
Christian Grothoff

COMP 2355 Introduction to Systems
Programming

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1

Christian Grothoff

The C Preprocessor

• Processes C code before it is being passed to the C
compiler

• Preprocessor interprets directives

• Directives start with a # (which should be the first
character on a line)

• Output of the preprocessor is still C code

• You can ask gcc to only do preprocessing using the -E
option

• You can preprocess any text, not just C code

2

Christian Grothoff

The #include directive

The most common directive is #include FILENAME.

• Any #include FILENAME statement is replaced by
the preprocessor with the contents of FILENAME

• Most often used for C header files (.h) which provide
(library) interface declarations

• Technically, anything can be #include-ed

• #include and other preprocessor operations can result
in syntactic errors that are hard to find for beginners!

3

Christian Grothoff

Conditional Compilation

• You can use #if CONDITION text #endif to cause the
preprocessor to discard all text in between if CONDITION
is zero

• Remember, preprocessing happens before compilation
or execution!

• You can not use C variables or functions as CONDITIONs.

• CONDITION can be a simple constant (“1”, “0”) or a
macro expanding to a constant.

4

Christian Grothoff

Macros

A macro is a textual substitution applied by the C

preprocessor.

• Macros are defined using the #define directive

• Macros can be undefined using the #undef directive

• You can check if a macro is defined using the #ifdef
directive

5

Christian Grothoff

Macros in Headers

The most common use of Macros is preventing headers

files from being included more than once:

/* myheader.h */
#ifndef MYHEADER_H
#define MYHEADER_H
/* actual header content here */
#endif

6

Christian Grothoff

Macros as Constants

• C does not have constants

• The const keyword does something else!

• C uses macros instead of constants.

7

Christian Grothoff

Macros as Constants: Example

#define PI 3.1415
#define YES 1
#define NO 0
#define ERROR -1
#define MY_ERROR_MESSAGE "Oh no, equal to PI!"
int larger_than_pi(float f) {

if (f > PI) return YES;
if (f < PI) return NO;
fprintf(stderr, MY_ERROR_MESSAGE);
return ERROR;

}

8

Christian Grothoff

Macros as Inline Functions

Macros can have arguments:

#define MAX(a,b) ((a) > (b)) ? (a) : (b)
#define MIN(a,b) ((a) < (b)) ? (a) : (b)

9

Christian Grothoff

Looks like a function, but...

int f() {
int a = 0;
int b = 1;
int c = MAX(a++,b++);
printf("%d %d %d\n", a, b, c);

}

What is the output if MAX is a function? What is the

output if MAX is a macro? Why?

10

Christian Grothoff

Macros and control flow

Macros can be too much fun:

#define HELLO(a,b) if ((a) < (b)) printf("Hello!")
int f() {

int a = 0;
int b = 1;
int c = 2;
if (a > c)

HELLO(a,b);
else

printf("Party!");
}

11

Christian Grothoff

After expansion...

int f() {
int a = 0;
int b = 1;
int c = 2;
if (a > c)

if ((a) < (b)) printf("Hello!");
else

printf("Party!");
}

Is that what we wanted?

12

Christian Grothoff

Avoiding dangling else issues

#define HELLO(a,b) do { if ((a)<(b)) \
printf("Hello!");} while(0)

int f() {
int a = 0;
int b = 1;
int c = 2;
if (a > c)

HELLO(a,b);
else

printf("Party!");
}

13

Christian Grothoff

After expansion...

Macros can be more fun:

int f() {
int a = 0;
int b = 1;
int c = 2;
if (a > c)

do { if ((a) < (b)) printf("Hello!"); }
while(0);

else
printf("Party!"); }

14

Christian Grothoff

The ## Operator

int fp(int a, int b) { return a+b; }
int fm(int a, int b) { return a*b; }
#define APPLY(a,b,o) f##o(a,b)
#define RUN(a,b,c,d,o) APPLY(a,APPLY(b,APPLY(c,d,o),o),o)
int main(int argc, char**argv) {

printf("%d %d",
RUN(1,2,3,4,p),
RUN(1,2,3,4,m));

return 0;
}

15

Christian Grothoff

Macros and Types

#define fp(a,b) ((a)+(b))
#define fm(a,b) ((a)*(b))
#define APPLY(a,b,o) f##o(a,b)
#define RUN(a,b,c,d,o) APPLY(a,APPLY(b,APPLY(c,d,o),o),o)
int main(int argc, char**argv) {

printf("%d %f",
RUN(1,2,3,4,p),
RUN(1.1,2.2,3.3,4.4,m));

return 0; }

16

Christian Grothoff

Modular Compilation

• C compilers always only process one preprocessed unit
of C code at a time

• This even applies if you run

$ gcc foo.c bar.c

• Header files are used to inform the C compiler about
functions and variables available from other compilation
units.

