
Christian Grothoff

COMP 3704 Computer Security

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1



Christian Grothoff

Design Criteria for Hash Functions

• H : {0, 1}n→ {0, 1}m for fixed m ∈ N and any n ∈ N

• Given M , it is easy to compute h = H(M)

• Given h, it is hard to find an M such that H(M) = h

• Given M , it is hard to find an M ′ 6= M such that
H(M) = H(M ′)

• It is hard to find random messages M and M ′ 6= M
such that H(M) = H(M ′)

2



Christian Grothoff

Birthday Attack!

Probability of not finding a n-bit collision after generating

2n/2 messages is less than 50%:

p(k) =
k∏

i=0

(
1− i

2n

)
(1)

≈
k∏

i=0
e
−i
2n (2)

= e
−(k(k−1))

2n+1 (3)

3



Christian Grothoff

General Construction

Difficult to define function H : {0, 1}n→ {0, 1}m. Instead

use:

hi = f(Mi, hi−1) (4)

f : {0, 1}b × {0, 1}m → {0, 1}m for a fixed b is called a

compression function.

4



Christian Grothoff

General Implementation

struct hash_context;
void hash_init_context(struct hash_context * ctx);
void hash_process_bytes(const void * buf,

size_t len,
struct hash_context * ctx);

void hash_finish(struct hash_context * ctx,
void * result);

5



Christian Grothoff

Example: MD5

Figure 1: MD5 consists of four rounds of 16 operations.

6



Christian Grothoff

MD5 Functions

F (X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z) (5)

G(X, Y, Z) = (X ∧ Y ) ∨ (Y ∧ ¬Z) (6)

H(X, Y, Z) = X ⊕ Y ⊕ Z (7)

I(X, Y, Z) = Y ⊕ (X ∨ ¬Z) (8)

7



Christian Grothoff

Common Hash Functions

• MD5 – 128 bits

• RIPE160MD – 160 bits

• SHA1 – 160 bits

• SHA-2 – 256-512 bits

• WHIRLPOOL – 512 bits

8



Christian Grothoff

Miyaguchi-Preneel Constructions

Example: WHIRLPOOL = Miyaguchi-Preneel + AES

9



Christian Grothoff

Successful Attacks

• SHA-1: collisions found in 2005

• MD4, MD5 and RIPEMD-128: collisions found in 2004

⇒ Use 256 or more bits

10



Christian Grothoff

Password Crackers

• Passwords do not usually have 128-bits of entropy

• We could actually compute hash codes for all 264

“realistic” passwords (8 ASCII characters)

• However, we could not store all 264 values

⇒ Precompute and use space-computation trade-off when

cracking!

11



Christian Grothoff

Precomputed Hash Chains

• Have set P of realistic passwords and domain D of H

• Define reduction function F : D → P

• Pre-compute chains X(I) = H(F (H(F (H(F (H(I)))))))
for many I

• When cracking C, check if C = X(I) or H(F (C)) =
X(I) or H(F (...(H(F (C))))) = X(I).

⇒ reduce storage space by chain length L at the expense

of O(L) more computation during cracking.

12



Christian Grothoff

Problems with Hash Chains

• F can cause collisions in two chains, merging the chains

• Collisions reduce effectiveness of table construction (to
often less than 70%) and bound chain length

⇒ Tables are much too big!

⇒ Some chains are discarded as ineffective

⇒ Wasted time during construction!

⇒ Possibility of “false alarms”

13



Christian Grothoff

Rainbow Tables

• Key idea: use different functions Fi in chain

• Pre-compute chains X(I) = H(F3(H(F2(H(F1(H(I)))))))

⇒ Collisions only merge chains if they also happen at same
position

⇒ Can achieve 99% effectiveness

⇒ Cracking overhead increases from O(L) to O(L2) for
chain traversal

⇒ Cracking overhead decreases from O(L) to O(1) due to
fewer chains

14



Christian Grothoff

Defense: Salt!

• hash = H(password + salt)

• Extends length of the password

• Rainbow tables commonly only support 8 characters

⇒ Add 16 characters (or more) of salt

15



Christian Grothoff

Reality

• UNIX NIS/YP/shadow: salted for a long time

• Windows NT/2000 LAN Manager: unsalted, easily
cracked

16



Christian Grothoff

Questions

?

17



Christian Grothoff

Exercise

Generate a rainbow table (and password cracker) for SHA1

that can invert passwords of up to 5 characters (A-Za-z).

You may link against libgcrypt or OpenSSL for hashing.

18


