
Christian Grothoff

COMP 2355 Introduction to Systems
Programming

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1

Christian Grothoff

Processes

• A process is an instance of a running program.

• Programs do not have to have a GUI!

• When you issue a command in the UNIX shell, the shell
starts a new process

• ps -x will list all of your current processes.

2

Christian Grothoff

Executing other Programs

• int system(const char * string)

• int execvp(const char* file, const char* argv[])

• pid t fork(void)

• pid t wait(int * status)

• pid t waitpid(pid t pid, int* status, int options)

3

Christian Grothoff

Fork

• Creates a second process, identical to the current one
except for the return value of fork

• A pipe created before fork can then be used for
communication between the two processes.

• execvp will (if successful) replace the current process
one running the target binary’s main function

• File descriptors without the close-on-exec flag will
survive exec

4

Christian Grothoff

Fork Bombs

int main(int argc, char ** argv) {
while (1) fork();
return 0;

}

5

Christian Grothoff

Fork: Same Code, New Address Space

int main(int argc, char ** argv) {
const char * c1;
const char * c2;
c1 = "Hello ";
if (fork())

c2 = "World!";
else

c2 = "Child!";
printf("%s %s\n", c1, c2);
return 0;

}

6

Christian Grothoff

Pipe, Fork, Dup2 and Exec

int main(int argc, char ** argv) {
int p[2]; pipe(p);
if (fork() == 0) {

close(p[1]);
close(0);
dup2(p[0], 0);
execlp("/bin/cat", "", "-", NULL);

}
close(p[0]);
while (1) write(p[1], ".", 1);
return 0;

}

7

Christian Grothoff

Example: Pipes

• ls|less

• Pipes – The pipe (|) is a junction that tells the shell to

connect the standard output of one program with the

standard input of another.

8

Christian Grothoff

Example: Input-output redirection

• < tells the shell to use a file as stdin

• > tells the shell to create a file for stdout

• >> tells the shell to append to a file for stdout

• 2 > tells the shell to create a file for stderr

9

Christian Grothoff

Example: Filters

cat -n < test.c > test.txt

• A filter is a program that accepts input, transforms it,

and outputs the transformed data.

• Pipes and IO redirection can be used to combine filters

to create powerful shell programs

All of these examples are implemented by the shell using

pipe, dup2, fork and exec.

10

Christian Grothoff

Zombies!

• Exit status of process must be communicated to parent

• Parent may not acknowledge status immediately

⇒ Zombie process is left

You cannot kill zombies, but you can kill their parents

(useful if they fail to acknowledge the death of their

child)!

11

Christian Grothoff

Zombie Attack

int main(int argc, char ** argv) {
while (! fork());
return 0;

}

12

Christian Grothoff

Homework

Watch “Shawn of the Dead”.

13

Christian Grothoff

Init

• Process 1

• Parent of orphans

• Reads (and discards) exit status

⇒ Orphaned zombies die immediately

14

Christian Grothoff

Introspection

• pid t getpid(void)

• pid t getppid(void)

15

Christian Grothoff

Be nice!

• int nice(int incr)

• Only root can use a negative priority

16

Christian Grothoff

Process Termination

• return from main method

• void exit(int status)

• void abort(void)

• void exit(int status)

• int atexit(void (*function)(void))

17

Christian Grothoff

Inter-Process Communication (IPC)

• FIFOs

• Semaphores

• Shared memory

• Messages

The command “ipcs -a” lists all active IPC resources

managed by the kernel (except for FIFOs).

18

Christian Grothoff

Named Pipes or FIFOs

• FIFOs work just like regular pipes

• However, they have a filename on disk

⇒ FIFOs can be used for communciations between arbitrary
processes

• int mkfifo(const char * pathname, mode t mode)

19

Christian Grothoff

Semaphores

• A semaphore is created with a given non-negative
number describing available resources

• Acquiring a semaphore atomically decrements the
number of available resources (down)

• Releasing a semaphore atomically increments the
number of available resources (up)

20

Christian Grothoff

Example

• A computer has two monitors

• Applications want to be displayed full-screen on a monitor

• Semaphore is created with initial value of 2

• Application going full-screen tries to acquire (decrement by one);
if more than two applications are already full-screen, acquisition
either blocks or fails

• Full-screen applications that exit release the semaphore (increment
by one)

21

Christian Grothoff

IPC Semaphore Operations

• sem t *sem open(const char *name, int oflag, mode t mode,
unsigned int value)

• int sem close(sem t *sem)

• int sem wait(sem t *sem) (down)

• int sem trywait(sem t *sem)

• int sem post(sem t *sem) (up)

22

Christian Grothoff

Homework

Read up on the “Sleeping barber problem”.

23

Christian Grothoff

Shared Memory

• int shmget(key t key, size t size, int shmflg)

• void *shmat(int shmid, const void *shmaddr, int shmflg)

• int shmdt(const void *shmaddr)

• int shmctl(int shmid, int cmd, struct shmid ds *buf)

24

Christian Grothoff

Messages

• int msgget(key t key, int msgflg)

• int msgsnd(int msqid, const void *msgp, size t msgsz,
int msgflg)

• ssize t msgrcv(int msqid, void *msgp, size t msgsz, long
msgtyp, int msgflg)

25

Christian Grothoff

Questions

?

26

Christian Grothoff

Question!

These days, TCP/IP sockets are virtually always used

instead of IPC messages. Why?

27

Christian Grothoff

Process User Identifiers

• Each process is associated with multiple user IDs: real,
effective, saved and possibly others

• Real UID is the UID of the process that created this
process. Can only be changed if effective UID is root
(0).

• Effective UID is used for permission checks; EUID can
be changed to real UID or to saved UID. If EUID is 0,
anything goes.

• New files are created using the effective UID

28

Christian Grothoff

SUID, SGID

• If permissions of executable file are set to SUID, SUID
of executed process will be set to UID of the file’s owner.

• This allows the program to switch to those permissions
using seteuid(SUID)

• Processes also have multiple group IDs, the same rules
apply.

• Binaries with SUID and SGID can be used to elevate
permissions

29

Christian Grothoff

The API

• uid t getuid(void)

• uid t geteuid(void)

• gid t getgid(void)

• gid t getegid(void)

• int setuid(uid t uid)

• int setgid(gid t gid)

30

Christian Grothoff

The API

• struct passwd * getpwnam(const char * name)

• struct passwd * getpwuid(uid t uid)

31

Christian Grothoff

struct passwd

struct passwd {
char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

};

32

Christian Grothoff

clone

clone is how fork is implemented on Linux:

int clone(int (*fn)(void *),
void *child_stack,
int flags, void *arg, ...)

Again, the clone call is Linux-specific.

⇒ More about this in Lecture 19.

33

Christian Grothoff

ipc

ipc is how semctl, semget, semop, shmget and so on

are implemented on Linux:

int ipc(unsigned int call,
int first,
int second,
int third,
void *ptr,
long fifth)

Again, the ipc call is Linux-specific.

34

Christian Grothoff

Questions

?

35

Christian Grothoff

Homework

Can you use getpwnam to obtain the password of another

user in the GNU/Linux lab? How about obtaining your

own password? Find out!

36

