The GNUnet DHT

Christian Grothoff
christian@grothoff.org
http://grothoff.org/christian/

“I trust no one, not even myself.” –Joseph Stalin
Agenda

- A Quick Introduction to Bloom Filters
- The R^5N Routing Algorithm
- Performance Analysis for R^5N
- Content validation
- The DHT API
- The BLOCK API
Bloom Filters

- Probabilistic data structure to answer the question “is element X in set S” with “no” or “maybe”
- If an element is not in the set, the probability is high that the answer is “no”
- Uses a bit-array where k bits based on $H(X)$ are set to 1 for each element $X \in S$.
Review: Kademlia

Connections
Route path
Kademlia and Restricted Routes
The $R^5 N$ Routing Algorithm

- Designed to work well in restricted route networks (many nearest peers) and reduce the impact of malicious peers.
- Requires recursive routing; less control for initiator, better performance; stateful return routing
- Kademlia style routing table — so-called “k-buckets” storing k peers; such that the i^{th} k-bucket stores peers with XOR distance between $[2^i, 2^{i+1})$
The R^5N Routing Algorithm

- Random and Kademlia style routing phases
 \Rightarrow \text{combines path diversity with efficient routing}
 - Random phase: “start” Kademlia routing from random location.
 - Kademlia phase: efficiently find nearest peers.

- Requests have desired replication level r; the number of nearest peers a request should reach.

- Achieved by probabilistic path branching, at each hop a request may be forwarded to one or more peers.
The R^5N Routing Algorithm
The R^5N Routing Algorithm

- Bloom filter with each request; peer filtering, circular request prevention

- Message handling:

PUT Request

```
if nearest(r) then
  store_data(r)
else
  for i = 0 → num_forwards(r) do
    p = get_forward_peer(r)
    forward_request(r, p)
  end for
end if
``` 

GET Request

```
if NULL ≠ (d = find_data(r)) then
  route_result(r, d)
end if
```

```
for i = 0 → num_forwards(r) do
  p = get_forward_peer(r)
  store_route(p, r)
  forward_request(r, p)
end for
```
Performance Analysis for R^5N

- Randomized routing takes c steps, $c \sim \log n$
- Kademlia-style routing takes $O(\log n)$ steps

\Rightarrow Finding a nearest peer is $O(\log n)$
Performance Analysis for $R^5 N$

- There are $\frac{|N|^2}{|E|} \in O(|N|)$ nearest peers
- For a 50% success rate for a single GET, we need $O(\sqrt{|N|})$ replicas
- Then repeat GET $O(\sqrt{|N|})$ times for “high” success rate

\Rightarrow Total routing cost is $O(\sqrt{n \log n})$
Absolute Performance

<table>
<thead>
<tr>
<th>Size of network</th>
<th>Average hops per PUT</th>
<th>Average hops per GET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-Kademlia</td>
<td>R^5N</td>
</tr>
<tr>
<td>100</td>
<td>2.70 ± 0.06</td>
<td>3.96 ± 0.06</td>
</tr>
<tr>
<td>250</td>
<td>3.06 ± 0.10</td>
<td>4.26 ± 0.10</td>
</tr>
<tr>
<td>500</td>
<td>3.08 ± 0.46</td>
<td>4.38 ± 0.45</td>
</tr>
<tr>
<td>750</td>
<td>3.19 ± 0.74</td>
<td>4.37 ± 0.83</td>
</tr>
<tr>
<td>1000</td>
<td>3.63 ± 0.07</td>
<td>4.47 ± 0.93</td>
</tr>
</tbody>
</table>
The DHT API

- GNUNET_DHT_connect, GNUNET_DHT_disconnect
- GNUNET_DHT_put
- GNUNET_DHT_get_start, GNUNET_DHT_get_stop
Special GET Options

GET requests can be given the following optional options:

- Bloom Filter: filter known results (duplicates)
- Bloom Filter Mutator: change hash function of Bloom Filter
- eXtended Query: additional query information beyond the hash
Options for GET and PUT

- `GNUNET_DHT_RO_DEMULTIPLEX_EVERYWHERE`
- `GNUNET_DHT_RO_RECORD_ROUTE`
- Replication level
- Expiration time (provided to PUT, returned by GET)
- Block type ⇒ for content validation
The BLOCK API

- Block type determines responsible Block plugin
- Configuration option `[block] PLUGINS` specifies supported plugins
- Implement a new plugin based on the `gnunet_block_plugin.h` header
- "fs" for file-sharing, "dht" for DHT internals, "test" for no verification (any data can match any key)
The BLOCK Plugin API

Each plugin must provide two functions:

- **GNUNET_BLOCK_EvaluationFunction**: does the given block satisfy the requirements of the given query? Possible answers include: Yes, and other replies can exist; yes, and this is the only answer; no, duplicate reply; no, invalid reply

- **GNUNET_BLOCK_GetKeyFunction**: given a block, what key should it be stored under? Possible answers are: A key; bad block; not supported
Experimental Results: Replication

![Graph showing experimental results for replication in GNUnet DHT. The graph compares the total number of replicas in the network against the number of rounds of PUTs for two different algorithms: R5N and R-Kademlia. The graph includes different comparison methods: Random and Same.](image)
Experimental Results: Sybils

![Graph showing GET success percentage vs. number of malicious peers in network for different rounds and protocols](image)

- R5N Round 10
- R5N Round 5
- R5N Round 1
- R-Kademlia All Rounds
Copyright

Copyright (C) 2011 Christian Grothoff

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved.