
IN-2194 Warm-Up Exercise: GNUnet

1 GNUnet: Getting Started

First of all you have to install a current version of GNUnet. You can obtain the latest development version from subversion by
cloning the repository using:

svn checkout https : // gnunet . org / svn/gnunet

or, once released, you will be able to download a tarball of a more stable version from our website:

ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.9.0pre3.tar.gz

Detailed installation instructions for various operating systems and a detailed list of all dependencies can found on our
website:
https://gnunet.org/installation

c o n f i g u r e −−p r e f i x=$HOME
make
make i n s t a l l
export GNUNET PREFIX=$HOME
export PATH=$PATH:$GNUNET PREFIX/ bin
make check
mkdir . gnunet/
touch . gnunet/gnunet . conf

The configure prefix defines where to install GNUnet. If you do not specifiy a prefix, GNUnet is installed your home
directory. For development purposes you can specify a directory like /tmp/gnunet.

You should add the export GNUNET PREFIX=$HOME to your .bash rc or .profile to be sure it is always set.

1.1 Baby Steps

First, you may want to just generate the peer’s private key:

gnunet−p e e r i n f o −s
\end{ l i t l i s t i n g }

GNUnet can then be s t a r t e d with \ l s t i n l i n e | gnunet−arm −s | and stopped with
\ l s t i n l i n e | gnunet−arm −e | . You can s p e c i f y a c o n f i g u r a t i o n for a l l
s e r v i c e s us ing the $−c$ switch .

\begin { l s t l i s t i n g }
gnunet−arm − i dht
gnunet−dht−put −k KEY −d VALUE
gnunet−dht−get −k KEY
gnunet−s t a t i s t i c s
gnunet−s t a t i s t i c s −s dht

1

ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.9.0pre3.tar.gz
https://gnunet.org/installation

1.2 Starting Two Peers by Hand

For the second peer, you will need to manually create a modified configuration file to avoid conflicts with ports and directories.
Use $GNUNET PREFIX/share/gnunet/defaults.conf as a template (create a copy called peer2.conf) and change:

• SERVICEHOME under PATHS

• Every value for “PORT” (add 10000) in any section

• Every value for “UNIXPATH” in any section

Now, generate the 2nd peer’s private key:

gnunet−p e e r i n f o −s −c peer2 . conf
\end{ l i t l i s t i n g }

This may take a while , g enerate entropy us ing your keyboard or mouse
as needed . Also , make sure the output i s d i f f e r e n t from the {\ t t

gnunet−p e e r i n f o } output for the f i r s t peer (o therwi se you made an
e r r o r in the c o n f i g u r a t i o n) .

Then , you can s t a r t a second peer us ing :
\begin { l s t l i s t i n g }
gnunet−arm −c peer2 . conf −s
gnunet−arm −c peer2 . conf − i dht
gnunet−dht−put −c peer2 . conf −k KEY −d VALUE
gnunet−dht−get −c peer2 . conf −k KEY

If you want the two peers to connect, change the first one to be a hostlist server by:

• Creating an empty configuration file peer1.conf

• Adding a line in the “[hostlist]” section with “OPTIONS = -p”

Then change peer2.conf, replacing the “SERVERS” line with “http://localhost:8080/”. Restart both peers using gnunet-arm.
Check that they are connected using gnunet-statistics -s core.

2 gnunet-ext

A template build system for writing GNUnet extensions in C can be obtained as follows:

svn checkout https : // gnunet . org / svn/gnunet−ext /
cd gnunet−ext /
. boots t rap
. / c o n f i g u r e −−p r e f i x=$HOME −−with−gnunet=$GNUNET PREFIX
make
make i n s t a l l
make check

2

The first step for writing any extension with a new service is to ensure that the defaults.conf file contains entries for the
UNIXPATH, PORT and BINARYNAME for the service in a section named after the service. The defaults.conf is located
in the $GNUNET PREFIX/share/gnunet/ directory (and will be overwritten if you run make install for the main GNUnet
distribution afterwards, so be careful about this!).1

3 GNUnet Architecture

GNUnet is organized in layers or services. Each service is composed of a main service implementation and a client library for
other programs to use, described by an API.

