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Processes

• A process is an instance of a running program.

• Programs do not have to have a GUI!

• When you issue a command in the UNIX shell, the shell
starts a new process

• ps -x will list all of your current processes.

2



Christian Grothoff

Executing other Programs

• int system(const char * string)

• int execvp(const char* file, const char* argv[])

• pid t fork(void)

• pid t wait(int * status)

• pid t waitpid(pid t pid, int* status, int options)
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Fork

• Creates a second process, identical to the current one
except for the return value of fork

• A pipe created before fork can then be used for
communication between the two processes.

• execvp will (if successful) replace the current process
one running the target binary’s main function

• File descriptors without the close-on-exec flag will
survive exec
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Fork Bombs

int main(int argc, char ** argv) {
while (1) fork();
return 0;

}
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Fork: Same Code, New Address Space

int main(int argc, char ** argv) {
const char * c1;
const char * c2;
c1 = "Hello ";
if (fork())

c2 = "World!";
else

c2 = "Child!";
printf("%s %s\n", c1, c2);
return 0;

}
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Pipe, Fork, Dup2 and Exec

int main(int argc, char ** argv) {
int p[2]; pipe(p);
if (fork() == 0) {

close(p[1]);
close(0);
dup2(p[0], 0);
execlp("/bin/cat", "", "-", NULL);

}
close(p[0]);
while (1) write(p[1], ".", 1);
return 0;

}
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Example: Pipes

• ls|less

• Pipes – The pipe (|) is a junction that tells the shell to

connect the standard output of one program with the

standard input of another.
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Example: Input-output redirection

• < tells the shell to use a file as stdin

• > tells the shell to create a file for stdout

• >> tells the shell to append to a file for stdout

• 2 > tells the shell to create a file for stderr

9



Christian Grothoff

Example: Filters

cat -n < test.c > test.txt

• A filter is a program that accepts input, transforms it,

and outputs the transformed data.

• Pipes and IO redirection can be used to combine filters

to create powerful shell programs

All of these examples are implemented by the shell using

pipe, dup2, fork and exec.
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Zombies!

• Exit status of process must be communicated to parent

• Parent may not acknowledge status immediately

⇒ Zombie process is left

You cannot kill zombies, but you can kill their parents

(useful if they fail to acknowledge the death of their

child)!
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Zombie Attack

int main(int argc, char ** argv) {
while (! fork());
return 0;

}
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Homework

Watch “Shawn of the Dead”.
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Init

• Process 1

• Parent of orphans

• Reads (and discards) exit status

⇒ Orphaned zombies die immediately
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Introspection

• pid t getpid(void)

• pid t getppid(void)
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Be nice!

• int nice(int incr)

• Only root can use a negative priority
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Process Termination

• return from main method

• void exit(int status)

• void abort(void)

• void exit(int status)

• int atexit(void (*function)(void))

17



Christian Grothoff

Inter-Process Communication (IPC)

• FIFOs

• Semaphores

• Shared memory

• Messages

The command “ipcs -a” lists all active IPC resources

managed by the kernel (except for FIFOs).
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Named Pipes or FIFOs

• FIFOs work just like regular pipes

• However, they have a filename on disk

⇒ FIFOs can be used for communciations between arbitrary
processes

• int mkfifo(const char * pathname, mode t mode)
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Semaphores

• A semaphore is created with a given non-negative
number describing available resources

• Acquiring a semaphore atomically decrements the
number of available resources (down)

• Releasing a semaphore atomically increments the
number of available resources (up)
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Example

• A computer has two monitors

• Applications want to be displayed full-screen on a monitor

• Semaphore is created with initial value of 2

• Application going full-screen tries to acquire (decrement by one);
if more than two applications are already full-screen, acquisition
either blocks or fails

• Full-screen applications that exit release the semaphore (increment
by one)
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IPC Semaphore Operations

• sem t *sem open(const char *name, int oflag, mode t mode,
unsigned int value)

• int sem close(sem t *sem)

• int sem wait(sem t *sem) (down)

• int sem trywait(sem t *sem)

• int sem post(sem t *sem) (up)
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Homework

Read up on the “Sleeping barber problem”.
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Shared Memory

• int shmget(key t key, size t size, int shmflg)

• void *shmat(int shmid, const void *shmaddr, int shmflg)

• int shmdt(const void *shmaddr)

• int shmctl(int shmid, int cmd, struct shmid ds *buf)
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Messages

• int msgget(key t key, int msgflg)

• int msgsnd(int msqid, const void *msgp, size t msgsz,
int msgflg)

• ssize t msgrcv(int msqid, void *msgp, size t msgsz, long
msgtyp, int msgflg)
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Questions

?
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Question!

These days, TCP/IP sockets are virtually always used

instead of IPC messages. Why?
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Process User Identifiers

• Each process is associated with multiple user IDs: real,
effective, saved and possibly others

• Real UID is the UID of the process that created this
process. Can only be changed if effective UID is root
(0).

• Effective UID is used for permission checks; EUID can
be changed to real UID or to saved UID. If EUID is 0,
anything goes.

• New files are created using the effective UID
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SUID, SGID

• If permissions of executable file are set to SUID, SUID
of executed process will be set to UID of the file’s owner.

• This allows the program to switch to those permissions
using seteuid(SUID)

• Processes also have multiple group IDs, the same rules
apply.

• Binaries with SUID and SGID can be used to elevate
permissions
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The API

• uid t getuid(void)

• uid t geteuid(void)

• gid t getgid(void)

• gid t getegid(void)

• int setuid(uid t uid)

• int setgid(gid t gid)
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The API

• struct passwd * getpwnam(const char * name)

• struct passwd * getpwuid(uid t uid)
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struct passwd

struct passwd {
char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

};
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clone

clone is how fork is implemented on Linux:

int clone(int (*fn)(void *),
void *child_stack,
int flags, void *arg, ...)

Again, the clone call is Linux-specific.

⇒ More about this in Lecture 19.
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ipc

ipc is how semctl, semget, semop, shmget and so on

are implemented on Linux:

int ipc(unsigned int call,
int first,
int second,
int third,
void *ptr,
long fifth)

Again, the ipc call is Linux-specific.

34



Christian Grothoff

Questions

?
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Homework

Can you use getpwnam to obtain the password of another

user in the GNU/Linux lab? How about obtaining your

own password? Find out!
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