lata flow tcchniqurs i n VM/CMS.

Programs running in a pipelinc: read and writc records on a symmetrical device-independent interface. A
non-trivial problem is oftcn solved by running a nutnbcr of simplc programs, each doing a little bit of the
big problem; the pipeline cornbincs programs, often to accomplish tasks that arc not imagined when a
particular progratn is written. Pipelines arc enfercd from the terminal o r issued as commands in RIIXX
programs.

CMS Pipelines has features not found in most other systems supporting pipelines:

Multistream pipelines support any numtm of concurrent strcams through a program; a simple
example is the master-file-tlpdate pxradigm.

A program can temporarily replace itself with a subrolltine pipcline.

A pipeline is tun only wl-lcn all stages o f it are specified correctly; the syntax of built-in filters is
checked before the pipeline is started.

0 Copyright 1990, 1991. 1 1 3 M 1)antn:lrk AjS. 0 Copyriji4t 1990, S I l A R E Inc. r? <’opyright 1990, SIIAIII’ l k r o p e SA. Permis-
sion is grantcd to thc REXX Sympoa:iunl t u publish an cxnct copy t r l this paper in its proceedings. II3M retains the title to the
copyright in this paper as well as the title to the copy~ight to a11 undel-lying work. I I 3 M ttstains the right to make derivative works
and to puhlish and distrihut? this paper to whon~ever it clrcroses i n any way it chonsc.;.

1)isclaimers: ‘This material may conlnin rc!ferenc:e to, or illformation about, IIIM ploducts Ihat are not announccd in all countries
in which Inhl operates; this should llot be construed to mean that IllM intentis to announce thesc product(s) i n your countty.
This paper is intcnded to give an overview of C M S l ’ i p ~ / i ~ x s . The inrormation i n this paper is not intended as thc specification of
any programming interfaces that are povided by CAf.7 1’iprlinP.r. Ilel‘er I n the apptopri 11e documenlation for the description of
such interfaces.

- __ -

83

Introduction
When programs run in a pipeline, the output from
one program is automatically presented as input to
the next program in the pipeline. T’ach program
reads its input and writes it? output through a
device-indcpendent interface 3,vithout concern for
other programs in the pipeline ‘I’hus the standard
output from a program can be read by the standard
input of any program.

Why CMS Pipelines?
‘Things get done that might not be done other-
wise. The ease with which standard programs
are bolted together means that users can
perform ad-hoc processing o f thcir data in
ways that would not be as economical with
traditional programming.

IJsers can solve problems by functional pro-
gramming. By selecting appropriatc filters,
users can apply functions to a stream of data
and not worry about how to perform a partic-
ular function t o all records in a file.

Code is re-used each time a program is run in
a pipeline; unlike traditional software cngi-
neering, cock re-usc with CMtY Pipelines
requires no modification or cornpil a t’ 1on.

Pipeline programs are device-inclependent.
This takes the drudgcry out of writing pro-
grams. All pipeline programs can usc new host
interfaces as soon as a single device driver is
written t o support the interface in question.

A complcx task is often broken into simpler
tasks, some o r all of which are performed by
built-in programs. What programs rernain to
be written, if any, are often significmtly
simpler than a program to perform the original
task directly.

A simple, eficier~t intr.1frc.r supports RIIXX
programs in a pipeline, bringing device-
indeperdent l/O to RI1XS.

CAIS Pipc1ine.y supports most CI’/CMS devices
and interfaces, many of which are not available
to RI’XX programs using standard CMS inter-
faces.

Sample Pipeline
Though C Y has a command to display the number
of uscrs loggcd on to a system, there is no
command t o display the number o f disconnected
users. Itigure 1 shows how to obtain this informa-
tion with C M S I’ipelines.

The first. u.ord is the CMS command to run a
pipeline. ‘I‘he rest of the line is a pipeline
specipcatior? defining which programs to select and
r u n . ‘I’hcrc arc five programs in this example; they
are scparatctl by a solid vertical bar (I) .
cp issues thc query command t o CP and writes the
responsc to thc pipeline, with a line for each line of
CP responsc. Iiour users are shown on each line.

split splits lincs at the commas that separate the
four users. ‘l’hc comma is discarded.

locate sclecls lines with the string I - D S C ‘ . ‘l’his
selects all disconnected users.

count counts the number of lines in the input
stream. ‘I’his count is the number of disconnected
users because there is a line for each user, and eon-
nected uscrs have been discarded from the file.

con.ro1e copies its input stream to the terminal of
the virtual machine. It also copies the input lincs
to the output, but in this example the output from
console is not connected.

IIow docs onc count the number of disccmnectrd
users with standard CMS commands‘? With
dificulty, i t would appear, and certainly not
without writing a program.

cp query nameslsplit ,Ilocate / - DSC/(count lineslconsole

Ready;

1;igut-e I . Sample Pipeline
Ilartmann

84

What is CMS /’ ipdim~s

CMS Pipelines Structure
The user sees three parts of CAIS Pipelines:

Command Parser: Scans the argument string to
the PIPE command to build :I control block struc-
ture describing the pipelinc to run. I t ensures that
the pipeline spccification is well formed, that all
programs exist, and that the syntax is correct for
thosc programs where a syntax description is avail-
able to the parser.

Library of BuiZt-in Programs: Conlains device
drivers, filters, and many utility functions that can
be selected by the parser.