17

Christian Grothoff

Declarations and Definitions

• Declarations introduce a symbol

• Definitions give the full details

• A symbol can have any number of (identical)
declarations but only a single definition

• All symbols should be declared before they can be used
(otherwise, the compiler will generate warnings)

• Declarations are needed for mutually recursive functions

18

Christian Grothoff

Declarations and Definitions

• “public” functions are declared in header files

• “public” global variables can be declared in header files

• structs and unions can be declared or defined in
headers

• structs and unions must be defined before sizeof
can be used

• Macros can not be declared

19

Christian Grothoff

Examples for Declarations

float sin(float);
float sin(float f);
void run(void);
struct Foo;
union Bar;
extern int flag;

The extern keyword is mandatory for global variable

declarations!

20

Christian Grothoff

Declarations and Definitions

• Only declare what you must declare for compilation
without warnings

• Only declare functions in headers that are part of the
API that is supposed to be used by other C files

• Avoid declaring global variables

• W32 does NOT allow libraries to declare global variables!

21

Christian Grothoff

static

• static limits the scope of a declaration or definition to
the current compilation unit

• Use static on variables and functions as much as
possible

• static on local variables has a different meaning!

22

Christian Grothoff

Example for static

static int b;
static int m() {
static int a;
return b * a++;

}
int main(int argc, char** argv) {
b = 4;
printf("%d %d %d\n", m(), m(), m());

}

23

Christian Grothoff

Linking

• Linking is automatic unless -c is passed to gcc

• Linking maps uses of declared symbols to definitions in
other compilation units

• Symbols that are declared static are NOT eligible for
use by other compilation units or the linker

• If symbols were declared and used but are not defined
anywhere, linking may fail!

• Symbols from external libraries (like GNU libc) will be
resolved by the loader

24

Christian Grothoff

Types of Binaries

• Static Libraries: resolved by linker

• Shared Libraries: resolved by loader

• Programs: contain main

For now, you will always use gcc to create programs.

Creating libraries will be discussed in lecture 7.

25

Christian Grothoff

Loading

• A loader loads a binary and (shared) libraries that the
binary depends on into memory

• The loader then modifies the code to match unresolved
symbols from the binary to the respective symbols of
the libraries

• ldd shows which libraries the loader will load to resolve
symbols

We will have more fun with the loader in lecture 10.

26

Christian Grothoff

gdb Invocation

• $ gdb binary-name

• $ gdb binary-name core-file

• Make sure binary is compiled with option -g

• Using -O0 (no optimizations) might also be useful

27

Christian Grothoff

Using gdb

• (gdb) run ARGS

• (gdb) attach PID

• (gdb) break FUNCTION

• (gdb) break FILENAME:LINE

• (gdb) bt DEPTH

28

Christian Grothoff

Using gdb

• (gdb) continue

• (gdb) s[tep]

• (gdb) n[ext]

29

Christian Grothoff

Using gdb

• (gdb) info args

• (gdb) info locals

• (gdb) info threads

30

Christian Grothoff

Printing and eXamining

• (gdb) print EXPRESSION

• (gdb) print array-ptr@size

• (gdb) x[/format] address

• (gdb) x/s a ≡ (gdb) print (char*) a

• (gdb) x/NNNi main

31

Christian Grothoff

Variables

• gdb automatically creates a variable ($NN) for any
examined expression

• You can define your own using set $NAME =
EXPRESSION

32

Christian Grothoff

Creating Functions

• (gdb) define NAME

• > while x > 50

• > step

• > end

• > print i

• > end

Arguments are $arg0, ..., $argN.

33

Christian Grothoff

Executing Commands at Breakpoints

• (gdb) break filename.c:line

• (gdb) commands

• > silent

• > set x = 42

• > continue

• > end

34

Christian Grothoff

Watchpoints

• (gdb) watch x – write only

• (gdb) rwatch x – read only

• (gdb) awatch x – read/write

Read watchpoints may only work with hardware support.

35

Christian Grothoff

Remember

• The best way to eliminate bugs is to not write them

• The best debugger is your own brain

• Good testcases make debugging easier

• Not all bugs cause visible problems

36

Christian Grothoff

Questions

?

37

