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Bloom Filters

• Probabilistic data structure to answer the question “is

element X in set S” with “no” or “maybe”

• If an element is not in the set, the probability is high

that the answer is “no”

• Uses a bit-array where k bits based on H(X) are set to

1 for each element X ∈ S.
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Review: Kademlia
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Kademlia and Restricted Routes
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The R5N Routing Algorithm

• Designed to work well in restricted route networks (many

nearest peers) and reduce the impact of malicious peers.

• Requires recursive routing; less control for initiator,

better performance; stateful return routing

• Kademlia style routing table — so-called “k-buckets”

storing k peers; such that the ith k-bucket stores peers

with XOR distance between [2i, 2i+1)
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The R5N Routing Algorithm

• Random and Kademlia style routing phases

⇒ combines path diversity with efficient routing

– Random phase: “start” Kademlia routing from random location.

– Kademlia phase: efficiently find nearest peers.

• Requests have desired replication level r; the number of

nearest peers a request should reach.

• Achieved by probabilistic path branching, at each hop a

request may be forwarded to one or more peers.
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The R5N Routing Algorithm
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The R5N Routing Algorithm

• Bloom filter with each request; peer filtering, circular

request prevention

• Message handling:

PUT Request

if nearest(r) then
store data(r)

else
for i = 0 → num forwards(r) do

p = get forward peer(r)
forward request(r, p)

end for
end if

GET Request

if NULL 6= (d = find data(r)) then
route result(r, d)

end if
for i = 0 → num forwards(r) do

p = get forward peer(r)
store route(p, r)
forward request(r, p)

end for
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Performance Analysis for R5N

• Randomized routing takes c steps, c ∼ log n

• Kademlia-style routing takes O(log n) steps

⇒ Finding a nearest peer is O(log n)
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Performance Analysis for R5N

• There are |N |
2

|E| ∈ O(|N |) nearest peers

• For a 50% success rate for a single GET, we need

O(
√
|N |) replicas

• Then repeat GET O(
√
|N |) times for “high” success

rate

⇒ Total routing cost is O(
√
n log n)
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Absolute Performance

Size of Average hops per PUT Average hops per GET

network R-Kademlia R5N R-Kademlia R5N

100 2.70 ± 0.06 3.96 ± 0.06 2.54 ± 0.03 4.63 ± 0.17

250 3.06 ± 0.10 4.26 ± 0.10 3.10 ± 0.06 5.96 ± 0.27

500 3.08 ± 0.46 4.38 ± 0.45 3.38 ± 0.06 6.17 ± 1.14

750 3.19 ± 0.74 4.37 ± 0.83 3.50 ± 0.04 6.29 ± 1.04

1000 3.63 ± 0.07 4.47 ± 0.93 3.64 ± 0.04 7.29 ± 0.95
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The DHT API

• GNUNET DHT connect, GNUNET DHT disconnect

• GNUNET DHT put

• GNUNET DHT get start, GNUNET DHT get stop
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Special GET Options

GET requests can be given the following optional options:

• Bloom Filter: filter known results (duplicates)

• Bloom Filter Mutator: change hash function of Bloom

Filter

• eXtended Query: additional query information beyond

the hash
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Options for GET and PUT

• GNUNET DHT RO DEMULTIPLEX EVERYWHERE

• GNUNET DHT RO RECORD ROUTE

• Replication level

• Expiration time (provided to PUT, returned by GET)

• Block type ⇒ for content validation
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The BLOCK API

• Block type determines responsible Block plugin

• Configuration option [block] PLUGINS specifies

supported plugins

• Implement a new plugin based on the

gnunet block plugin.h header

• “fs” for file-sharing, “dht” for DHT internals, “test” for

no verification (any data can match any key)
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The BLOCK Plugin API

Each plugin must provide two functions:

• GNUNET BLOCK EvaluationFunction: does the given

block satisfy the requirements of the given query?

Possible answers include: Yes, and other replies can exist; yes,

and this is the only answer; no, duplicate reply; no, invalid reply

• GNUNET BLOCK GetKeyFunction: given a block, what

key should it be stored under? Possible answers are: A key;

bad block; not supported
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Experimental Results: Replication
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Experimental Results: Sybils
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Copyright

Copyright (C) 2011 Christian Grothoff

Verbatim copying and distribution of this

entire article is permitted in any medium,

provided this notice is preserved.
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