Di.ypatcher: Starts programs and passes control
bctween programs to maintain an ordcrly flow of
data through the pipeline. I’rograms call the pipe-
line dispatcher to read and write the pipeline. Thc
dispatchcr runs programs as co-routines; control
passes from one program to mother only whcn a
program calls the dispatchcr to transport data.

REXX Programs
’Though many tasks can be pcrformed with a com-
bination of built-in programs, there arc boulld to
be times when C M S I’ipelines (does not providc the
primitive function needed for a particular task. A
program must be written t o perform the missing
function whcn pipethink (chipping sub-problems
off a big problem) does not come up with a useful
solution.

llowcver, the program to he writtcn needs only to
solve one particular little problem; most of thc task
should be performed with built-in programs.

Programs to proccss pipclirlc data can he writt.cm i n
RfiXX, l’I,/l, 113M (:/370, Asscmbler, arid othcr
languages that llse Assctnbkr calling convcnt.ions.
RTXX is used exclusively in the examples in this
paper.

A REXX proglatn processing data in the pipclinc
is stored as a disk file; it has file type RFTXX to dis-
tinguish it from IiXlIC proccdures. ‘I’hc Rl’XX
program can be I?XI~CI,OAl~’~ed or installed in a
shared segment just like all othcr R.I1XX programs.

The default command cnvir:~nment for RPXX
pipeline programs proccsscs ppclirle cornnmr7rh to
move data from the pipelint: into the program’s

variable p o o l , and to write output lincs into the
pipeline.

As an example of a function that is not readily
made with built-in programs, consider how to
display the number of terminals that are in the
state between displaying the VM logo and having a
user logged on. Local terminals in this statc are
shown with the a user 111 cornpriscd of LOGO fol-
lowed by thc four-digit device address.

I NO‘1’1,OG HEXX
/* S e l e c t LOGOxxxx userIDs */
s i g n a l on nova1 ue
s i g n a l on e r r o r
do f o r e v e r

‘ r e a d t o i n ’
parse var in user+8 I - ’ device .
I f user = ‘LOGO’device

Then ‘output ’ i n
end
e r r o r : e x i t RC*(RC-=12)

The program in the sample above rcads input lincs
into thc variable i n which is parsed to obtain the
user 111 and the device address. The input line is
copied t o the output with the output command
whcn the linc represents a terminal in limbo. Note
that. thc two commands arc not symmetrical: the
name o f thc variable to receive thc next input line
is a literal; the variable is sct as a sidc effect of thc
command. ‘I’hc line to write is the argument string
to the output command. ‘I’hc loop tcrtninatcs
whcn eithcr of the two commands gives a non-zcro
return code. ‘I’he return code from the filter is 0 at
normal end-of-filc or the return code from the
pipcline.

pipe cp q nlsplit ,Istriplnotlog(console
LOGOL097 - LO97
Ready;

It becomcs curnhersotnc to writc long pipelines on
the terminal, especially whcn fine-tuning a suite o f
filtcrs: put thcm into a RI’XX I < X l K instcad.
Commands on the terminal arc in landscape format
(a single line); when writing I’XISCs, it is more
convenient t o write pipclincs in portrzit form with
one line per program. This is the sample above in
portrait form:

/* Limbo samp
'PIPE' ,

' C P q n l ' ,
' s p l i t , I '
' s t r i p ! ' ,
' n o t l o g ! ' ,
' c o n s o l e '

e x i t RC

l e */

3

C,'MS P@eline.r supplies a sample XEl>l'I macro to
convert from landscape to portrait form.

Using CMS Pipelines in REXX EXECS
It is easy to augment REXX E X I X s with pipe-
lines: use the PIPE command with dcvicc drivers
to read and write RT7XX varial)les.

Sort: 'The example bclow s o r t s the contents of the
stemmed array unsorted. .rtcrn reads and writes a
stemmed array. The variable unsor ted .0 h a s the
number of variables i n the array; the first variable
is unsorted. 1, and so on. The result is stored in
the array s o r t e d .

'PIPE stem unsor ted . 1sor t I s t : lm sor ted . '

Di.wovering Stemmed Variahles: 'l'he device driver
rexxvars writes the source s t h g and all exposed
variables in a REXX program into the pipclinc:. It
writes the name and value of a variable 011 separate
lines. The first column is the record type (n for a
variable name); the source string, name, or value
begins in column 3. Given this, finding all vari-
ables with a common stem is a matter of find. 'To
find the names o f all variables that have the stem
ar ray :

'PIPE' ,
' r e x x v a r s l ' , /* Read a1 1 v a r i a b l e s */
' f i n d n A R R A Y . I ' , /* Names 01 a r r a y */
' spec 3-* 11 I , /* Discnrd type p ref ix*/
' b u f f e r ! I , /* Ensu:.e no i n t e r f . */
' s tem vars . ' /* Store i n stemmed */

I~X.YVCIY.T Reads the names and values of a l l
exposed variables in the RICXX program.

j?nd selects name lines for variables with stem
a r r a y . Discard the lines wit'] the values of the
strmmed variables and information :tbout other
variables.

.spec moves the name (from cc!lumn 3 onwards) to
the beginning of thc record.

Ixcffer stores all lines in a b u l k before writing any
to the output. I'his c~~sures that the variables to be
set with t h e result do not interfere with the vari-
ables being queried.

stem writes the names of all variables with the stem
a r r a y into the stemmed array v a r s where they can
be accesscd with a nutneric index.

