
Christian Grothoff

COMP 2355 Introduction to Systems
Programming

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1

Christian Grothoff

README

http://grothoff.org/christian/teaching/2009/2355/

2

Christian Grothoff

Academic dishonesty

• Course webpage says what is allowed.

• If in doubt, ask first!

• Cheating can be detected with automated tools.

• Any violation will be reported.

3

Christian Grothoff

Definition: Plagiarism

Plagiarism is the presentation of another person’s idea or product as

your own. Plagiarism includes but is not limited to the following:

• Copying word-for-word all or in part of another’s written work;

• using phrases, charts, figures, illustrations, graphics, codes, music,
mathematical, scientific solutions without citing the source;

• except for common knowledge, paraphrasing ideas, conclusions, or
research without citing the source;

• using all or part of a literary plot, poem, film, musical score,
internet website or other artistic product without attributing the
work to its creator.

4

Christian Grothoff

Academic dishonesty

• You are encouraged to discuss the materials, homework,
and projects together.

• However, all written assignments and programs must be
done individually or in the assigned groups.

• Academic dishonesty includes, but is not limited
to: plagiarism, cheating in exams, unauthorized
collaboration and falsifying academic records.

5

Christian Grothoff

Expectations

• Read the indicated chapters of the textbook – not every
detail is covered in class, but it may still be part of the
quizzes!

• Deliver tested, working versions of assignments on time
using subversion.

• Review the material of the last class before the next
class.

• Do well on in-class quizzes (no midterm, no final).

• Experiment. Participate in class.

6

Christian Grothoff

Homeworks

• Programming assignments are posted on-line. You must
submit those using subversion.

• Additionally, various smaller “homeworks” will be
assigned in class (or done as practice during class).

• Those “homeworks” do not need to be submitted.
However, questions relating to those homeworks will
be asked during in-class quizzes.

• Experiment and explore. Doing just the bare minimum
does not guarantee that you will have answers to all of
the quiz questions!

7

Christian Grothoff

Grades

> 90 A

> 75 B

> 60 C

≥ 45 D

< 45 F

8

Christian Grothoff

Grading Policies

• Assignments: 60 pts

• Quizzes: 30 pts

• Final Exam / Project (Lecture 20): 10 pts

• No curve

9

Christian Grothoff

Workload

• This is supposed to be a hard course.

• You are expected to work on average about 12h/week
in addition to the lecture for this class.

• If you do not understand the assigned material in the
textbooks, ask well before the next lecture – it maybe
on the quiz!

10

Christian Grothoff

Quizzes

• Quizzes will be designed to test in-depth knowledge.

• Quizzes may ask questions related to any prior class,

not just the previous class.

• Quizzes will cover textbook material and homework

answers not discussed in class. Read and explore or fail!

• You can pass the class without the quizzes, if you do

perfectly on the programming assignments

11

Christian Grothoff

Clarification

12

Christian Grothoff

Auditing Policy

• You can only audit this course if you submit all of the
assignments

• Registered students have priority in office hours and
with the TA

• The TA may or may not grade your projects

13

Christian Grothoff

Hints from a Beta-Tester

• Have (install) your own GNU/Linux system

• You need to read the materials in detail; this will save
you plenty of time when coding (less re-inventing the
wheel!)

• This course is harder than programming languages, plan
to spend more than 8h/week on it.

14

Christian Grothoff

Content Overview

• The C programming language

• The C++ programming language

• System V APIs / GNU libc

15

Christian Grothoff

Content (1/2)

• Datatypes in C

• The C preprocessor

• Linking and loading

• System V APIs

• Pointers

• C development and build systems

16

Christian Grothoff

Content (2/2)

• Input-output in C

• Process management

• Higher order fun

• Terminal programming

• C++ namespaces, classes, templates, operators

• C++ STL

• Buffer overflows and memory corruption

17

Christian Grothoff

COMP 3354

• Same lectures

• Additional assignment: Implement three CMS pipeline
stages or suggest a good alternative project to the
instructor

• Same grading percentages

18

Christian Grothoff

Questions

?

19

Christian Grothoff

Systems Theory

• Interdisiplinary field of science concerned with the study
of complex systems

• A system is a set of interacting or interdependent
entities.

• Managing complexity is the key problem in systems
engineering.

20

Christian Grothoff

What is Systems Programming?

Systems programming is the writing of system software.

Systems software is software supporting application

software.

21

Christian Grothoff

Examples of Systems Software

• Operating systems / Firmware

• Programming tools (compilers, linkers, loaders)

• (Essential) runtime libraries of programming languages

22

Christian Grothoff

Why Study Systems Programming?

Systems programming is:

• essential to any kind of computing

• an important foundation for application development

• constantly evolving to accomodate changes in hardware
(job security!)

• hacking with unparalleled freedom

• fun!

23

Christian Grothoff

The Mindset of a Systems Programmer

• How does this really work (down to the hardware level)?

• How can I improve performance?

• I can do this – without trapeze and false bottoms!

24

Christian Grothoff

Why Study C?

• C is the language of the systems programmer

• All major Operating Systems are written in C (BSD,
Linux, OS X, Windows)

• C is a subset of C++ (so you cannot know C++ and
not know C)

• C and C++ together are used for more than 1
3 of all

open-source projects at SourceForge1

1http://www.cs.berkeley.edu/ flab/languages.html

25

Christian Grothoff

What is Special About C?

• C is essentially abstract assembly language of many
historical processors (like the PDP series)

⇒ You can emulate features from high-level languages
(such as Java, OCAML, PHP) in C!

