
Networked

Middleware’s
Shrinking Middle

Bob Filman is taking a break from writing his column,
and asked me to play guest columnist.

D uring the early days (late 1980s and early
1990s) of what’s come to be called object-
oriented middleware, researchers and devel-

opers shared the vision that distributed-object
systems should look something like the present-
day Corba, Java RMI, COM, and .NET. These
frameworks consist of tools for defining service
objects that clients can use across a network via
“remote” references. Clients access services with-
in distributed applications using a variant of
method calls that communicate data by sending
and receiving “marshaled” copies of nonremote
objects as message arguments. Basic framework
support includes registries that track remote
objects’ locations, proxies that intercept outgoing
calls and transform them to use custom network
remote procedure call (RPC) protocols, and listen-
ers that receive incoming calls, dispatch them to
their target service objects, and relay results.

It’s a pretty good story, but it hasn’t worked out
according to plan. Experience has shown that the
gap is too big between middleware frameworks’
two main usage modes:

• external communication among hosts to sup-
port services over the open Internet, and

• internal communication among processes on
the same machine or within local clusters run-
ning under common administrative domains.

These different usage modes often coexist in
the same programs. Many systems employ exter-
nally inaccessible distributed objects to support
integrated applications featuring externally acces-
sible objects that are ready to serve unknown
requesters with particular services. However, pro-
grams rarely employ objects that mix both inter-
nal and external modes.

Most middleware frameworks try to cope with

these differences by specially “optimizing” inter-
nal communication (streamlining marshaling for
local invocations, for example) and “pessimizing”
external communication (such as interposing con-
tainer objects to perform more elaborate security
checks). Over time, however, it’s become clear that
these usage modes’ underlying programming mod-
els are so dissimilar that it does more harm than
good to treat them as variants along a continuum.
This has led to searches for alternatives for sup-
porting both external and internal modes.

External Communication
Alternatives for external communication have
received the most attention over the past five years
or so, mainly under the heading of service-oriented
architectures (SOAs). The old-guard distributed-
object system camp tends to think of SOA as a gra-
tuitous reinvention of everything that’s been done
before (five generations of overhauls, if you include
early RPC and Distributed Computing Environment
[DCE] frameworks). SOA can even appear to be a
step backward in that implementations tend to be
noticeably slower than mature distributed-object
frameworks. However, such dismissals ignore the
inescapable pressures that led to its development:
firewalls and related security concerns argue for
adopting common, basic Web protocols (such as
HTTP) rather than custom RPC protocols (such as
IIOP). Similarly, XML’s rise in various other con-
texts makes it the only reasonable candidate for
representing data used in distributed messaging
rather than relying on custom language- or frame-
work-specific data marshaling. Furthermore, the
statelessness of Web-based communication argues
for abstracting functionality into services per-
formed by anonymous objects assuming appropri-
ate roles, rather than identifiable stateful objects.
Finally, the SOA approach appears far more
amenable to the scripted orchestration and chore-
ography that’s increasingly required to coordinate
loosely coupled services, and increasingly desired

4 SEPTEMBER • OCTOBER 2006 Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

From the Editor in Chief...

Doug Lea • State University of New York, Oswego

for Asynchronous JavaScript and XML
(AJAX), mash-ups, and the like.

Internal Communication
Researchers and developers have also
explored alternatives on the internal
front, but these haven’t converged as
rapidly as SOA. This will likely change
as clusters (and clusters of multicores,
in particular) become the most common
substrate for application servers and
other large applications. Perhaps the
simplest-sounding approach is distrib-
uted shared memory (DSM), in which
programs executing across different
machines in a LAN or different process-
es on a single machine “transparently”
share objects in the same way that dif-
ferent threads in a process do. The
underlying mechanics are usually based
on caching protocols that track reads
and writes of pages of memory con-
taining the shared objects. This tends to
be more efficient than programmer-
directed marshaling. Although success-
ful in several experimental research
systems, this approach hasn’t widely
caught on, in part because most DSM
systems ignore a useful software engi-
neering aspect of RPC-like systems: for
the sake of fault containment, manage-
ability, and program modularity, most
objects should be directly accessible
only from their containing processes.

A different approach to program-
ming clusters has roots in the high-
performance computing (HPC) world.
Frameworks such as the message-
passing interface (MPI) supply simple
but fast communication primitives to
explicitly transmit data across process-
es. This results in problems opposite to
those in DSM — including the inability
to use shared names for shared objects
— and requirements that programmers
manually arrive at efficient solutions
for load-balancing, fault-tolerance,
and moving data where it’s needed. In
non-HPC systems, various custom
clustering frameworks tend to take
either a shared-memory or message-
passing approach and then partially
address shortcomings. Differences

among such coexisting yet nearly
redundant frameworks contribute to
large systems’ complexity and man-
agement difficulties.

The leading contender for converg-
ing internal middleware frameworks in
the same sense that SOA did for exter-
nal frameworks is the Partitioned Glob-
al Address Space (PGAS) approach,
which unifies aspects of both shared
memory and message passing. As with
DSM, all processes in a cluster can ref-
erence all objects. Here, however, only
the containing process can access a
given object’s fields or invoke its meth-
ods. Other processes must explicitly ask
owners to perform such operations. The
owners can, in turn, disallow such
operations, depending on programmer-
defined access policies. For ease of use,
languages and frameworks might auto-
matically translate certain accesses as
asynchronous or synchronous requests
to the owning processes. Among lan-
guage-level efforts, the most prominent
example of this approach is IBM’s in-
development language, X10, which is
geared mainly toward HPC applica-
tions. Some variant of this line of
attack seems likely to prevail in
upcoming languages and frameworks.

T he rise of SOA and PGAS doesn’t
quite spell the end of Corba, RMI,

and other classic distributed-object
systems, but it does increasingly
restrict their ranges of use. These tech-
nologies will surely still play major
roles in enterprise-integration systems
and heterogeneous intranet applica-
tions and niches such as real-time
Corba, as well as the countless exist-
ing deployments that will remain with
us for years. They might even re-
emerge as the approach of choice in
future grid computing frameworks
that must sometimes straddle admin-
istrative domains. But the idea that
one approach to object-oriented mid-
dleware could serve all needs seems
to be one whose time has come and
gone — which is to say that it never
really came at all.

Doug Lea is a professor of computer science at the

State University of New York, Oswego. He

has a BA, an MA, and a PhD from the Uni-

versity of New Hampshire. Lea has written

several widely used software utility packages

in C, C++, and Java. He is Associate Editor in

Chief for IEEE Internet Computing. Contact

him at dl@cs.oswego.edu.

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2006 5

Middleware’s Shrinking Middle

IEEE Pervasive Computing
delivers the latest peer-
reviewed developments
in pervasive, mobile, and
ubiquitous computing
to developers,
researchers, and
educators who want to

keep abreast of rapid technology
change. With content that’s accessible and useful

today, this publication acts as a catalyst for
progress in this emerging field, bringing together
the leading experts in such areas as

• Hardware technologies

• Software infrastructure

• Sensing and interaction with the
physical world

• Graceful integration of human users

• Systems considerations, including
scalability, security, and privacy

Subscribe

Now!

• RFID Technology

• Pervasive
Computing for
Emerging
Economies

• Real-World
Ubicomp
Deployments

• Intelligent
Transportation

• RFID Technology

• Pervasive
Computing for
Emerging
Economies

• Real-World
Ubicomp
Deployments

• Intelligent
Transportation

F E A T U R I N G
I N 2 0 0 6

V I S I T www.computer.org/pervasive/subscribe.htm