Very often it is other GNUnet services that will use these APIs to build the higher layers of GNUnet on top of the lower
ones. Each layer expands or extends the functionality of the service below (for instance, to build a mesh on top of a DHT).

The main service implementation runs as a standalone process in the operating system and the client code runs as part of the
client program, so crashes of a client do not affect the service process or other clients. The service and the clients communicate
via a message protocol to be defined and implemented by the programmer.

4 Writing a Client

4.1 Writing a Client Application

When writing any client application (for example, a command-line tool), the basic structure is to start with the GNUNET PROGRAM run

function. This function will parse command-line options, setup the scheduler and then invokes the run function (with the re-
maining non-option arguments) and a handle to the parsed configuration (and the configuration file name that was used, which
is typically not needed):

#include <gnunet/ g n u n e t u t i l l i b . h>

stat ic void
run (void ∗ c l s ,

char ∗const ∗ args ,
const char ∗ c f g f i l e ,
const struct GNUNET CONFIGURATION Handle ∗ c f g)

{
/∗ main code here ∗/

}

int
main (int argc , char ∗const ∗argv)
{

stat ic const struct GNUNET GETOPT CommandLineOption opt ions [] = {
GNUNET GETOPT OPTION END
} ;
return (GNUNET OK ==

GNUNET PROGRAM run (argc ,
argv ,

1A more elegant solution for extending defaults.conf will be provided in the future.

3

” binary−name” ,
ge t text noop (” binary d e s c r i p t i o n text ”) ,
opt ions , &run , NULL)) ? r e t : 1 ;

}
Options can then be added easily by adding global variables and expanding the options array. For example, the following

would add a string-option and a binary flag (defaulting to NULL and GNUNET NO respectively):

stat ic char ∗ s t r i n g o p t i o n ;
stat ic int a f l a g ;

// . . .
stat ic const struct GNUNET GETOPT CommandLineOption opt ions [] = {
{ ’ s ’ , ”name” , ”SOMESTRING” ,

get text noop (” text d e s c r i b i n g the s t r i n g o p t i o n NAME”) , 1 ,
&GNUNET GETOPT set string , &s t r i n g o p t i o n } ,
{ ’ f ’ , ” f l a g ” , NULL,

get text noop (” text d e s c r i b i n g the f l a g opt ion ”) , 0 ,
&GNUNET GETOPT set one , &a f l a g } ,

GNUNET GETOPT OPTION END
} ;

// . . .

Issues such as displaying some helpful text describing options using the --help argument and error handling are taken care
of when using this approach. Other GNUNET GETOPT -functions can be used to obtain integer value options, increment counters,
etc. You can even write custom option parsers for special circumstances not covered by the available handlers.

Inside the run method, the program would perform the application-specific logic, which typically involves initializing and
using some client library to interact with the service. The client library is supposed to implement the IPC whereas the service
provides more persistent P2P functions.

4.2 Writing a Client Library

The first and most important step in writing a client library is to decide on an API for the library. Typical API calls include
connecting to the service, performing application-specific requests and cleaning up. Many examples for such service APIs can
be found in the gnunet/src/include/gnunet * service.h files.

Then, a client-service protocol needs to be designed. This typically involves defining various message formats in a header
that will be included by both the service and the client library (but is otherwise not shared and hence located within the
service’s directory and not installed by make install). Each message must start with a struct GNUNET MessageHeader and
must be shorter than 64k. By convention, all fields in IPC (and P2P) messages must be in big-endian format (and thus should
be read using ntohl and similar functions and written using htonl and similar functions). Unique message types must be
defined for each message struct in the gnunet protocols.h header (or an extension-specific include file).