Trnnspwting P'arinhfes Between REEXX Propanu:
The device drivers supporting R F X X variables can
manipulate RI'XX cnvironmcnts prior to the one
issuing the P I P E command. '1'0 copy the stemtned
array parms from the caller to the current III3XX
program:

'PIPE stem parrns. llstem parms. '
'The nurnber after the first stern indicates that the
I ~ X I ~ , C C O h l M before the current onc is t o be read.

Find the Caller-: The first line of output from
Y ~ X X V ~ I - . ~ has the letter s in the first column and the
source string (the string parsed with Parse Source)
from column 3 onwards. When rexxvar.~ is applied
to the environment before the current one, the first
line is the source string for the callcr. 'I'his can be
parsed to detcrmine the caller of a RTlXX program.
w r sets the variable to the first line on the input
st ream.

'PIPE rexxvars 11 t a k e l l v a r s o u r c e '
pa r se va r sou rce 3 . . c-fn c - f t c fm .
parse source . . m fn m f t m-frn .
say m-fn m-ft ' c a l r e d fFom' c-fn c - f t c-frn'. '

-

Mdtistream Pipelines
Imagination sets the limits for multistream pipe-
lines; here we show two simple examples without
attempting t o explain how rnultistream pipclines
work in gcncral. Refer to the tutorial or reference
manuals for further information.

A program rcnds and writes the pipeline through a
.rtrcmm. \Vhcn thc program has access t o several
streams, thry are named the pritnwy .rtrcnm, the
semndnry .stworn, and s o on. A stream has an
input sidc and an output side. 'I'he input side reads
from the Irft-hand neighbour (what is before the
previous I) ; the output side writes to the right-
hand ncighhour (what is after the next I) .
CMS 1'ipclinc.r has many built-in selection pro-
g r a m t o select subsets o f the input file that satisfy
some sclcction criterion. (locate has alreadv bcen

Ilartmarm

86

used.) Selection stages discard records that are not
selected when the program is i 1 a straight pipeline.
With multistrearn pipelines, sclection stages direct
rejected records to the altermlte output stream, if
defined.

Count Connected and Disconnected IJsevs: As an
example, the pipcline in Figure 3 displays the
count of connected users and the count. of discon-
nected users. 1;igure 2 shows the topology o f the
pipeline.

'I'here are two pipelines in this example: the Ieft-
hand one is the primary .stream for the programs in
it. The wide boxes represent programs that use
two data strea.ms: the right-hand pipeline is the .rec-
ondury stream for thcsc programs. (Both of tllr
counf and change filters read and write their
primary streams.)

Some trickery is needed to transform this two-
dimensional picture into a parameter string which
must of nature be one-dimmsional. An end-
charactar separates pipelincs in a pipcline

0 spl it . faninany
__-___.

/* Count logged and disconnected */
signal on novalue
address command
'PIPE (end \) I ,

I

I

I

I

,I

I

I

1

I

I

I

exit

I
I
I
I
I
I
\

I
I
I

cp query names',
split , I y

1 :locate /- DSC/l,
count 1 i nes I ,

change //Discld: /",
f:faninanyI,
consol e I

l:!,
count lines',
change //Logged: / I ,

f: I

RC

Figure 3. 1,NI) IrXFiC:: <:ot~nt. Users

specification. It ends one pipeline and begins the
next. 'I'here is no default end-character; it must be
declared in cach multistream pipeline.

Parentheses at the beginning of the pipeline
specification enclose global options. 'The end-
character is one such. The backslant (\) is defined
as the end-character in Figure 3.

1 : and f: arc labels. Both are used twice in this
sample. 'I'he first time a label is used declares the
primary stream for the particular invocation of the
program writtcn aftcr the label. In the case of
locate, it reads from the primary input stream
(what is before it); it writes lines with the string to
the primary output streatn (what is after it). Iocatc
writes records without the required string to the
secondary output .stream. 'I'he secondary output
stream is dcclared the next time the label is used
(aftcr the cnd-character in this sample). Whereas
I m l t a reads one input stream and writes to two
output streams, faninany reads records from which-
ever input stream has one. faninany writes all
rccords to the primary output stream. In this
example it merges the lincs with the count of
selected and discarded records.

1 nd
Discld: 130
Logged: 46
Ready;

87

Update: Many built-in progwns support multi-
stream pipelines. As an e:ulmple, the update
built-in program provides a schset of the function
of the CMS IJI’DATE comtland. It reads the
master file from the primar!: input stream and
writes the updated file to Ihe primary output
stream. It reads the upda.te from the srco/rtiary
input strcam and writes the ul&ttc log to thc sec-
ondary output stream.

update does not perform rnuhilcvel updatm undcr
the control of a control file. As a typical example
of applied pipethink, update programs are cascaded
(written one after the other) to implement multi-
level updates. A controlling program reads the
control file and auxiliary control file(s) to deter-
mine which updates to apply and their order.

7 p+~+pq
[p q . m ; ; + p] -. .

< mstr

El > mstr

Changing Pipeline Topology Dynamically
A pipeline program can issuc! pipeline commands
to change the topology of its connections to other
pipeline programs. .I’ll(; command C A I ,I ,l’II’l?
runs a suhroutine pipeline; the program issuing! the
command resumes when the subroutine 11.3s com-
pleted. AI>I)I’IPTI adds a new pipelirrc to the set
of running pipelines.

Sukoutine Pipeline: Subroutine pipelincs often
hide the details of a task; they art: the easiest way
to create new pipeline filters.

In the previous examples, the xquence of c p , vplit,
and strip was used over am1 over again. ‘I‘his
example shows how to put these programs into a
subroutine, IJSERS REXX, tllat can be callcd as a
program.

J lartmann

A subroutine pipeline is likely to see more use than
a cascade ot’ filters in any one pipeline. Make sure
it works in general, not just in the context where
the cascade of filters comes from. In this case, the
CP respnnsc is too long for the default buffer size
whcn the system has between 400 and 500 users
logged on. ‘I‘o ruggrdisc IJSISIIS RGXX, a pipc-
line is adtlcd to query the number of users logged
on, and allocate suficient buffer space to hold the
reply to thc query. The second pipeline is the sub-
routine implementing the cascade of filters. (It also
deletes lines listing virtual machines connected to
the +CCS system service.)

IJSERS RF:XX
/* USERS REXX: Write a Line for each user */
s i g n a l on e r r o r

‘ c a l l p i p e l ,
’ cp query users ’ ,
‘ I s t r i p ’ ,
Ilchop before 40 ’ ,
I I var u se r s

‘ c a l l p i pel ,
I 1 i t e r a l QUERY NAMES’, /* Command * /
I Icp’ 1users*25+100, /* I s s u e CP */
‘ I n f i n d VSM--’, /* Ignore VTAMS */
1 l s p l i t , I , /* One l i n e f o r e a c h */
I Is t r ip’ , /* St r ip l ead ing b l ank */
I X . 1 I . /* Pass on t o next */

e r r o r : e x i t RC
_ _ _

The argument to CAI,I~,PII’R is a pipeline
spccification like the argument to the I ’ I I ’ l ~
command, with a difference. *: is a connector’ to
show wherr: to connect the input and output
streams of the calling program. As used in this
example, it specifies that the output stream of the
subroutine pipcline is to be connected instead of
the output stream of the calling program. ‘I’he
calling program’s output streatn is restored whcn
the subroutine retllrns and the caller continues after
the CAI ,I ,l’llT, command is complete.

Using I!SI;.RS RI’XX, the combined function is
prrforrncd b y the command below. (It is late in
the day , w the nmnber of disconnected users has
gone up since the last sample.)

pipe users I locate / - DSC/ I count 1 ines I consol e
131
Ready;

r INC1,PACK REXX
/* Inc lude package f i l e s r ecu r s ive ly */
s i g n a l on novalue

c a l l d o f i 1 e
e x i t

dof i l e : p rocedure
p a r s e a r g s t a c k
do f o r e v e r

' r e a d t o i n '
I f RC-O

Then l e a v e
I f l e f t (i n , 7) - = = ' &1 &2 '

Then i t e r a t e /* Comment */
' ou tpu t i n /* W r i t e l i n e */
par se va r i n . . fn f t fm .
I f ft-='PACKAGE'

f i d = f n i . ' l e f t (f m , l)
I f f i n d (s t a c k , f i d) > O

Then i t e r a t e /* Recursion */
' addpipe 4 ' fn f t fm ' I * . i n p u t : I

I f RC/=O

c a l l d o f i l e s t a c k f i d
' s e v e r i n p u t I

end
I f RC=12 /* EOF? */

e x i t RC

Then i t e r a t e /* Not a package */

Then e x i t RC

Then r e t u r n

ParalZcl l'iplines: The ADIIPIPF pipcline
command adds a pipeline specification to the
current sct of pipelines without suspcnding the
program that issues the command. It can add pro-
grams, for instance, to process the input strcam or
divert the olltput stream temporarily.

As an example, INCIPACK RI'XX processes an
input strcam i n the format used to describe files on
the C M S J'ipclines distribution tape (a I'ACKA(;I;,
filc). Such a file has ' &1 &2 ' in columns 1 to 7;
the file name. type, and mode are in the next 20
columns.

'I'his program has a rccursive procedure to proccss
a file. 'I'he argumcnt string to the procedure is the
path of open package files. The loop body reads a
line, chccks if it identifies a filc (otherwise it is
assumed t o bc a comment that is discardcd). 'I'hc
input line is copied to thc output stream and
inspccted to determine if it represents a nested
package filc that has not already been processcd in
this path.

AIIIIPIPTS puts the current input stream on a
stack o f dormant primary input streams for the
stage and connects the primary input strcam to
which rcads the package filc. The procedure
dof i 1 e is cnllcd to process the packagc file. When
done, the input stream (which is now at
end-of-filc) is severed. 'I'his re-instatcs the stream
on top of the dormant stack to continue reading
thc file that rcferenccd the one just done.

p ipe < a l lp ipe package lcoun t l i nes l conso le

>Ready;

p ipe 4 a l lp ipe package (inc lpack1coun t l i nes l conso le
>126
>Ready;

p ipe < a1 1 pipe package I i ncl pack 1 so r t un ique I count 1 i nes I consol e
>126
>Ready;

Figure 4. Processing R Package 1,:ccursively

_.____ --

pipe 1 i teral 601dup *JdelayJspec /‘I nd/ 1 lsubcom cms

Figure 5. Sample Event-driven Pipeline

Event-driven Pipelines
Most pipelines process lines a<: quickly as they are
read from the host interface (f h instance a tapc or
a CMS file). A few device drivers, however, wait
for events and write a line to the pipeline when the
event occurs:

delay writes a line after at? intcrval has elapsed
or at a particular time-of-day.

immcmd writes a line with the argument string
when a particular irnrnediate command is
issued by the user at the tertninal.

stanmg connccts to the message system
service. It writes a line whenever (;I’ presents
a message or response to it.

