
Christian Grothoff

COMP 2355 Introduction to Systems
Programming

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1



Christian Grothoff

Today

• Terminal Programming

• Job Control

2



Christian Grothoff

Why bother with text mode?

• Often only practical mode for accessing systems over
the network

• Available on all development platforms

• Easier to implement than graphical interfaces

⇒ Text-mode often only/first interface for prototypes

⇒ Text-mode is great for testing: focus on problem, ignore
GUI

• Learn more about good programming practice and
operating systems

3



Christian Grothoff

What is a Terminal?

4



Christian Grothoff

What is a Terminal?

A VT-100!

5



Christian Grothoff

What is a Terminal?

An xterm!

6



Christian Grothoff

What is a Terminal?

• A device used for human-computer interaction

• Terminals provide text input and text output

• These days, a terminal can refer to hardware or software
emulating hardware

7



Christian Grothoff

Terminal = Keyboard + Monitor?

Not quite:

• Terminals can be programmed and support individual
character IO or line-based IO

• Monitors display pixels, terminals display characters

• Keyboards report key strokes and key release, terminals
report characters

• Keyboard hardware has no transmission problems;
historical (networked) terminals did

8



Christian Grothoff

Terminals vs. stdin/stdout

• stdin (when used with a terminal) is by default line-
based

• stdin echos characters typed in to the terminal (by
default)

• A terminal maybe shared by multiple processes!

⇒ Sharing of stdin and stdout must be controlled!

⇒ Job control

9



Christian Grothoff

Controlling a Terminal

• Terminals are controlled using file descriptors (int)

• The same terminal maybe accessed via many different
file desciptors

• Control operations affect all users of the (same) terminal

10



Christian Grothoff

Identifying Terminals

• IO redirection may mean that stdin or stdout do not
correspond to a terminal!

• int isatty(int filedes) can be used to check!

11



Christian Grothoff

Input Processing Modes

• Canonical: input is processed in lines, the OS provides
(minimal) editing facilities

• Noncanonical: granularity of input is not fixed, user can
specify number of characters and timeout; no editing
support by the OS

12



Christian Grothoff

Getting and Setting Modes

• int tcgetattr(int filedes, struct termios * termios-p)

• int tcsetattr(int filedes, int when,
const struct termios * termios-p)

• When: TCSANOW (immediately), TCSADRAIN (after queued
output has been written), TCSAFLUSH (like DRAIN, but discard
all input), TCSASOFT (read manual)

13



Christian Grothoff

struct termios

struct termios {
tcflag_t c_iflag; // input
tcflag_t c_oflag; // output
tcflag_t c_cflag; // control (network)
tcflag_t c_lflag; // control (local)
cc_t c_cc[NCCS]; // special characters
// ...

}

14



Christian Grothoff

Setting Modes

• struct termios may have additional members

• Additional bits maybe defined in the future

⇒ Never set the entire structure! Instead:

1. Get the current values

2. Modify the bit you intend to change

3. Set the resulting structure

15



Christian Grothoff

Example: enter non-canonical mode

void go_noncanonical(int td) {
struct termios settings;

if (0 != tcgetattr (td, &settings))
return 1;

settings.c_lflag &= ~ICANON;
if (0 != tcsetattr (td, TCSANOW, &settings))
return 1;

return 0;
}

16



Christian Grothoff

Example: enter canonical mode

void go_canonical(int td) {
struct termios settings;

if (0 != tcgetattr (td, &settings))
return 1;

settings.c_lflag |= ICANON;
if (0 != tcsetattr (td, TCSANOW, &settings))
return 1;

return 0;
}

17



Christian Grothoff

Example: toggle echo

void toggle_canonical(int td) {
struct termios settings;

if (0 != tcgetattr (td, &settings))
return 1;

settings.c_lflag ^= ECHO;
if (0 != tcsetattr (td, TCSANOW, &settings))
return 1;

return 0;
}

18



Christian Grothoff

Controlling the input rate

In noncanonical mode, the application has to define how

soon input should be transmitted:

• terminos.c cc[VMIN] specifies the minimum number
of bytes that must be available in order for read to
return

• terminos.c cc[VTIME] specifies how long to wait for
another character before returning

Details are in the GNU C library manual, section 17.4.10.

19



Christian Grothoff

Other modes

• There are many more options for terminals

• Some are only of historic value (modems, old hardware)

• Read the manual if you need something specific!

20



Christian Grothoff

Curses!

• Terminals interpret certain control sequences for special
actions, such as deleting a character, moving the cursor
or clearing the screen

• Different (historic) terminals supported different control
sequences; today, VT100’s set is the most common
standard

• The curses (and now ncurses) libraries provide a
common API for virtually all terminals

21



Christian Grothoff

GNU readline

• Software library for line-input processing with editing

• char * readline(const char * prompt)

• Supports history using add history(const char *
line)

• Supports TAB completion

22



Christian Grothoff

Job Control

• Concepts

• Sharing a Terminal

• SIGHUP

• Shells

23



Christian Grothoff

Sessions

The canonical setup under UNIX is that:

• A session contains all of the processes associated with
a particular terminal

• The shell is the session leader and controls the terminal

• pid t setsid(void) creates a new session, making
the current process the session leader

24



Christian Grothoff

Process Groups

The canonical setup under UNIX is that:

• A process group contains all of the processes belonging
to the same shell command

• setpgid(pid t pid, pid t pgid) sets the process
group

• Job control operations in the shell determine which
process group (currently) controls the terminal

25



Christian Grothoff

Sharing a Terminal: Reading

• Only one process can read from the terminal at any
given time

• This is the foreground job

• int tcsetpgrp(int filedes, pid t pgid id) sets
the foreground job for a terminal

• All other processes trying to read will receive a SIGTTIN
signal, which by default stops all of the processes in that
group

26



Christian Grothoff

Sharing a Terminal: Writing

• By default, multiple processes can write

• If TOSTOP is set in c lflag, writing will cause a
SIGTTOU signal, which again by default stops all
processes in the group

27



Christian Grothoff

SIGHUP

What happens if the terminal is disconnected (or the

session leader terminates)?

• A signal SIGHUP is sent to all processes in the group

• By default, this causes these processes to terminate

• SIGHUP can also be caught

• The nohup command installs a handler causing SIGHUP
to be ignored

28



Christian Grothoff

Shells

• The GNU C library manual (section 27.6) contains a
skeleton

• You can use the code from the manual in your
implementation

• You must acknowledge using code from the manual in
comments

• You can use GNU’s libreadline for input processing

29



Christian Grothoff

Questions

?

30