4.3 Connecting to the Service

Before a client library can implement the application-specific protocol with the service, a connection must be created:

c l i e n t = GNUNET CLIENT connect (” s e r v i c e−name” , c f g) ;

As a result a GNUNET CLIENT Connection handle is returned which has to used in later API calls related to this service.
The complete client API can be found in gnunet client lib.h

4

4.4 GNUnet Messages

In GNUnet, messages are always sent beginning with a struct GNUNET MessageHeader in big endian format. This header
defines the size and the type of the message, the payload follows after this header.

struct GNUNET MessageHeader
{

/∗∗
∗ The l en g t h o f the s t r u c t (in by tes , i n c l ud i n g the l en g t h f i e l d i t s e l f) ,
∗ in b ig−endian format .
∗/

u i n t 1 6 t s i z e GNUNET PACKED;

/∗∗
∗ The type o f the message (GNUNETMESSAGE TYPE XXXX) , in big−endian format .
∗/

u i n t 1 6 t type GNUNET PACKED;

} ;

Existing message types are defined in gnunet protocols.h

A common way to create a message is:

struct GNUNET MessageHeader ∗msg =
GNUNET malloc(p a y l o a d s i z e + s izeof (struct GNUNET MessageHeader)) ;

msg−>s i z e = htons (p a y l o a d s i z e + s izeof (struct GNUNET MessageHeader)) ;
msg−>type = htons (GNUNET MY MESSAGE TYPE) ;
memcpy(&msg [1] , &payload , p a y l o a d s i z e) ;

4.5 Sending Requests to the Service

Any client-service protocol must start with the client sending the first message to the service, since services are only notified
about (new) clients upon receiving a the first message.

Clients can transmit messages to the service using the GNUNET CLIENT notify transmit ready API:

stat ic s i z e t
t ransmit cb (void ∗ c l s , s i z e t s i z e , void ∗buf)
{

// . . .
i f (NULL == buf) { h a n d l e e r r o r () ; return 0 ; }
GNUNET assert (s i z e >= msg s i ze) ;
memcpy (buf , my msg , msg s i z e) ;
// . . .
return msg s i ze ;

}

// . . .

5

th = GNUNET CLIENT notify transmit ready (c l i e n t ,
msg s ize ,

timeout ,
GNUNET YES,
&transmit cb , c l s) ;

// . . .

The client-service protocoll calls GNUNET CLIENT notify transmit ready to be notified when the client is ready to send
data to the service. Besides other arguments, you have to pass the client returned from the connect call, the message size and
the callback function to call when the client is ready to send.

Only a single transmission request can be queued per client at the same time using this API. The handle th can be used to
cancel the request if necessary (for example, during shutdown).

When transmit cb is called the message is copied in the buffer provided and the number of bytes copied into the buffer
is returned. transmit cb could also return 0 if for some reason no message could be constructed; this is not an error and the
connection to the service will persist in this case.

4.6 Receiving Replies from the Service

Clients can receive messages from the service using the GNUNET CLIENT receive API:

/∗∗
∗ Function c a l l e d wi th messages from s t a t s s e r v i c e .
∗
∗ @param c l s c l o s u r e
∗ @param msg message rece ived , NULL on timeout or f a t a l e r ror
∗/

stat ic void
r e c e i v e mes sage (void ∗ c l s , const struct GNUNET MessageHeader ∗msg)
{

struct MyArg ∗ arg = c l s ;

// proces s ’msg ’
}

// . . .
GNUNET CLIENT receive (c l i e n t ,

&rece ive message ,
arg ,
t imeout) ;

// . . .

It should be noted that this receive call only receives a single message. To receive additional messages, GNUNET CLIENT receive

must be called again.

6

5 Writing a Service

5.1 Code Placement

New services are placed in their own subdirectory under gnunet/src. This subdirectory should contain the API implementa-
tion file SERVICE api.c, the description of the client-service protocol SERVICE.h and P2P protocol SERVICE protocol.h, the
implementation of the service itself gnunet-service-SERVICE.h and several files for tests, including test code and configuration
files.