These device drivers support pipelines in service
machines to process user requwsts sent, for instance
with SMSG, as well as authorised commands
entered from the terminal when the virtual machine
is connected, or sent with the SI’NII command
from the secondary user.

The example of an eveni-driven pipeline in
Figure 5 shows how to issue the 1,NII command
in Figure 3 on page 5 once a 1 ninute.

Iileral writes a literal 60 (the nymber of seconds to
wait) into the pipeline.

dup makes an infinite number af copies of the line.
(nut only one at a time; thi: does not flood the
pipeline.)

delay reads a line; the first word specifies whc:n it
must copy the line to the output. In l.his example
it is the nurnber of seconds to wait. The input line
is copied to the output after the delay. Ilaving
written the line delay reads anothcr input linc and
waits for 60 seconds once more. ‘I’hus, t fehy
writes a line every 60 seconds.

spec is a program modelled on the ~ X l I ~ Y ~ ~ l l ~ l ~
option SI’ECS. As uqed here! it writes an output
record with the literal string 1 n d for each input
record (it does not reference fields in the input
record). spec does not delay the rccord; in this
pipeline it writes a rccord oncc every 60 seconds.

subcom passes input lines to the CMS subcom-
mand environment which issues them with full
command resolution. ‘I’he response is written
directly to the terminal by CMS.

Nors CA4S Pipelimy Works
CA4S Pipe/inP.r is in two module files: P I P E
MOD1JI,F, is a small transient bootstrap module;
the main pipeline module is PIPEI,INIT
MOIITJI ,E. ‘I’he main module can be disk resident
or installed in a shared segment. A disk residcnt
module is installed as a system nucleus extension; it
is called from PIPE MOIlIJ1,E to install a 1’11’1;
user nucleus cxtension. ‘I’he hootstrap module is
not called by CMS once the main module is
installed.

With this sct-up, the pipeline code is protected, but
CMS considers pipclirle programs as user programs
and recovers from an AREND.

Filter P m k q e : A filter package is a module file
that contains filters with an entry point table
defining its programs and optionally a message
table for messages specific to programs in the filter
package. ‘T‘he filter package also has a glue module
that attachcs i t to the main pipeline module. A
filtcr package is in a shared segment o r
NIlCX1,OAlJed. Once loaded, the filter package
identifies itself t o the pipeline module using an
unpublished protocol; from then on programs in
the filter package are considered an extension to
the main pipt:line module.

Four filtcr packages are installed automatically, if
present, when the main pipeline module is
initialised:

l ’ l I ~ I ’ ~ l ’ l ~ l ~ IGlters i n this package replace built-in
filters. This allows the replacement of
some l)uilt.-in programs without regen-
crating the main pipeline module. It
also provides a convenient way to test
fixes to huilt-in programs.

J’II)SYSI; System filter package. This is intended
fbr programs to be available enterprise-
wide.

1 lartmann

90

P I I ’ 1 , O C ~ I ~ I ,oca1 filter package. 1;iltcrs availal.de to
all users in a particlular system or instal-
lation.

PIPIJSHRI; IJscr filter packagc. A user can create
a user filter package with private filters
that are used oftrn and thus should
remain in storage.

A filter package can have any name. If a liltcr
package is invoked as a CMS command, it installs
itself as a nucleus extension (if not already one)
and attaches its tables to the main pipeline modulc.
Thus, to emure that the conter~ts of a filter package
are available, one only has to issue the name o f the
package as a CMS command.

/* p o s t processor */
address command
’PIPLSTPP’ /* Ensure i n s t a l l / ? d */
‘PIPE < some l i s t i n g l p o s t p r o c . . . I

Scanning a Pipeline Specification
‘Ihe argument string to the PIPE command, as
well as the CAI,I,PIP‘E and , ~ I ~ I ~ P l I T , subcom-
mands, is a pipeline specification that is proccsscd
by the parser. IIaving determined the ovct-all
topology of the pipeline network, the parser
resolves entry points and allocates working storage
for programs that specify their requirements in a
program descriptor. When t.he parscr finds no
errors in the pipeline specification, the control
block structure is passed to the dispatcher for exc-
cution.

Resohe Entry Points: 13ntry points are resolved
via e n t y point tables; each entry has the external
name, flags, and a pointer.

I7ntry point tables are searched in this order:

1. I‘he PII’P”’F1~ filter package. ‘I’his liltcr
package is intcndcci to hold replacements for
built-in programs.

2. Built-in programs. ‘I’hcw programs are i n
PTPE1,INI’: MOII~JI , I< .

3. The I’II’SYSF, PIP1 , O C y F , and I ’ I P ~ J S I R I ;
function packages and other filtcr packages

-

installetl by thc user or installation. The pack-
ages arc searched in the order they are installed;
by default, PII’SYSF is searched first.

4. Programs in the PIPPRV entry point table.
This entry point table is intended for installa-
tion use to identify programs linked into the
PII’l-il ,INIS MOIIIJI,E. The module shipped
has no PII’I’RV entry point table.

