COMP 3400 Mainframe Administration¹

Christian Grothoff

 ${\tt christian} \verb"Qgrothoff.org"$

http://grothoff.org/christian/

¹These slides are based in part on materials provided by IBM's Academic Initiative.

Example of online processing: a travel agency

A travel agency would use online processing for:

- employee and customer information
- contacts with car rental companies
- hotels
- airline schedules

In contrast to batch processing, changes must be reflected to end-users immediately (in real-time).

Example of online processing (continued)

Christian Grothoff

Example of online processing (continued)

4

Similarities: Online Systems and OSes

- Managing and Dispatching tasks
- Controlling user access
- Managing use of memory
- Managing concurrency of data
- Providing device independence

Characteristics of transactional systems

- Many users
- Repetitive
- Short interactions
- Shared data
- Data integrity
- Low cost / transaction

Terminology

- Multitasking
- Multithreading
- Thread
- Reentrancy
- Commit and roll back

Transactional System Requirements

- Atomicity
- Consistency
- Isolation
- Durability

Commonly known as ACID.

Atomicity

- Either all of the updates performed by the transaction are performed or none of them are.
- Example: if a bank transfers money from one account to another, it must not just withdraw or just deposit, both tasks must either succeed or fail

Consistency

- Databases often have consistency rules
- Example: (global) uniqueness of certain keys, up-todate indices, etc.
- The consistency property requires that the database remains in a consistent state after the transaction after the transaction is over (assuming it was in a consistent state before)
- Database consistency must be preserved if the transaction was successful as well as if it was aborted!

Isolation

- In most database systems, multiple transactions are executed concurrently
- One transaction may read values that another transaction is updating
- Isolation requires that transactions must not see the intermediate state of other transactions.
- Example: if I transfer \$500 from one of my accounts to another and a bank manager queries my total account balance at the same time, the result must not be \pm \$500 of my net balance.

Durability

- After a transaction has reported success, no kind of (conceivable) system failure may undo the transaction
- In particular, this means that the database must guarantee that no other (concurrent, committing) transactions may violate the consistency or isolation properties of the transaction
- Since I/O operations on the actual tables are usually buffered, databases use an (append-only) transaction log that can be played back to recover committed transactions for which not all table updates had been fully written

Two-phase commit

The Resource Recovery Services (RRS)

RRS is the syncpoint coordinator that is build into z/OS.

- Before changes happen, the Unit of Recovery (UR) is *in-reset*
- While the UR makes changes, it is *in-flight*
- Once a commit request has been made, the UR is *in-prepare*
- After the syncpoint coordinator (RSS) at the **atomic instant** makes a decision, the UR is either *in-commit* or *in-backout*

The Customer Information Control System (CICS)

CICS is a subsystem of z/OS which:

- controls transactions to run online applications
- manages the sharing of resources: many users using the same application(s) at the same time
- protects integrity of data
- prioritizes execution as needed

CICS is also available for other platforms.

CICS in a z/OS system

Languages Supported by CICS

- COBOL (including OO COBOL)
- C/C++
- Java
- PL/1
- Assembler

Platforms Supported by CICS

- z/Series (z/OS, OS/390, VSE)
- AIX
- HP-UX
- Solaris
- Windows

CICS features

- Task Control
- Basic Mapping Support
- File Control
- Program Control
- Storage Control

- Transient Data Control
- Journal Control (logging)
 - Trace Control
 - Dump Control
 - Interval Control

Example: CICS Web Support

Compiling (COBOL) for CICS

21

CICS Programming commands

CICS commands are embedded into the normal source code:

EXEC CICS function option option ... END-EXEC.

The specific syntax depends a bit on the language used.

Example CICS Programs

We will now see an example showing the use of CVDAs and the DFHVALUE function. The code:

- Tests whether the file named PAYROLL is closed
- If so, changes the UPDATE and DELETE option values for the file to UPDATEABLE and NOTDELETEABLE respectively (records can be updated but not deleted)
- DFHVALUE relates the internal representation of the status to the (human readable) value name
- Returns to CICS

Example: COBOL

WORKING-STORAGE SECTION.

01 FILE-STATUS-INFO.

02 UOPST PIC S9(8) COMP.

02 UUPD PIC S9(8) COMP.

02 INFILE PIC x(8).

CICS-REQUESTS.

. . .

MOVE 'PAYROLL ' TO INFILE. EXEC CICS INQUIRE FILE(INFILE) OPENSTATUS(UOPST) END-EXEC. IF UOPST = DFHVALUE(CLOSED) MOVE DFHVALUE(UPDATABLE) TO UUPD EXEC CICS SET FILE(INFILE) UPDATE(UUPD) NOTDELETEABLE END-EXEC. EXEC CICS RETURN.