5.2 Starting a Service

The key API definitions for starting services are”

typedef void (∗GNUNET SERVICE Main) (void ∗ c l s ,
struct GNUNET SERVER Handle ∗ s e rver ,
const struct GNUNET CONFIGURATION Handle ∗ c f g) ;

int GNUNET SERVICE run (int argc ,
char ∗const ∗argv ,
const char ∗ serviceName ,
enum GNUNET SERVICE Options opt ,
GNUNET SERVICE Main task ,
void ∗ t a s k c l s) ;

Here is a starting point for your main function for your service:

stat ic void my main (void ∗ c l s ,
struct GNUNET SERVER Handle ∗ s e rver ,
const struct GNUNET CONFIGURATION Handle ∗ c f g)

{
/∗ do work ∗/

}

int main (int argc , char ∗const∗argv)
{

i f (GNUNET OK !=
GNUNET SERVICE run (argc , argv , ”my” ,

GNUNET SERVICE OPTION NONE,
&my main , NULL) ;

return 1 ;
return 0 ;

}

5.3 Receiving Requests from Clients

Inside of the my main method, a service typically registers for the various message types from clients that it supports by providing
a handler function, the message type itself and possibly a fixed message size (or 0 for variable-size messages):

stat ic void
ha nd l e s e t (void ∗ c l s ,

7

struct GNUNET SERVER Client ∗ c l i e n t ,
const struct GNUNET MessageHeader ∗message)

{
GNUNET SERVER receive done (c l i e n t , GNUNET OK) ;

}
stat ic void
hand l e ge t (void ∗ c l s ,

struct GNUNET SERVER Client ∗ c l i e n t ,
const struct GNUNET MessageHeader ∗message)

{
GNUNET SERVER receive done (c l i e n t , GNUNET OK) ;

}

stat ic void my main (void ∗ c l s ,
struct GNUNET SERVER Handle ∗ s e rver ,
const struct GNUNET CONFIGURATION Handle ∗ c f g)

{
stat ic const struct GNUNET SERVER MessageHandler hand le r s [] = {
{&hand le se t , NULL, GNUNET MESSAGE TYPE MYNAME SET, 0} ,
{&handle get , NULL, GNUNET MESSAGE TYPE MYNAME GET, 0} ,
{NULL, NULL, 0 , 0}

} ;
GNUNET SERVER add handlers (se rver , hand le r s) ;
/∗ do more se tup work ∗/

}

Each handler function must eventually (possibly in some asynchronous continuation) call GNUNET SERVER receive done.
Only after this call additional messages from the same client may be processed. This way, the service can throttle processing
messages from the same client. By passing GNUNET SYSERR, the service can close the connection to the client, indicating an
error.

Services must check that client requests are well-formed and must not crash on protocol violations by the clients. Similarly,
client libraries must check replies from servers and should gracefully report errors via their API.

5.4 Responding to Clients

Servers can send messages to clients using the GNUNET SERVER notify transmit ready API:

stat ic s i z e t
t ransmit cb (void ∗ c l s , s i z e t s i z e , void ∗buf)
{

// . . .
i f (NULL == buf) { h a n d l e e r r o r () ; return 0 ; }
GNUNET assert (s i z e >= msg s i ze) ;
memcpy (buf , my msg , msg s i z e) ;
// . . .
return msg s i ze ;

}

8

// . . .
th = GNUNET SERVER notify transmit ready (c l i e n t ,

msg s ize ,
timeout ,
&transmit cb , c l s) ;

// . . .

Only a single transmission request can be queued per client at the same time using this API. Additional APIs for sending
messages to clients can be found in the gnunet server lib.h header.