If an entry point is not resolved in any of thcse
entry point tables, C‘MS Piyclines looks for a file
with filc type REXX (using I3XIKS‘lA’I‘) and
invokes the program as a RRXX filter if onc is
found.

‘I’hc entry point as rrsolvcd by look-up in an entry
point table is not necessarily the first instruction of
the program to run. ‘I‘hc entry point table can
spccify that the entry point requires a high-level
languagc runtime environment, or that thc partic-
ular type of eniry point be determined from
inspection of storage at the address rcsolved so far.

When no high-lcvel language is indicated, the entry
can be an :dtcrnate format ISXIK, an cxecutable
instruction, or a byte of binary zeros indicating an
entry descriptor.

An alternate format EXFK is assumed to be a
REXX filter. It is invoked with suitable parameter
lists’. Other executable entry points are assutncd
to requirc (:MS parameter lists (both extended and
tokenised).

Entry Ilmcriptor: An entry descriptor is defined
by C M S Pipclines conventions. It has a byte of
binary zero followed by three bytes o f lowercase
characters dcfining the type of descriptor:

ctnd A pipeline command to be issued. ’I’he fol-
lowing fullword is the length of the command
which follows. ’I‘hc comtnand is usually
CAI ,I ,I’Il’F, to invoke a subroutinc pipeline
to implement the function.

ept Another lcvcl of entry point table. ‘I’he next
word o f the filter definition is looked up in
the table that follows the descriptor.

91

http://availal.de

lUP

rex

PiP

A look-up routine (for instance ldrtbls to find
an entry point in the CMS loader tables).
‘The next word of the filter definition is
passed to the look-up routine. It returns the
resolved entry point adtlress, or zero when
the entry point cannot be fonnd.

A RRXX program that has been proccsscd
by the PII’GRIXX filter to generate an in-
storage program. ‘T’he next word in storage is
the length of the list that follows, in bytes.
The program list (pails of addresses and
lengths) follows.

The entry address is !he beginning of a
program descriptor.

‘T’he entry point resolved by a second level of entry
point table or by a look-up routine is inspected for
an entry descriptor. ‘These c:m I x nested to any
depth.

Program Descriptor: The program dcscriptor
defines a built-in program to C h 4 S l‘ipclines. It
specifies attributes of the prqrar-n that allow the
pipeline parser to:

Perform checks that are donc by the program
itself in a traditional implementation. For
instance, does the program require arguments,
must there not be arguments, or are arguments
optional? Checking syntax before starting the
pipeline means that the cc.vnplete pipeline can
be aborted when an error is found in the
parameters to a singlc program.

Allocate storage for all programs with one call
to the host system storagc management. The
descriptor states the amorlnt of storage t o he
allocated on the initial en‘ry. Work areaq for
neighbouring invocations of programs are allo-
cated adjacent; this may reduce the wot,king
set.

Call a syntax exit, if specilied, to pcrfortn
further argument scan. For instance, the
syntax exit can ensure thxt :I disk file t o be
read does exist.

Obtain the address of the main entry to call
when no syntax check fails

Commit Level
The commit lcvel is an integer. A program starts
on a particular commit level. The program
advances its commit level t o co-ordinate its
progress with other programs. When a program
returns on its original invocation, the return code is
inspcct.ed and an aggregate return code is computed
for the pipelinc spccific a t’]on.

The programs that start at the lowest commit level
are invoked first. This set of programs run until
each of them returns or issues a COMMIT request
to incrcasc its cornrnit level. ‘The commit level is
increased when there are no programs left at the
original commit level. Programs on the new
commit Icvtl are started only if the aggregate return
code is zero at the time the commit level is
reached; programs that start on a commit level are
abandoned if any program has returned with a
non-zero commit code at a lower level of commit.
Programs that were started at a lower commit lcvel
reccive the aggregate return code as the return code
for the commit when the requested commit level is
reached.

‘l‘hc convcntion for all C’MS Pipe/ine.r built-in pro-
grams is that they transport data on commit level
0 ; most of the built-in programs start on commit
level 0 as well.

‘I‘he syntax exit can be considered to be commit
lcvel minus infinity.

‘I‘he syntax exit must not allocate resources (for
instancc open filcs o r obtain storage) because these
resources arc not released if some other syntax exit
fails. On the other hand a program can allocatc a
resource o n . for instance, commit level - 1. It can
then increase its commit level to 0. If the return
code on thr commit is not zero, the program can
de-allocate thc resource and exit; it can continue if
the return c tdc is xcro.

When a suhroutinc pipeline commits t o a level that
is higher than the one of its caller, the caller
comrnits t o this higher level before the subroutinc’s
commit completes. A subroutine pipeline can be
ahandoncd before it commits its caller when there
arc errors i n the subroutine; the return code can
cause the caller’s pipeline to be abandonned too.

Most built-in programs process records of any
length. ‘1’0 do this, they typically process a record
this way. I’roccssing stops when a non-zero return

I lartmann

92

code is received. A positive ,etum code indioatcs
end-of-file; a negative one indicates a stall (dead-
lock).

Preview the input record. ‘I’he address and
length of the record is provided. ’Ihe record is
not moved in storage.

Process the record. If thc output record is a
subset, the address and length from the prcvicw
are modified without moving the record. A
record that is modificd tnllst be loaded into a
buffer in the program that processes it.

Write the output record. An unmodified
record is written from thc produccr’s buffcr; a
modified record is written from the program’s
own buffer.

