
Christian Grothoff

COMP 3400 Mainframe Administration1

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1These slides are based in part on materials provided by IBM’s Academic
Initiative.

1

Christian Grothoff

Today

• Application Programming on z/OS:

– Software Engineering Review
– Common languages on z/OS
– Build process

2

Christian Grothoff

Applications Are Everywhere

Business Systems
Databases

Business
Systems

Applications

Business
Systems
Front End

Browser

Browser

Browser

Browser

W eb
Server

Appl.
Server

Server

Personal
Computer

"Dumb" Terminal

e-business

e-business
with Legacy Systems

Client-Server

GUI Front-End

Terminal
Processing

Internet Enterprise Network Central Site

W eb
Server

Appl.
Server

Personal
Computer

3

Christian Grothoff

Roles in Application Development

• Application Designer

• Application Programmer

4

Christian Grothoff

Application Designer

Determines the best programming solution for a business

requirement using his understanding of:

• Business objectives of the company

• Company’s hardware and software

• Other roles in the mainframe IT organization

⇒ Must have a global view of the entire project

5

Christian Grothoff

Types of Requirements

• Accessibility

• Interoperability

• Usability

• Managability

• Performance

• Serviceability

• Portability

• Availability

• Recoverability

• Fault-tolerance

6

Christian Grothoff

Key Decisions

• Online processing or batch processing?

• Storage model: Database, tape, flat file?

• Programming language: Java, Cobol, PL/1, Assembler?

• Platform: z/OS, Linux, UNIX, Windows?

• Hardware: type of server, capacity?

• Develop or purchase or both?

7

Christian Grothoff

The Waterfall Model

Gather
requirements

Analysis Design

Code & test
User, System

tests
Go

production
Maintenance

8

Christian Grothoff

Application Developer

• Builds, tests and delivers applications (for end users)

• Works from application designer’s specifications

• Uses tools to change code, compile, build and test
applications

9

Christian Grothoff

The Grind (of the Application Developer)

Design
documents

Coding Testing

Revise

TestedTested
programsprograms

10

Christian Grothoff

Traditional Application Development

1. Edit source and make modifications

2. Submit compile job to JCL (verifies syntax, compiles,
links, runs tests)

3. View job output in SDSF, check for errors

4. If there are errors, go back to step 1

5. Save source code in repository

11

Christian Grothoff

Programming tools

• ISPF Editor (or remote using WebSphere/Eclipse/Rational)

• Repository for source code (PDS, SCLM or other
repository)

• Job monitoring and viewing (SDSF)

• Debugging tools (WebSphere, Rational, etc.)

IDEs accelerate development – also on the mainframe!

12

Christian Grothoff

IDE features

• Edit source on workstation

• Compile on workstation or on platform

• Remote debugging (program on mainframe, debugger
on workstation)

• Support for many programming languages

• Integration with source code repositories

13

Christian Grothoff

Testing

Before production use, code must pass many types of

tests:

• Unit testing

• Functionality and acceptance testing

• Performance (stress) testing

• Integration testing

14

Christian Grothoff

Moving to Production

Promote
To

production

ProductionProduction
RepositoryRepository

Final
tested

programs

15

Christian Grothoff

More than code

• Document operational procedures

• Provide training manuals (for users and administrators)

• Implement change control process

• Help handing code over to system operators

• Responsibility for maintenance may change to others or
stay with developers

16

Christian Grothoff

Maintenance

• Maintenance and enhancement is the primary role of
most application programmers for mainframes

• Existing applications are often written in COBOL and
PL/1

• New applications are in Java, COBOL and PL/1. Note
that COBOL and PL/1 continue to be enhanced.