5.5 Connecting to CORE

One of the first things any service that extends the P2P protocol typically does is connect to the CORE:

struct GNUNET CORE Handle ∗
GNUNET CORE connect (struct GNUNET SCHEDULER Handle ∗ sched ,

const struct GNUNET CONFIGURATION Handle ∗ cfg ,
struct GNUNET TIME Relative timeout ,
void ∗ c l s ,
GNUNET CORE StartupCallback i n i t ,
GNUNET CORE ConnectEventHandler connects ,
GNUNET CORE DisconnectEventHandler d i s connect s ,
GNUNET CORE MessageCallback inbound not i fy ,
int inbound hdr only ,
GNUNET CORE MessageCallback outbound not i fy ,
int outbound hdr only ,
const struct GNUNET CORE MessageHandler ∗ hand le r s) ;

5.6 Receiving P2P Messages

To receive messages from CORE, services register a set of handlers (parameter *handlers in the CORE connect call) that are
called by CORE when a suitable message arrives.

stat ic int
c a l l b a c k f u n c t i o n f o r t y p e o n e (void ∗ c l s ,

const struct GNUNET PeerIdentity ∗peer ,
const struct GNUNET MessageHeader ∗message ,
const struct GNUNET TRANSPORT ATS Information
∗ a t s i)

{
/∗ Do s t u f f ∗/
return GNUNET OK; /∗ or GNUNET SYSERR to c l o s e the connect ion ∗/

}

/∗∗
∗ Functions to handle messages from core
∗/

9

stat ic struct GNUNET CORE MessageHandler c o r e h a n d l e r s [] = {
{&c a l l b a c k f u n c t i o n f o r t y p e o n e , GNUNET MESSAGE TYPE MYSERVICE TYPE ONE, 0} ,
/∗ more hand l e r s ∗/
{NULL, 0 , 0}

} ;

5.7 Sending P2P Messages

In response to events (connect, disconnect, inbound messages, timing, etc.) services can then use this API to transmit messages:

typedef s i z e t
(∗GNUNET CONNECTION TransmitReadyNotify) (void ∗ c l s ,

s i z e t s i z e ,
void ∗buf) ;

struct GNUNET CORE TransmitHandle ∗
GNUNET CORE notify transmit ready (struct GNUNET CORE Handle ∗handle ,

int cork , u i n t 3 2 t p r i o r i t y ,
struct GNUNET TIME Relative maxdelay ,
const struct GNUNET PeerIdentity ∗ target ,
s i z e t n o t i f y s i z e ,
GNUNET CONNECTION TransmitReadyNotify not i f y ,
void ∗ n o t i f y c l s) ;

6 Debugging with gnunet-arm

Even if services are managed by gnunet-arm, you can start them with gdb or valgrind. For example, you could add the
following lines to your configuration file to start the DHT service in a gdb session in a fresh xterm:

[dht]

PREFIX=xterm -e gdb --args

Alternatively, you can stop a service that was started via ARM and run it manually:

gnunet−arm −k dht
gdb −−args gnunet−s e r v i c e−dht −L DEBUG
va lg r ind gnunet−s e r v i c e−dht −L DEBUG

Assuming other services are well-written, they will automatically re-integrate the restarted service with the peer.
Finally, set the option “DEBUG=YES” to start services with logging of DEBUG messages (if you are using GNUNET log for

printf-style debugging).
You should also probably enable the creation of core files, by setting ulimit, and echo’ing 1 into /proc/sys/kernel/core uses pid.

Then you can investigate the core dumps with gdb, which is often the fastest method to find simple errors.

10

	GNUnet: Getting Started
	Baby Steps
	Starting Two Peers by Hand

	gnunet-ext
	GNUnet Architecture
	Writing a Client
	Writing a Client Application
	Writing a Client Library
	Connecting to the Service
	GNUnet Messages
	Sending Requests to the Service
	Receiving Replies from the Service

	Writing a Service
	Code Placement
	Starting a Service
	Receiving Requests from Clients
	Responding to Clients
	Connecting to CORE
	Receiving P2P Messages
	Sending P2P Messages

	Debugging with gnunet-arm

