
Christian Grothoff

COMP 2355 Introduction to Systems
Programming

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1

Christian Grothoff

Today

• Long jumps

• What are Signals?

• Using Signals

• Signals and gdb

2

Christian Grothoff

Funky Control Flow

• int setjmp(jmp buf env)

• void longjmp(jmp buf env, int val)

>99.999% of the time it is a very bad idea to use these

functions!

3

Christian Grothoff

Signals

• Signals are software interrupts

• Examples: illegal instruction, division by zero,
segmentation violation, terminal closed, CTRL-C, etc.

• Possible actions: ignore, block (delay until unblocked),
catch (call a signal handler) or die

• Not all actions are possible for all signals, each signal
has a default action

4

Christian Grothoff

Signal Generation

Signals can be generated by:

• Errors

• External events

• Explicit requests

You will see plenty of examples.

5

Christian Grothoff

Signal Delivery

Once a signal is generated, it becomes pending.

• Delivery of blocked signals will be delayed until they are
unblocked

• For certain signals, the action is fixed (example:
SIGKILL, SIGSTOP)

• For other signals, the programmer can specify an action,
including ignoring the signal

6

Christian Grothoff

Running the Action

• Interrupt the currently executing code (may happen at
any time!)

• Save the current registers (on the stack)

• Use the current stack to run the signal handler

• Return from signal handler restores registers and
resumes original execution

7

Christian Grothoff

Default Action

• Some signals have default actions

• Signals representing errors usually terminate the
application, some with a core dump (if enabled)

• Some signals are ignored by default

8

Christian Grothoff

SIGFPE

#include <signal.h>
#include <setjmp.h>
sigjmp_buf jbuf; int i;

static void handler(int sig) {
printf("Oops!\n");
i = 5;
longjmp(jbuf, 1); }

int main(int argc, char** argv) {
if (0 != setjmp(jbuf)) return 1;
signal(SIGFPE, &handler);
return 1 / i; }

9

Christian Grothoff

SIGSEGV

static void handler(int sig) {
printf("Oops!\n");
exit(0);

}
int main(int argc, char** argv) {

char * ptr;

ptr = NULL;
signal(SIGSEGV, &handler);
ptr[3] = 4;
return 0;

}

10

Christian Grothoff

SIGBUS

int main(int argc, char** argv) {
char a[20];
long * l = &a[3];

signal(SIGBUS, &handler);
l = 0; / on certain processors only! */
return 0;

}

11

Christian Grothoff

SIGALRM

static void handler(int sig) {
exit(0);

}
int main(int argc, char** argv) {

signal(SIGALRM, &handler);
alarm(4); // read the man-page!
while (1) fprintf(stderr, ".");
return 0;

}

12

Christian Grothoff

SIGCHLD

pid_t child;
static void handler(int sig) {

int status; waitpid(child, &status, 0); exit(0); }
int main(int argc, char** argv) {

int i = 10;
signal(SIGCHLD, &handler);
child = fork();
if (child == 0)

while (--i) fprintf(stderr, "C");
else

while (1) fprintf(stderr, "P");
return 0; }

13

Christian Grothoff

SIGPIPE

static void handler(int sig) {
printf("SIGPIPE!\n");

}
int main(int argc, char** argv) {

int p[2];
signal(SIGPIPE, &handler);
pipe(p);
close(p[0]);
write(p[1], "Hello", 5);
return 0;

}

14

Christian Grothoff

External Signals

• SIGHUP, SIGINT, SIGQUIT, SIGTERM, SIGKILL

• SIGTRAP, SIGPROF

• SIGUSR1, SIGUSR2

• SIGSTOP, SIGCONT

15

Christian Grothoff

Signal Handling

• pid t getpid()

• int kill(pid t pid, int sig)

• int pause(void) – usually select is better!

• typedef void (*sighandler t)(int)

• sighandler t signal(int signum, signalhandler t handler)

16

Christian Grothoff

Modern Signal Handling

• int sigaction(int signum, const struct sigaction * act,
struct sigaction * old)

struct sigaction {
void (*sa_handler)(int)
// ...
int sa_flags;

}

17

Christian Grothoff

Signals during Signal Handling

• Signals can arrive during the signal handler

• The signal that is currently handled is automatically
blocked (and unblocked upon completion of the handler)

• struct sigaction can be used to specify additional
signals that should be blocked

• If a signal arrives again before the previous signal was
handled, the two signals maybe merged into one

18

Christian Grothoff

Signal Handler Code

Because a signal handler maybe called at any time handler

code must be careful with mutable state of the application

– it maybe in an inconsistent state.

• Do not use malloc or free (they internally use global
state!

• If you change global variables, consider declaring them
volatile

19

Christian Grothoff

Signals and System Calls

Signals may happen during system calls!

• Most system calls for IO will return an error code (-1)

• errno will be set to EINTR

• Always check return codes of all system calls!

• Often, EINTR should be handled by trying again

20

Christian Grothoff

Exercise (Teams of two students are ok)

Write a program that interprets receiving the signals

SIGUSR1 and SIGUSR2 as morse code (USR1 being dot,

USR2 being dash) and prints the decoded text.

Write a second program that takes a PID as the first

argument and sends a sequence of signals to the process

with the given PID which corresponds to the morse code

of the text read from stdin.

Test your code. The experience will be vital to answering

quiz questions next time.

21

Christian Grothoff

Questions

?

22