17

Christian Grothoff

Types of Programming Languages

• Low-level languages: Assembler and C – direct correspondance to
physical machine

• High-level languages: COBOL, PL/1, Java – require complex
compilation and/or runtime environments

• Special-purpose languages: RPG, CSP, QMF, SQL – usually used
for a specific subproblem

• Scripting languages: Perl, REXX – fast development, write-only
code

18

Christian Grothoff

Choosing a programming language

• Performance requirements

• Interaction with code in other languages

• Knowledge of development team

• Scope of the project

• Tool support

19

Christian Grothoff

Using Assembler on z/OS

Assembler is not usually used for application development,

but for:

• Accessing system control blocks

• High performance subroutines where extreme execution
efficiency is needed

20

Christian Grothoff

COBOL on z/OS

• Traditional language for business applications

• Can be integrated with web-oriented business processes

• Interoperability with Java

• Support for XML and Unicode

21

Christian Grothoff

PL/1 on z/OS

• Used for system programming

• Used for engineering and scientific applications

• Less verbose and English-like compared to COBOL

• Can use symbolic file names just like COBOL2

2In fact, all z/OS languages support the use of symbolic file names, even
Assembler.

22

Christian Grothoff

C/C++ on z/OS

• Used for system-level code, text processing, graphics,
etc.

• z/OS is POSIX compliant!

• C language is standardized, but z/OS uses EBCDIC

⇒ C strings are in EBCDIC, not ASCII!

• The z/OS C compiler is not gcc!

⇒ No gcc extensions, for example, // is not a comment in
C!

23

Christian Grothoff

Java on z/OS

• Interfaces with COBOL and PL/1

• Interfaces with DB2 and IMS

• Support for JNI (interface with C/C++ and other
languages)

• Good IDE support (Eclipse, WebSphere)

24

Christian Grothoff

CLISTs on z/OS

• Interpreted language

• Most basic CLISTs are lists of TSO/E commands

• Commonly used for writing ISPF panels

• Commonly used for one-time quick solutions for small
problems

25

Christian Grothoff

REXX on z/OS

• Can be compiled or interpreted

• More expressive than CLIST

• Also available on other platforms (GNU/Linux, W32,
z/VM)

• Used for routine tasks (submitting TSO/E commands),
ISPF panels, system programming, etc.

26

Christian Grothoff

Questions

?

27

Christian Grothoff

Question!

Which programming language is the best to use?

28

Christian Grothoff

z/OS Language Environment

z/OS Language Environment product provides a common

environment for all conforming high-level language (HLL)

products:

• Common language development and execution
environment for application programmers on z/OS

• Consolidates runtime library functions previously
provided in individual library products

⇒ Similar to Microsoft’s .NET framework, but without IR

29

Christian Grothoff

Advantages of z/OS Language
Environment

Having a common run-time environment for all

paritipating HLLs...

• allows programs to seamlessly call one language from
another

• avoids replication of essential run-time services such as
message handling and storage management

• provides consistent interfaces across programming
languages

30

Christian Grothoff

Language Environment Overview

C/C++
language
specific
library

COBOL
language
specific
library

FORTRAN
language
specific
library

PL/I
language
specific
library

Language Environment callable service interface, common
services, and support routines

Java
language
specific
library

31

Christian Grothoff

Compiling on z/OS

• A source program is divided into logical units called
modules

• Each source module is assembled or compiled by the
respective language translator

• The compiler generates an object module

• Object modules are process by the binder to create a
load module which can be executed

32

Christian Grothoff

Compilation Overview

Source
module

Object
module

Load
modulePrecompiler Compiler Binder

33

Christian Grothoff

Separate Compilation and Relocation

When compilers translate source code into object code, they:

• Assign relative addresses to all instructions, data elements and
labels, starting from zero

• Run-time addresses are in the form of a base address plus a
displacement (to allow programs to be relocated)

• References to external programs or subroutines are left as
unresolved

34

Christian Grothoff

Relocatability

Even the final load modules are relocatable:

• The code can be located at any address in virtual
storage3

⇒ An identical copy of a program can be loaded in many
different address spaces at different starting addresses

⇒ Physical copies in memory can be reused!

3Within the confines of the residency mode

35

Christian Grothoff

Source modules

• Source code written in the respective programming
language

• Source programs are often stored in a PDS known as a
source library

• A copybook is a source library containing prewritten
text; it is used to copy text into a source program, at
compile time.

