COMP 3400 Mainframe Administration

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

¹These slides are based in part on materials provided by IBM’s Academic Initiative.
Performance

- Speed or Efficiency
- Device Utilization
- Response Time
- System Capacity / Number of Users Supported
- Throughput
- Reliability / Consistency
- Number of Complaints
System Resources Affecting Performance

- Processor
- Memory Hierarchy
- I/O (Disks and Network)

Attributes:
- Capacity
- Utilization
- Distribution
Attributes that can be Measured

- Processor: Capacity, Usage
- Time: CP system time, virtual machine and virtual processor time
- Memory: Central, Expanded, Paging
- I/O: Bandwidth (Capacity, Usage), Latency
Performance Tuning

1. Measure
2. Reduce data
3. Analyze data
4. Tune
5. Measure again!
Measuring

The following CP commands help with measuring:

- CP INDICATE
- CP QUERY
- CP MONITOR
CP INDICATE

INDICATE provides us with a snapshot of system activities:

- INDICATE USER: system resource statistics about our own VM
- INDICATE LOAD: current contention for system resources
- INDICATE QUEUES: scheduling information (more on this later)
- INDICATE I/O: disk performance
- INDICATE SPACES: space utilization by address spaces
- INDICATE PAGING: usage of auxiliary storage
CP QUERY

QUERY also provides snapshot information on certain system statistics:

- QUERY FRAMES: storage use (real storage)
- QUERY SXSPAGES: information on pages in execution space (below 2 GB)
CP MONITOR

Collect system performance data in a saved segment for processing by an application program later. To use it, you must:

1. Create a monitor saved segment (of sufficient size)

2. Create a VM with application program that loads the saved segment and connects to the *MONITOR system service to retrieve and process the data

3. Establish a monitor profile (what to monitor)

4. Enter the MONITOR START command
Data Types

MONITOR can collect two types of data:

- Event data — record each time an event occurs
- Sample data — record system status, either once or at a particular frequency
Example Configuration

monitor sample enable processor
monitor sample enable storage
monitor enable user userid jordan perkins black
monitor enable i/o device 0120 5140 150
monitor enable i/o type 3380
monitor enable i/o volume pack1 pack2
monitor sample rate 1 second
monitor sample interval 2 minutes
monitor config size 40
monitor sample start
Analyzing Performance Data

This requires understanding:

• the performance problem (always)
• the performance goals (always)
• the application logic (always)
• the operating system logic (sometimes)
• the hardware architecture (sometimes)

⇒ We will focus on z/VM system logic
z/VM Scheduling

```
<table>
<thead>
<tr>
<th>Adjusted TOD</th>
<th>Dispatch list</th>
<th>Eligible list</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM definition block D1</td>
<td>VM definition block E1</td>
</tr>
<tr>
<td></td>
<td>VM definition block Dn</td>
<td>VM definition block En</td>
</tr>
</tbody>
</table>

Dispatch time slice end  
(reprioritize)

E0 or resources available  
(Eligible list select)

Resource limit exceeded  
... while ready

Dormant list

Virtual machine becomes idle  
Virtual machine logs off

Virtual machine has work to do  
Virtual machine logs on
```
User Classes

E0 Guests that do not wait in the eligible list regardless of transaction duration (quick dispatch)

E1 Guests that have just begun a transaction; assumed to be short transactions

E2 Medium-length transactions; guest did not complete during first dispatch

E3 Long running transactions; guest did not complete during second dispatch stay
Sharing between Guests: NSS and DCSS

- Name Saved Systems (NSS) can be used if multiple guests have the same function; the associated code and data can then be shared.
- NSS is often used for operating system kernels (CMS, Linux).
- Discontiguous Shared Segments (DCSS) are similar to NSS in that they can be accessed by multiple guests as part of their virtual storage.
- DCSS can not be IPLed.
Tools for Analyzing Performance

- z/VM Performance Monitor: PERFSVM
- Tivoli Omegamon
Tuning

Tuning may require changes to:

• the application software
• the operating system configuration
• the z/VM configuration
• the hardware

⇒ We will focus on changes to z/VM configuration
CP SET

CP SET can be used to change performance characteristics:

- **SET MAXUSERS** — limit number of users who can logon
- **SET CACHE** — enable or disable caching
- **SET SHARE** — change resource-access priorities
- **SET RESERVED** — change number of available real storage frames for a VM
- **SET THROTTLE** — limit I/O operations for a guest
Reactive Analysis

Reactive performance analysis is in response to a problem. Questions to ask include:

• Who is having the problem? A single user, a group of users or all users?

• What type of problem is it? (Data access, response time, logon, abend)

• What is special about those users (what do they run, what did they do, did they do this previously, shared resources)?

• Did anything change in the system recently?
Example: User using too much CPU

- INDICATE QUEUES EXP
 ⇒ Display members on dispatch and eligible lists

- INDICATE USER $USERNAME$
 ⇒ Display details on user activity (CPU usage, I/O usage)

Possible solutions: reboot or terminate guest.
Example: System hang

- **Symptom:** System hangs for a few minutes, then recovers; users have to log back on
- **Cause:** CP abends, produces a dump and relPLs
- **Action:** research cause of abend in manual; for example, PGT004 indicates lack of paging space on disk
Predictive Analysis

Predictive analysis is monitoring performance data to avoid problems before they occur:

• Graph data on system utilization to recognize trends
• Simulate load to determine system limitations
Measures: CPU usage too high

- Ask developers to improve application performance
- Persuade users to stagger workload
- Reduce number of virtual processors for heavy CPU users
- Use `SET SHARE nn% LIMITHARD` to cap heavy users
- Use `SET SRM DISPBUF` to limit users in dispatch list
Measures: Not enough Storage

• Ask developers to reduce storage requirements
• Reduce the size of virtual machines
• Use SET SRM STORBUF to reserve storage for interactive users
• Shortage of storage usually shows in problems with paging!
Measures: Too much paging

- **Use** `QUERY ALLOC PAGE` to check usage
- **Ask** developers to improve data locality
- **Add** more paging space
- **Use** `SET LDUBUF` to give interactive users better paging resource availability
Measures: Too much I/O

- Check data on devices to see if it can be spread across more paths (if some devices are more busy than others)
- Use THROTTLE to limit heavy users
- Ask developers to improve data locality (if seek time is the issue)
Questions