COMP 3704 Computer Security

Christian Grothoff

 $\verb|christian@grothoff.org||$

http://grothoff.org/christian/

RSA

Pick p, q prime and e such that

$$GCD((p-1)(q-1), e) = 1$$
 (1)

- Define n = pq,
- compute d such that $ed \equiv 1 \mod (p-1)(q-1)$.
- Let $c \equiv m^e \mod n$,
- then $m \equiv c^d \mod n!$

Proof

$$c^{d} \equiv (m^{e})^{d} \mod n \qquad (2)$$

$$\equiv m^{ed} \mod n \qquad (3)$$

$$\equiv m^{k(p-1)(q-1)+1} \mod n \qquad (4)$$

$$\equiv mm^{k(p-1)(q-1)} \mod n \qquad (5)$$

$$\equiv m \mod n \qquad (6)$$

3

RSA Summary

- Public key: n, e
- \bullet Private key: $d\equiv e^{-1}\mod \phi(n)$ where $\phi(n)=(p-1)\cdot (q-1)$
- Encryption: $c \equiv m^e \mod n$
- Decryption: $m \equiv c^d \mod n$

RSA Facts

•
$$D_{A_{priv}}(D_{B_{priv}}(E_{A_{pub}}(E_{B_{pub}}(M)))) = M$$

- e is usually small prime (3, 17, 65537)
- \Rightarrow Encryption (significantly) faster than decryption!
- \Rightarrow Signature verification (significantly) faster than signing!

Chinese Remainder Theorem

Let $n = \prod_{i=1}^{t} p_i$ where p_i prime, $p_i \neq p_j$ for $i \neq j$. Then the system of equations (for $i \in \{1, \ldots, t\}$)

$$x \equiv a_i \mod p_i \tag{7}$$

has a unique solution $x \mod n$.

Chinese Remainder Theorem and RSA

Suppose we kept p and q and calculated $u \equiv q^{p-1} \mod n$ and $v \equiv p^{q-1} \mod n$. Then we can compute $m \equiv c^d \mod n$ using:

$$m_1 \equiv c^{d \mod (p-1)} \mod p \tag{8}$$

$$m_2 \equiv c^{d \mod (q-1)} \mod q \tag{9}$$

$$m = m_1 \cdot u + m_2 \cdot v. \tag{10}$$

Re-using the Primes

Can we re-use pq = n with a different e to generate a second key pair? Suppose we have (d_1, e_1) and (d_2, e_2) and encrypt the same message m:

$$c_1 \equiv m^{e_1} \mod n$$
 (11)
 $c_2 \equiv m^{e_2} \mod n$ (12)

Can the adversary recover m?

Common Modulus Attack

Given n, e_1 , e_2 , c_1 and c_2 the adversary can compute r < 0 and s such that:

$$re_1 + se_2 = 1$$
 (13)

Use again the extended Euclidean algorithm to compute $c_1^{-1} \mod n$. Finally:

$$(c_1^{-1})^{-r} \cdot c_2^s \equiv m \mod n \tag{14}$$

Low Encryption Exponent Attack

- e is known
- M maybe small
- $C = M^e < n$?
- If so, can compute $M = \sqrt[n]{C}$
- \Rightarrow Small *e* can be bad!

Padding and RSA Symmetry

- Padding can be used to avoid low exponent issues (and issues with m = 0 or m = 1)
- Randomized padding defeats chosen plaintext attacks (dictionary!)
- Padding breaks RSA symmetry:

$$D_{A_{priv}}(D_{B_{priv}}(E_{A_{pub}}(E_{B_{pub}}(M)))) \neq M$$
(15)

 \bullet PKCS#1 / RFC 3447 define a padding standard

ElGamal Signatures

- Calculate $y \equiv g^x \mod p$ for p prime. x is private key.
- Select k such that GCD(k, p-1) = 1, compute $a \equiv g^k \mod p$.
- Solve $M \equiv (xa + kb) \mod (p 1)$ using extended Euclidian algorithm.
- Signature is (a, b). Verified using $y^a a^b \equiv g^M \mod p$.

Proof

$$y^{a}a^{b} \equiv g^{ax}g^{kb} \mod p$$
(16)

$$\equiv g^{ax+kb} \mod p$$
(17)

$$\equiv g^{M+(p-1)\cdot t} \mod p$$
(18)

$$\equiv g^{M} \cdot (g^{p-1})^{t} \mod p$$
(19)

$$\equiv g^{M} \mod p$$
(20)

Diffie-Hellman Key Exchange

Generator g and prime p are known to everyone.

- 1. Alice calculates $a \equiv g^x \mod p$ for random number x, sends a to Bob.
- 2. Bob calculates $b \equiv g^y \mod p$ for random number y, sends b to Alice.
- 3. Alice computes $K = b^x$.
- 4. Bob computes $K = a^y$.

ElGamal Encryption

- Calculate $y \equiv g^x \mod p$ for p prime. x is private key.
- Select k such that GCD(k, p-1) = 1, compute $a \equiv g^k \mod p$.
- \bullet Calculate $a\equiv g^k\mod p$ and $b\equiv y^kM\mod p$, C=(a,b)
- Decrypt using $M \equiv b/a^x \mod p$
- Really just Diffie-Hellman

Questions

Assignment

Implement RSA using libgmp.

Research PKCS#1 block type 2 padding.¹

¹A good starting point is the source of libgcrypt.