Releasc the input record with a read into a
buffer of length zero. ‘1‘1 is lets the producer
continue.

Data Transport
CMS Pipelines transports records between pipeline
programs without buffering. A record is m o v d in
the pipeline when the left-hand side of a con-
nection i s writing and the right-hand side is
reading.

7‘he most important functions o f the dcvice-
independent interface are:

Writc a line. ‘l’hc program provides thc
address and length of a buffcr wherc the rccord
is stored. The program is su:;pendcd until the
right-hand side performs a read operation. The
number of bytes read by the other side of the
connection is returned.

Read a line, moving it irlm ;I bulTcr or work
area. The program specifies the address and
length of the area into v, hich the next inplut
rccord is stored. ‘I’hc pl’ogrrtrn is suspcndt:d
until the Icft-hand side performs a writc opera-
tion. ‘I’he number of byte:: stored is returncd.

Preview thc next line. TI? : address and length
of the next line are rcturncd. ‘Ihe prograrn is
suspended until the left-h:tnd side perforrns a
write operation. ‘I’his funrf.ion doe? not read a
line; successivc previews return thc: mmc
record. The program 011 the left-hand side
remains suspended in its write call until the
record is read into a buffc’r o r telcased with a
read call for zero ttytes.

Select a particular strcam for subsequent reads
or writcs, or both. The program can also
select whichever input stream has a record
availablc; in ihis case, it is suspended if no
input stream has a record available.

Sever a stream. ‘I’he connection to the other
side is lmken. 13nd-of-file is reflected on the
other side.

Short-circuit the currently selected input and
output streams. ‘The streams on the left-hand
and right-hand neighbour are connected
directly as if the program has ncver been in the
pipeline. This is convenient for programs that
inspect thc beginning o f a file to determine if
any particular processing is required. Shorting
the connections avoids the overhead of copying
the rcst of the filc.

REXX Interfaces
CA4S 1’ipc.linc.r supports RI3XX in two ways:

RI;XX programs can process pipeline data. I n
this case, the program issues commands to
transmit data to and from the pipeline. Such
programs are started on commit level -1; they
are committed to level 0 when they issue a
pipelinc comrnand to transport data, or an
explicit COMMIT pipeline command. Thus,
if the program discovers an error in its argu-
ments, it can return with a return code before
the implied commit; this causes the pipelinc to
be abandoned I ikewise an error that causes a
subroufinc pipcline to be abandoned cCm be
propagated to the calling pipeline which can
thcn also bc abandoned.

* I>c:vicc drivers can access variahlcs in a RT<XX
environment that is active at the time the pipe-
line spccificaiion is parsed. The RITXX
progranl is passive; i t performs no action to
make tllis happen.

R E X X Pipcline Contntands: k c a u s e filters run as
cn--routines, RllXX filters do not in general rcturn
to the caller in thc reverse o f the order they are
started. R l i X X filters are invoked by a branch to
the addrcss i n A1;XISC in NIJCON instead of an
SVC (or (:MSCAI.I .); thus, all RF,XX programs
in a pipeline run on the same SV<: Icvel. On
MVS, I<IiS?(filters run in reentrant environ-
tnents.

93

This is thc reason why r e a d t o and peekto (which
previews the ncxt record) arc commands with side
effects rather than function calls: REXX calls an
external function with SVC (or CMSCAI ,I .).

Commands in the REXX filter arc processccl using
Non-SVC Suhcotntnarld invocation. IZEXX pro-
grams use the Address instruction to isslle com-
mands to other environments.

As REXX programs are dispatched, CA4S Pipclines
maintains the CMS subcommand stack to ensur’c
that the topmost EXIK-XOMM reprcsents the
running program.

A c c e ~ s to REXX Variables: ’I’hc addrcss of the
most current EXEC or RFXX environment is
obtained (using SIJnCOM) when a pipclinc
specification is parsed. This is the base envircln-
mcnt for all device drivers thal acccss R L X X vari-
ables. To avoid interference fr.:)m RBXX stages in
the pipeline, device drivers branch directly to
EXIICCOMM using this environment (or an
earlier one if requested).

Dispatcher Strategy
At the current commit level, Ihe dispatcher main-
tains a stack of programs that have not started, or
are ready to run. Programs that are committed to
a higher level than the current one are kept on a
separate list; they are moved to the dispatch stack
when the dispatcher commit level is incrcaserl to
the level that the program are committed to.

Initially the dispatcher stack has the righttnost
program in the pipelinc spccification at the bottom;
the leftmost program is stat-ted first.

A program runs until it calls thc pipeline dispatcher
t o transport data or perform :‘ome other function.
As an example, refer to the pillcline in Figure 1 on
page 2.

cp issucs the command to (3’ and gets the
response in a buffer. I t calls t1;c pipeline dispnlchcr
to write the first line into thc: pipeline. ‘I’hc dis-
patcher checks the program at the other end o f the
connection to see if it is ready to read thc linc.
.rplit is not waiting for input, ii is ready to run and
not started, so cp is suspended (waiting for output
to be consumed) and .sp& is started.

split calls the pipeliae dispatcher to get the atl~lress
and length of the next input line. (‘T’hc line is not
moved in storage.) The line is available to the dis-

Ilartmann

patcher, so the information is returned and split is
resumed. I t locates the first comma in the input
line and calls the dispatcher to write the part of the
line up to the comma.

