Christian Grothoff

COMP 3704 Computer Security

Christian Grothoff

christian@grothoff.org

http://grothoff.org/christian/

DENVER

Christian Grothoff

Design Criteria for Hash Functions

e H:{0,1}" — {0,1}™ for fixed m € N and any n € N
e Given M, it is easy to compute h = H(M)
e Given h, it is hard to find an M such that H(M) = h

e Given M, it is hard to find an M’ # M such that
H(M)=H(M')

e It is hard to find random messages M and M’ £ M
such that H(M) = H(M")

DENVER

Christian Grothoff

Birthday Attack!

Probability of not finding a n-bit collision after generating
2"/2 messages is less than 50%:

o) =11 (1- 5] (1)

1=0
i —
~ H e2m (2)
1=0
_ (k(k—1))
=y (3)

DENVER ;

Christian Grothoff

General Construction

Difficult to define function H : {0,1}" — {0, 1}™. Instead
use:

hi = f(M;, hi_1) (4)
f 40,1} x {0,1}™ — {0,1}™ for a fixed b is called a
compression function.

DENVER
4

Christian Grothoff

General Implementation

struct hash_context;
void hash_init_context(struct hash_context * ctx);

void hash_process_bytes(const void * buf,
size_t 1len,
struct hash_context * ctx);
void hash_finish(struct hash_context * ctx,
void * result);

DENVER ;

Christian Grothoff

Example: MD5

JJ

Figure 1: MD5 consists of four rounds of 16 operations.

DENVER

MDJ5 Functions

ullhl\"kl\ll\ o

DENVER

=(XAY)V(~XAZ)
= (XAY)V (Y AN=Z)
= XY DI

=Y d(XV-2)

Christian Grothoff

(5)
(6)
(7)
(8)

Christian Grothoff

Common Hash Functions

e MDb — 128 bits

e RIPE160MD — 160 bits
e SHA1 — 160 bits

e SHA-2 — 256-512 bits

e WHIRLPOOL - 512 bits

DENVER

Christian Grothoff

Miyaguchi-Preneel Constructions

m; ‘
Hi1
— E

—> s; —-N

e

Example: WHIRLPOOL = Miyaguchi-Preneel + AES

DENVER

Christian Grothoff

Successful Attacks

e SHA-1: collisions found in 2005
e MD4, MD5 and RIPEMD-128: collisions found in 2004

= Use 256 or more bits

ul.lhlvkll.\ll\' OF
DENVER 10

Christian Grothoff

Password Crackers

e Passwords do not usually have 128-bits of entropy
e We could actually compute hash codes for all 2%
“realistic” passwords (8 ASCII characters)

e However, we could not store all 2°¢ values
= Precompute and use space-computation trade-off when

cracking!

DENVER 11

Christian Grothoff

Precomputed Hash Chains

e Have set P of realistic passwords and domain D of H

e Define reduction function F': D — P

. E)rre—nc]:g:]nyp?te chains X(I) = H(F(H(F(H(F(H(I)))))))

e When cracking (', check if C =
X(I) or H(F(...(H(F(C))))) = X(I).

= reduce storage space by chain length L at the expense

of O(L) more computation during cracking.

DENVER 12

Christian Grothoff

Problems with Hash Chains

e [can cause collisions in two chains, merging the chains

e Collisions reduce effectiveness of table construction (to
often less than 70%) and bound chain length

= Tables are much too big!

— Some chains are discarded as ineffective

= Wasted time during construction!

= Possibility of “false alarms”

Wi
) 13

Christian Grothoff

Rainbow Tables

e Key idea: use different functions F; in chain

e Pre-compute chains X (1) = H(F5(H (Fy(H(Fi(H(1)))))))

= Collisions only merge chains if they also happen at same
position

= Can achieve 99% effectiveness

= Cracking overhead increases from O(L) to O(L?) for
chain traversal

=- Cracking overhead decreases from O(L) to O(1) due to
fewer chains

DENVER 14

Christian Grothoff

Defense: Salt!

e hash = H(password + salt)
e Extends length of the password
e Rainbow tables commonly only support 8 characters

= Add 16 characters (or more) of salt

DENVER 15

Christian Grothoff

Reality

e UNIX NIS/YP /shadow: salted for a long time

e Windows NT/2000 LAN Manager: unsalted, easily
cracked

DENVER 16

Christian Grothoff

Questions

B
17

Christian Grothoff

Exercise

Generate a rainbow table (and password cracker) for SHA1
that can invert passwords of up to 5 characters (A-Za-z).

You may link against 1ibgcrypt or OpenSSL for hashing.

DENVER 18