⇒ copybook ≈ /usr/include/

36

Christian Grothoff

Object modules

• Collection of one or more compilation units

• Contains machine code (and program data) in
relocateable format

• Contains control dictionaries to resolve cross-references
between sections of different modules

• Not executable

• Multiple object modules can be stored in an object
library

37

Christian Grothoff

Load modules

• Contains machine code (and program data) in
relocateable format

• Contains control dictionaries to resolve cross-references
between sections of different modules

• Can be loaded into virtual storage and relocated by the
program manager

⇒ “executable” (with help of program manager)

38

Christian Grothoff

Load libraries

Load libraries contain programs ready to be executed (usually load

modules processed by the binder or linkage editor).

We distinguish:

• System libraries – unless a job specifies a private library, the
system libraries are searched when a job specifies //step EXEC
PGM=program-name

• Private libraries – user-written programs, searched only when JCL
specifies DD statement defining JOBLIB or STEPLIB

• Temporary libraries – see IGYWCLG (later)

39

Christian Grothoff

Binder

• Assigns virtual storage addresses to sections of the module and
resolves references between modules

• Can process traditional data sets (PDS, PDSE) and z/OS UNIX
files

• An older, more restricted version of the binder was called the
linkage editor

• The batch loader and the program management loader can also
be used to create a load module to execute only (but not to store
the result in a library)

• The batch loader is replaced by the binder in later releases of z/OS

40

Christian Grothoff

Compilation Overview II

Source
modules

Assembler or
compiler

Object
modules

Program
management

binder

Program object
 PDSE program

library

Linkage Editor Batch loader

Load modules
in PDS program

library

Program
management

loader

Load modules
in virtual storage

ready for execution

AA

AA

41

Christian Grothoff

Translating Assembler Code

Messages
and

listings

Assembler language
source statements

Machine language Machine language
version of the version of the

programprogram

High Level Assembler

Binder

ExecutableExecutable
load moduleload module

42

Christian Grothoff

Translating COBOL Code

Messages
and

listings

HLL
Source statements

Machine language Machine language

version of the version of the
programprogram

HLL compiler

Binder

ExecutableExecutable

Load moduleLoad module

43

Christian Grothoff

Ways for compiling COBOL

• Use a batch job (JCL), often with cataloged procedures

• Use TSO/E commands in CLISTs or ISPF panels

• Use the cob2 command in the z/OS UNIX shell

44

Christian Grothoff

IGYWCLG

IGYWCLG is a three-step cataloged procedure to:

• Compile (step is called “COBOL”)

• Link-Edit and

• Run (step is called “GO”)

a COBOL application. You must supply:

//COBOL.SYSIN DD *

45

Christian Grothoff

Example: Compiling COBOL

//MYJOB JOB
//STEP1 EXEC IGYWCLG
//COBOL.SYSIN DD *

...
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT ASSIGN TO INPUT1 ...
SELECT DISKOUT ASSIGN TO OUTPUT1 ...

...
/*
//GO.INPUT1 DD DSN=MY.INPUT,DISP=SHR
//GO.OUTPUT1 DD DSN=MY.OUTPUT,DISP=OLD

46

Christian Grothoff

Example: Compiling PL/1

//MYJOB JOB
//STEP1 EXEC IBMZCLG
//PLKED.SYSIN DD *

OPEN FILE=INPUT1
OPEN FILE=OUTPUT1
READ FILE=INPUT1 ...
WRITE FILE=OUTPUT1 ...
CLOSE FILE=INPUT1
CLOSE FILE=OUTPUT1

/*
//GO.INPUT1 DD DSN=MY.INPUT,DISP=SHR
//GO.OUTPUT1 DD DSN=MY.OUTPUT,DISP=OLD

47

Christian Grothoff

Questions

?

48

Christian Grothoff

Tasks!

• Find IGYWCLG on your z/OS system!

• Do the exercises in section 10.9

49