Example: C

```
#define INFILE "PAYROLL "
main()
{
  long int mopst;
  long int mupd;
. . .
  EXEC CICS INQUIRE FILE(INFILE)
            OPENSTATUS(mopst);
  if (uopst == DFHVALUE(CLOSED) )
  {
     uupd = DFHVALUE(UPDATEABLE);
     EXEC CICS SET FILE(INFILE)
                    UPDATE(uupd)
                    NOTDELETEABLE;
  }
  EXEC CICS RETURN;
}
```


Example: PL/1

```
DCL (UPST,UUPD) FIXED BIN(31),
INFILE CHAR(8);
```

NIVERSITY OF

```
INFILE='PAYROLL ';
EXEC CICS INQUIRE FILE(INFILE)
OPENSTATUS(UOPST);
IF UOPST = DFHVALUE(CLOSED) THEN DO:
UUPD = DFHVALUE(UPDATABLE);
EXEC CICS SET FILE(INFILE)
UPDATE(UUPD)
NOTDELETEABLE; END;
EXEC CICS RETURN;
```

Example: Assembler

DFHE1STG UOPST DS F *OPEN STATUS UUPD DS F *UPDATE STATUS INFILE DS CL8 *FILE NAME ... MVC INFILE,=CL8'PAYROLL ' EXEC CICS INQUIRE FILE(INFILE) X OPENSTATUS(UOPST) CLC UOPST,DFHVALUE(CLOSED) BNE OPENLAB MVC UUPD,DFHVALUE(UPDATEABLE) EXEC CICS SET FILE(INFILE) x UPDATE(UUPD) NOTDELETEABLE OPENLAB EXEC CICS RETURN

Basic Mappping Support (BMS)

BMS is used to interact with users using a terminal:

- EXEC CICS SEND display a screen on the terminal
- EXEC CICS RECEIVE read data from terminal

BMS Example

EXEC CICS

SEND MAP ('ORCHMO1') MAPSET ('ORCHMO1') ERASE

END-EXEC.

EXEC CICS

RECEIVE MAP ('ORCHMO1') MAPSET('ORCHMO1') INTO (workstorage area)

END-EXEC.

Defining the screens

- BMS macros are a form of assembler language
- The "assembler" generates a physical map which:

 - builds the screen
 merges variable data between program and screen
 - sends variables back to the program

The BMS Macros

BMS Maps are composed of three simple macros:

- DFHMSD name of map set (one per file)
- DFHMDI name of map (many per map set)
- DFHMDF field screen definitions and location (many per map)

Source for these is on Marist in CICSTS13.CICS.SDFHMAC(DFHMxx).

Example

PRINT NUGEN	PRINT	NOGEN
-------------	-------	-------

URCHMO1 DFHMSD TYPE=MAP,MUDE=INUUT,CNRL=FREEKB,LANG=CUBUL,TIUAPF
--

- ORCHMO1 DFHMDI SIZE=(24,80)
- DFHMDF POS=(01,01),LENGTH=01,ATTRB=(ASKIP,DRK,FSET), x INITIAL='1' DFHMDF POS=(01,25),LENGTH=3,ATTRB=(ASKIP,BRT), x INITIAL='PURCHASE ORDER - - FILE INQUIRY' DFHMDF POS(03,30),LENGTH=13,ATTRB=ASKIP, x INITIAL='ORDER NUMBER'
- ORDER# DFHMDF POS=(03,44),LENGTH=10,ATTRB=(NUM,BRT,IC) DFHMDF POS=(04,32),LENGTH=11,ATTRB=ASKIP,INITIAL='DEPARTMENT'

DFHMSD TYPE=FINAL

. . .

Example User Screen

ABCD	Average salary by department
Type a department	number and press enter.
Department number	: A02
Average salary(\$):	58211.58
F3: Exit	

CICS transaction flow (1/3)

CICS transaction flow (2/3)

CICS transaction flow (3/3)

Operating System

Conversational Style

Pseudo-Conversational Style

Pseudo-Conversational:

CICS Program Control Constructs

The CICS Communication Area (COMMAREA)

- Area is automatically provided to you via the translator phase
- Part of the DATA DIVISION / LINKAGE SECTION in COBOL
- Initially provides one byte to be used as a status word
- Can range up to 32k in size

Example: COMMAREA in COBOL²

O1 DFHCOMMAREA.

05 PROCESS-SW	PIC X.
88 INITIAL-ENTRY	VALUE 'O'.
88 VERIFICATION	VALUE '1'.
05 ACCOUNT-NUMBER	PIC X(10).

EXEC LINK PROGRAM(ACCTPGM) COMMAREA(DFHCOMMAREA) LENGTH(11)

END-EXEC.

²See also: http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/ index.jsp?topic=/com.ibm.cics.ts23.doc/dfhp3/dfhp360.htm

CICS Programming Roadmap

- Design application
- Write & compile & test program
- Define program & transaction in CICS resources
- Define other resources (files, queues, etc.) in CICS resources
- Make resources known to CICS³

³See http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/ topic/com.ibm.cics.ts.doc/pdf/dfha4c00.pdf

The Information Management System (IMS)

IMS is another application used for online processing consisting of three components:

- Transaction Manager (TM)
- Database Manager (DB)
- System services (common services for TM and DB)

IMS Overview

IMS Transaction Manager Messages

An operator of an IMS terminal can send four kinds of messages to IMS TM; the destination determines the kind of message:

Another terminal Logical terminal name in the first 8 bytes

Application program Transaction code in the first 8 bytes

IMS TM A "/" (slash) in the first byte (command for IMS TM)

Message switch service Messages for the Advanced Program to Program Communication (APPC) feature of IMS⁴

⁴See http://publibz.boulder.ibm.com/epubs/pdf/dfsccgh0.pdf (IMS APPC documentation)

IMS APPC

Christian Grothoff

Questions

47