• C has hardly any runtime system

⇒ Small footprint, easily ported to new architectures

26

Christian Grothoff

Why Study C++?

C++ adds popular features from other languages to C.

+ No need to emulate certain features manually

+ Nice, standardized syntax for those features makes code
easier to read

+ Still all of the power of C “under the hood”

o Much larger language, harder to learn and use well

– C++ has a non-trivial runtime system

– C++ still evolves; C is much more stable as a language

27

Christian Grothoff

Beyond “Introduction to C”

This course is also about good programming practice:

• Use of tools and principles behind those tools
(subversion, compilers)

• Use of libraries and API design (GNU libc, STL)

• Understanding of UNIX design principles (System V,
Security)

• Solving problems as a team

28

Christian Grothoff

Collaboration

• Essential: problems are often too hard for just one
person

• Different people contribute different skills

• Meeting in person is costly (time, travel, low
productivity)

⇒ Internet-supported collaboration

29

Christian Grothoff

Key Collaboration Tools

• Communication: E-mail, IRC, VoIP, ...

• Issue tracking: Forums, Bugtracking Systems, ...

• Knowledge integration: WWW pages, Forums, Wikis,
...

• Data management: Version Control Systems

30

Christian Grothoff

Version Control Systems

Key Features of VCS include:

• Content Distribution

• Access Control Mechanisms

• Data Backup / Recovery / Rollback

• Branching and Merging

31

Christian Grothoff

Content Distribution

• “Latest” version is in the VCS repository

• Any authorized user can obtain this version – possibly
multiple times

• Before work starts, checkout latest version from
repository

• Periodically during the session (and at the end), commit
to repository

⇒ Easy way to keep data synchronized between multiple
machines!

32

Christian Grothoff

Normal Use

$ svn checkout https://svn/courses/comp2355/w2009/alice/
$ cd alice
$ mkdir P1
$ svn add P1
$ svn commit -m ’starting P1’
$ $EDITOR P1/mycode.c
$ svn add P1/mycode.c
$ svn commit -m ’first round’
$ $EDITOR P1/mycode.c
$ svn commit -m ’update’

33

Christian Grothoff

Access Control

• Anonymous read-access: anyone can read the data

• Individual read access: specific users can read

• Individual write access: specific users can update

• Group access: simplify management by creating groups

• Partition repository: different rules for different
directories

Authentication is usually done using username and

password.

34

Christian Grothoff

Example: Subversion Access Control

[/comp2355/w2009]
grothoff = rw
* =
[/comp2355/w2009/alice]
alice = rw
grothoff = rw
[/comp2355/w2009/bob]
bob = rw
grothoff = rw
[/comp2355/w2009/ateam]
alice = rw
bob = rw

35

Christian Grothoff

Example: Subversion Access Control

The “passwd” file contains lines like this:

grothoff:N2FHEWsLcoPto

The SVN client transmits the password P . The server

then computes H(P + Salt) and compares with the hash

code in “passwd”.

36

Christian Grothoff

Versioning

• Each commit operation creates a new revision

• VCS enables accessing all past revisions

• Subversion gives each revision a unique number (per
repository)

• VCS attempts to minimize space overhead for storing
revisions

• VCS enables concurrent editing and attempts to merge
changes

37

Christian Grothoff

Example: Concurrent Editing

1. Alice creates an initial text TA and commits to the VCS
(R1)

2. Bob retrieves TA from the VCS and begins to edit

3. Carol retrieves TA from the VCS and also edits it

4. Bob commits his updated text TAB to VCS (R2)

5. Carol completes her edits (TAC), but her commit fails:
she edited R1, but the latest version is R2 (and she
edited R1)

38

Christian Grothoff

Example: Concurrent Editing

6. Carol retrieves Bob’s changes (TAB − TA) using VCS

7. The VCS automatically attempts to produce TABC =
TAC + (TAB − TA).

8. If the VCS is not certain that it succeeded, it may
require Carol to verify TABC manually.

9. Carol commits TABC as R3.

10. Alice requests the latest updates from the VCS,
obtaining TABC.

39

Christian Grothoff

Automatic Merging

• TAB − TA is computed line-by-line

• Each change is stored with some context (lines before,
lines after, offset in file, etc.)

• If changes apply to different lines and are at least a
line apart in the document, automatic patching should
succeed

• Otherwise, SVN produces a document with both
versions

40

Christian Grothoff

A Merge Conflict

Alices text.
<<<<<<<<<<
Bob inserted this text.
==========
Carol inserted this text.
>>>>>>>>>>
More text from Alice.

Edit the text to resolve the conflict, then use svn
resolved filename to tell Subversion that all conflicts

in the file have been addressed.

41

Christian Grothoff

Branching

• Branches enable parallel development of closely related
works

• Branches are created from a common starting point

• The starting point is often the current version, but does
not have to be

• Each branch can make progress independently of the
others

• VCS can help with merging branches

• For more information on branching, RTFM!

42

Christian Grothoff

Questions

?

43

Christian Grothoff

Homework hints

• $ svn add filename ; svn commit -m “logmessage”

• $ gcc -o binary sourcename.c ; ./binary

44

Christian Grothoff

Homework summary

Before the next lecture:

• Generate password with htpasswd and register account.

• Read textbook chapters indicated on the webpage.

• Install software (or use department machines).

• Implement “Hello World” a few times.

• Test with provided script and submit!

45

Christian Grothoff

Questions

?

46