In the same way, locate is started. It inspccts the
line. Assuming the first line is for a connected
user, locate calls thc dispatcher to indicate that it
has finished with the input line. I’hc dispatcher
makes both programs ready to run. ‘1’0 pump data
out of the pipeline as quickly as possible, the clis-
patcher puts the right-hand program last on the
ready stack, so locate is resumed once more. It
calls the dispatcher to get another record and is
suspended waiting for input t o be rnade available
becausc .split has not yet written the next line.

split is rcmmed to provide the second rccord. ‘I’his
process is rrpcated for each rccord i n the input file.

rp rcturns on the initial invocation when all lines
are proccssed. ‘The pipelinc dispatcher severs all
streams availahle to a program (in this case thcre is
only thc primary output stream). Severing the
stream which split is waiting for sets return code 12
and makes the program ready to run.

split is rcsumcd. It notes the return code meaning
end-of-filc and rcturns as well. ‘This reflects
end-of-file to locate which also rcturns. count gets
end-of-file and writes a line with thc count on its
primary output stream. console is finally started to
process the line and write the response to the ter-
minal.

How CMS Pipelines Evolved
CA.lL5‘ Pi/rclinc..c evolved over the 1980s. ‘I’he first
implementafion ran on VM/System Product
Release 1; thc parser used the tokenised pararnetcr
list -the untokeniscd command string was not
availahlc t o a CMS command i n those days. The
first built-in programs supported thc console, disk
files, and til-tual unit record output devices. Filters
wcre rcsolvttl from a fcw built-in dcvicc drivers and
the CMS loader tahlcs. A pipeline was run by
calling the parscr (with a 13AI)R instruction). ‘I‘his
implementation was convenient to write CMS user
area modules.

VM/Systcln Product Release 2 introduced
NIJCXI , O A l) to load relocatable modules from a
I,OAlI~.~II3 into frce storage as commands. A

command interface was written to support this.
Because NIJCX1,OAI:) was a fransient modulc ori-
ginally, it was not practical 10 have a bootstrap
module; an BXI2C was used insicad. It ensured
that the pipeline module was installed in storage
before invoking it.

R y early 1982 it was clear t o insiders that RlrXX
would be part of VM/System Product Release 3.
A n interface was quickly written when it was
realised that:

The language is attractive I O process data.

‘T’he interpreter is re-entrant.

The mechanism for Norl-SVC Subcommand
lnvocation allows subcomtnands to be issued
on one CMS nesting level.

The system interfaces (after some tweaking) are
suitable to maintain concttrrent invocations of
REXX programs.

’I’he parser was rewritten to use the extended
parameter list on VM/Systetn I’roduct Release 3 .

There were sevrral attempts at multistream pipe-
lines and dynamic reconfiguTation at this time.
After some experimentati!)n, the pipcline
specification found its current form in the summer
of 1985.

VM/System Product CA4,3 J‘ipclina J’rogram
Offering (5785-RAC) was announced on October
6, 1986.

NIJCX1,OAII was made nucleus resident. i n
VM/System Product Release 4. The PlPli boot-
strap was written to avoid going through an FXEC
to run a pipeline.

‘I’he program descriptor *;as introduced i n
Modification 1,evel 2 which sltipped in Novcrnbcr
1987. XA toleration was shipped in Modificatic>n
1 ,eve1 3 in Ilecernber 1988. Modification 1 c’, c.1 4,
shipped in October 1989, provided XA exploitation
and support of PL/I and IBM (:/370.
Modification level 5, shipped in August 1990, pro-
vided support for commit level:; and VMjEtsA.

Virtual Machine CMS Pipelines r?PQ P8105‘) was
announced October 31, 1989.

CMS Pipelines moves CMS away from the single-
task single-program model. CMS Pipelines is
attractive because it:

Makes the systcm more eficient and respon-
sive. I’assing data (in storage) between pro-
grams saves l/O operations. Running
co-routines saves processor time relative to
calling suhroutines.

Makes the programmer more eficient. The
user and the programmer can often plug func-
tional building blocks together without having
to worry about procedural code. A solution is
often expressed as a subroutine pipeline that
can be called from other programs. Filters are
easily atltlcd to tailor existing solutions.

Makes programs more robust. A filter is tested
out of context, and often exhaustively. It is
easy to perform a regression test.

Supports REXX as a programming language
both to write command procedures that use
pipelines for processing, and as programs in the
pipeline processing data.

I’rovitlcs multistream pipelines. Selection
filters can split a file in streams that are proc-
essed in tlifferent ways. Programs using mul-
tiple strcarns can be cascaded.

Supplies a library of more than 100 built-in
programs to access host interfaces and operate
on data.

Refevences
CMS I’ipclincs Tutorial, GG66-3 158, explains
Ch4,Y I ’ i p / i w s in 15 easy chapters with many
examples.

CMS I’ipclincs IJser’s Guide and Filter Refercnce,
SI ,26-0018, has a task-orientcd guide to Ch!S
Pipelines and a reference section describing built-in
programs and messages.

CMS Pipclincs ‘I’oolsmith’s Guide and Filter J’ro-
gramming I<cfcrence, SL26-0020, dcscribcs multi-
stream pipelines, the REXX interface, and the
original Assembler programming interface.

95

CMS Pipelines Installation and h4aintenance Ref-
erence, SI ,264019, describes maintenancc: proce-
dures, and how to gencrate a filter package.

96

