
The GNUnet DHT Christian Grothoff

The GNUnet DHT

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

“I trust no one, not even myself.” –Joseph Stalin

1

The GNUnet DHT Christian Grothoff

Agenda

• A Quick Introduction to Bloom Filters

• The R5N Routing Algorithm

• Performance Analysis for R5N

• Content validation

• The DHT API

• The BLOCK API

2

The GNUnet DHT Christian Grothoff

Bloom Filters

• Probabilistic data structure to answer the question “is

element X in set S” with “no” or “maybe”

• If an element is not in the set, the probability is high

that the answer is “no”

• Uses a bit-array where k bits based on H(X) are set to

1 for each element X ∈ S.

3

The GNUnet DHT Christian Grothoff

Review: Kademlia

0 1

0 1
10 11

0 1
00 01

Connections
Route path

4

The GNUnet DHT Christian Grothoff

Kademlia and Restricted Routes

0 1

0 1
10 11

0 1
00 01

Connections

Connection does not exist
Route path

5

The GNUnet DHT Christian Grothoff

The R5N Routing Algorithm

• Designed to work well in restricted route networks (many

nearest peers) and reduce the impact of malicious peers.

• Requires recursive routing; less control for initiator,

better performance; stateful return routing

• Kademlia style routing table — so-called “k-buckets”

storing k peers; such that the ith k-bucket stores peers

with XOR distance between [2i, 2i+1)

6

The GNUnet DHT Christian Grothoff

The R5N Routing Algorithm

• Random and Kademlia style routing phases

⇒ combines path diversity with efficient routing

– Random phase: “start” Kademlia routing from random location.

– Kademlia phase: efficiently find nearest peers.

• Requests have desired replication level r; the number of

nearest peers a request should reach.

• Achieved by probabilistic path branching, at each hop a

request may be forwarded to one or more peers.

7

The GNUnet DHT Christian Grothoff

The R5N Routing Algorithm

0 1 2 3 4 5
0

1

2

3

4

5

8

The GNUnet DHT Christian Grothoff

The R5N Routing Algorithm

• Bloom filter with each request; peer filtering, circular

request prevention

• Message handling:

PUT Request

if nearest(r) then
store data(r)

else
for i = 0 → num forwards(r) do

p = get forward peer(r)
forward request(r, p)

end for
end if

GET Request

if NULL 6= (d = find data(r)) then
route result(r, d)

end if
for i = 0 → num forwards(r) do

p = get forward peer(r)
store route(p, r)
forward request(r, p)

end for

9

The GNUnet DHT Christian Grothoff

Performance Analysis for R5N

• Randomized routing takes c steps, c ∼ log n

• Kademlia-style routing takes O(log n) steps

⇒ Finding a nearest peer is O(log n)

10

The GNUnet DHT Christian Grothoff

Performance Analysis for R5N

• There are |N |
2

|E| ∈ O(|N |) nearest peers

• For a 50% success rate for a single GET, we need

O(
√
|N |) replicas

• Then repeat GET O(
√
|N |) times for “high” success

rate

⇒ Total routing cost is O(
√
n log n)

11

The GNUnet DHT Christian Grothoff

Absolute Performance

Size of Average hops per PUT Average hops per GET

network R-Kademlia R5N R-Kademlia R5N

100 2.70 ± 0.06 3.96 ± 0.06 2.54 ± 0.03 4.63 ± 0.17

250 3.06 ± 0.10 4.26 ± 0.10 3.10 ± 0.06 5.96 ± 0.27

500 3.08 ± 0.46 4.38 ± 0.45 3.38 ± 0.06 6.17 ± 1.14

750 3.19 ± 0.74 4.37 ± 0.83 3.50 ± 0.04 6.29 ± 1.04

1000 3.63 ± 0.07 4.47 ± 0.93 3.64 ± 0.04 7.29 ± 0.95

12

The GNUnet DHT Christian Grothoff

The DHT API

• GNUNET DHT connect, GNUNET DHT disconnect

• GNUNET DHT put

• GNUNET DHT get start, GNUNET DHT get stop

13

The GNUnet DHT Christian Grothoff

Special GET Options

GET requests can be given the following optional options:

• Bloom Filter: filter known results (duplicates)

• Bloom Filter Mutator: change hash function of Bloom

Filter

• eXtended Query: additional query information beyond

the hash

14

The GNUnet DHT Christian Grothoff

Options for GET and PUT

• GNUNET DHT RO DEMULTIPLEX EVERYWHERE

• GNUNET DHT RO RECORD ROUTE

• Replication level

• Expiration time (provided to PUT, returned by GET)

• Block type ⇒ for content validation

15

The GNUnet DHT Christian Grothoff

The BLOCK API

• Block type determines responsible Block plugin

• Configuration option [block] PLUGINS specifies

supported plugins

• Implement a new plugin based on the

gnunet block plugin.h header

• “fs” for file-sharing, “dht” for DHT internals, “test” for

no verification (any data can match any key)

16

The GNUnet DHT Christian Grothoff

The BLOCK Plugin API

Each plugin must provide two functions:

• GNUNET BLOCK EvaluationFunction: does the given

block satisfy the requirements of the given query?

Possible answers include: Yes, and other replies can exist; yes,

and this is the only answer; no, duplicate reply; no, invalid reply

• GNUNET BLOCK GetKeyFunction: given a block, what

key should it be stored under? Possible answers are: A key;

bad block; not supported

17

The GNUnet DHT Christian Grothoff

Experimental Results: Replication

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

T
o
ta

l
N

u
m

b
e
r

o
f
R

e
p
lic

a
s
 i
n
 N

e
tw

o
rk

Number of Rounds of PUTs

R5N Random
R-Kademlia Random

R5N Same
R-Kademlia Same

18

The GNUnet DHT Christian Grothoff

Experimental Results: Sybils

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

G
E

T
 S

u
c
c
e
s
s
 P

e
rc

e
n
ta

g
e

Number of Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

R-Kademlia All Rounds

19

The GNUnet DHT Christian Grothoff

Copyright

Copyright (C) 2011 Christian Grothoff

Verbatim copying and distribution of this

entire article is permitted in any medium,

provided this notice is preserved.

20

