
Assignment 0: Attack!

1 Problem

You are to find an exploitable security vulnerability in an open source peer-to-
peer network application, demonstrate that the vulnerability is real, provide
a patch and finally issue a security advisory.

You are allowed to work on this project in groups of two. Furthermore,
you should document (!) the steps of your security analysis. In case that you
fail to find a vulnerability, your report can be used to demonstrate that you
were just unlucky (but working hard and systematic in your approach). In
this case, your report will be graded instead of the security advisory.

While this assignment is due towards the end of the quarter, you must
get started immediately. Due dates are rather crowed at the end of the
course.

2 Approach

Look for open source peer-to-peer projects on freshmeat.net. You can use
those that focus on security (such as networks claiming to provide anonymity)
or just general P2P networks. Do not select projects that nobody cares
about (not in top 10,000 by popularity). Indirect exploits (bugs in a library
used by the project) also count, but maybe harder too find. Note that
whatever exploit you find has to match with the goals of the project that
you are attacking. Any exploit that a reasonable maintainer of the respective
software would want to fix counts.

One suggested approach for finding vulnerabilities is to use the coverity

static analysis tool, especially on less-popular projects, and to investigate the
reported bugs. In order to use coverity, you must be able to compile the
software. If the Linux lab machines fail to satisfy the dependencies, feel free
to request any Debian package to be installed on the system(s).

Another approach is to run the P2P software in conjunction with zzuf

to introduce random permutations into the network traffic. If you are lucky,
you may be able to crash it. If the protocol uses checksums, you may want to
disable the checksum code to make sure that fuzzed traffic does not simply

1

get discarded. Depending on the computational requirements of the software
combining zzuf with valgrind may increase your yield.

The first two methods maybe useful to find simple bugs that enable denial-
of-service attacks or even arbitrary code execution. A third method would
be to take a deep look at the P2P protocol specification and to base your
exploit on the protocol instead of the concrete software implementation.

3 Implementation

You are to implement a simple program that demonstrates the vulnerability.
Furthermore, you should try to provide a patch that addresses the security

problem (if possible).

4 Submission

You must submit the security advisory in ASCII to your subversion repository
to the directory courses/comp3704/s2009/$GROUP/. Your advisory should
include a reference to the original sources.

Also submit the patch (generated with diff) and the exploit code. Do
not include generated files.

2

