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RSA

Pick p,q prime and e such that
GCD((p—1)(g—1),e) =1 (1)
e Define n = pq,

e compute d such thated =1 mod (p —1)(¢ — 1).

e Let c = mf mod n,

d

e then m = ¢* mod n!
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Proof
¢ = (m9? mod n (2)
=m modn (3)
= mMP- DU+ mod n (4)
= mm* P~V mod n (5)
=m mod n (6)
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RSA Summary

e Public key: n, €

o Privat§ key: d = e ! mod ¢(n) where ¢p(n) = (p—1)-
(¢—1

e Encryption: ¢ =m® mod n

d

e Decryption: m = c* mod n
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RSA Facts

¢ DApm’v(DBpriv(EApub(EBpub(M)))) — M

e c is usually small prime (3, 17, 65537)
= Encryption (significantly) faster than decryption!

= Signature verification (significantly) faster than signing!
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Chinese Remainder Theorem

Let n = [I'_, p; where p; prime, p; # p; for i # j. Then
the system of equations (for ¢ € {1,...,t})

r =a; mod p; (7)

has a unique solution £ mod n.

DENVER



Christian Grothoff

Chinese Remainder Theorem and RSA

Suppose we kept p and ¢ and calculated © = ¢! mod n

and v = p?~ ! mod n. Then we can compute m = ¢*
mod n using:
my = ¢ =D mod p (8)
my = ¢ MY mod g (9)
m=mi-u+ms-v. (10)
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Re-using the Primes

Can we re-use pq = n with a different e to generate a
second key pair? Suppose we have (dy,e;) and (ds, es)
and encrypt the same message m:

‘I mod n (11)

co =m? modn (12)

Cit=Mm

Can the adversary recover m?
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Common Modulus Attack

Given n, ej, es, ¢ and ¢y the adversary can compute
r < 0 and s such that:

re; + ses = 1 (13)

Use again the extended Euclidean algorithm to compute

c;' mod n. Finally:

(c;)) "¢ =m modn (14)
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Low Encryption Exponent Attack

e ¢ IS known

e )M maybe small
o (' = Me<n?
e If so, can compute M = VO

= Small e can be bad!
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Padding and RSA Symmetry

e Padding can be used to avoid low exponent issues (and
issues with m =0 or m = 1)

e Randomized padding defeats chosen plaintext attacks
(dictionary!)

e Padding breaks RSA symmetry:

Dpor(Dpyyo(Bay(Br,(M)) M (15)

e PKCS#1 / RFC 3447 define a padding standard
D
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ElGamal Signatures

e Calculate y = ¢g* mod p for p prime. x is private key.

e Select k such that GCD(k,p—1) = 1, compute a = g*
mod p.

e Solve M = (xa + kb) mod (p — 1) using extended
Euclidian algorithm.

a, b —

e Signature is (a, b). Verified using y%a’ = ¢" mod p.
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Proof
ya’ = ¢*¢" mod p (16)
= ¢ mod p (17)
= gM+=Ut mod p (18)
=g" - (¢""")" modp (19)
=g¢” mod p (20)
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Diffie-Hellman Key Exchange

Generator g and prime p are known to everyone.

1. Alice calculates a = ¢* mod p for random number z,
sends a to Bob.

2. Bob calculates b = g mod p for random number y,
sends b to Alice.

3. Alice computes K = b”.

4. Bob computes K = aY.
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ElGamal Encryption

e Calculate y = ¢g* mod p for p prime. x is private key.

e Select k such that GCD(k,p—1) = 1, compute a = g*
mod p.

. E:alcsjlate a = ¢° modp and b = y*M mod p, C =
a,b

e Decrypt using M = b/a” mod p

e Really just Diffie-Hellman
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Questions
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Assignment

mplement RSA using 1ibgmp.
Research PKCS#1 block type 2 padding.}

LA good starting point is the source of 1libgcrypt.
U
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