Peer-to-Peer Systems and Security
Introduction to GNUnet 0.9.x for Developers

Christian Grothoff

Lehrstuhl fiir Netzarchitekturen und Netzdienste
Institut fur Informatik
Technische Universitat Miinchen

May 5, 2011




m GNUnet 0.9.x Release Status

m GNUnet 0.9.x Features

m GNUnet 0.9.x System Overview
m GNUnet 0.9.x APIs




m GNUnet 0.9.0pre3 is an alpha release

m GNUnet 0.9.0pre3 works on GNU/Linux, OS X, likely Solaris
m GNUnet 0.9.0pre3 has known bugs (see TODO, Mantis)

m GNUnet 0.9.0pre3 lacks documentation

m GNUnet 0.9.0pre3 has a somewhat steep learning curve




m GNUnet 0.9.0pre3 is an alpha release

m GNUnet 0.9.0pre3 works on GNU/Linux, OS X, likely Solaris
m GNUnet 0.9.0pre3 has known bugs (see TODO, Mantis)

m GNUnet 0.9.0pre3 lacks documentation

m GNUnet 0.9.0pre3 has a somewhat steep learning curve

m APIs may still change slightly for 0.9.0

m Protocols may still change slightly for 0.9.0




m GNUnet 0.9.x Release Status

m GNUnet 0.9.x Features

m GNUnet 0.9.x System Overview
m GNUnet 0.9.x APIs




m OS abstraction layer

m Bandwidth management

m Transport abstraction (TCP, UDP, ...)
m Link encryption

m Peer discovery (hostlist, P2P gossip)
m Topology management




m Logging, configuration management, command-line parsing
m Cryptographic primitives

m Event loop, client-server IPC messaging infrastructure

m Binary I/O, asynchronous DNS resolution,

m Datastructures (Heap, HashMap, Bloomfilter)




m Datastore (for file-sharing)

m Datacache (for DHT)

m Statistics

m Testbed management (loopback & distributed testing)
m Automatic Restart Management




m Randomized DHT based on Kademlia

m Command-line interface (GET/PUT)

m Client-library (C API)

m Should work pretty well, but unreliable as any P2P operation

("




m GNUnet 0.9.x Release Status

m GNUnet 0.9.x Features

m GNUnet 0.9.x System Overview
m GNUnet 0.9.x APIs




m https://gnunet.org/

How to build & run GNUnet

End-user and developer manuals, FAQ
Bug database

Doxygen source code documentation
Regression tests results

Code coverage analysis

m Static analysis

m irc.freenode.net#gnunet




outing \

Authoring

Transport

Datastore

TCP, UDP, HTTP, ...

Testing




m gnunetutil library provides shared functions for services,
daemons and user interfaces

m No (more) threads (no deadlocks, no races, no fun)
m Services are processes accessed via C API
m Daemons are processes without an API

m Service APl use IPC (TCP/IP or UNIX Domain Sockets) to
communicate with the respective service process

m Service processes are managed by gnunet-service-arm
B gnunet-service-arm is controlled with gnunet-arm




libgcrypt

libgmp

libmicrohttpd > 0.9.9!
libextractor > 0.6.x!!
sqlite

mysq|

postgres




m GNUnet 0.9.x Release Status

m GNUnet 0.9.x Features

m GNUnet 0.9.x System Overview
m GNUnet 0.9.x APIs




m C has first-class, higher-order functions
m GNUnet uses those




m C has first-class, higher-order functions
m GNUnet uses those

m GNU GCC has inner functions

m GNUnet does not use inner functions




m C has first-class, higher-order functions
m GNUnet uses those

m GNU GCC has inner functions

m GNUnet does not use inner functions

m GNUnet passes a void * closure (c1s) as an explicit first
argument to all higher-order functions




m Header includes many other headers

m Should be included after platform.h

m Provides OS independence / portability layer

m Provides higher-level IPC APl (message-based)

m Provides some data structures (Bloom filter, hash map, heap,
doubly-linked list)

m Provides configuration parsing

m Provides cryptographic primitives (AES-256, SHA-512, RSA,
(P)RNG)

m Use: GNUNET malloc, GNUNET free, GNUNET strdup,

GNUNET_snprintf, GNUNET _asprintf, GNUNET log,
GNUNET_assert




X 4
/v
4

APIs: GNUNET assert and GNUNET break

GNUNET _assert aborts execution if the condition is false (0);
use when internal invariants are seriously broken and
continued execution is unsafe

GNUNET break logs an error message if the condition is false
and then continues execution; use if you are certain that the
error can be managed and if this has to be a programming
error with the local peer

GNUNET _break_op behaves just like GNUNET_break except that
the error message blames it on other peers; use when
checking that other peers are well-behaved

GNUNET _log should be used where a specific message to the
user is appropriate (not for logic bugs!); GNUNET log_strerror
and GNUNET _log_strerror_file should be used if the error
message concerns a system call and errno

Christian Grothoff (TU Miinct IN-2194

20



m Part of libgnunetutil

m Main event loop

m Each task is supposed to never block (disk IO is considered
OK)

m SCHEDULER can be used to schedule tasks based on 10
being ready, timeouts or completion of other tasks

m Each task has a unique 64-bit
GNUNET_SCHEDULER TaskIdentifier that can be used to
cancel it

m The event loop is typically started using the higher-level
PROGRAM or SERVICE abstractions




The scheduler provides a somewhat tricky way to install a function
that will be run on shutdown:
static void

my_shutdown (void =xcls,
const struct GNUNET_SCHEDULER_TaskContext *tc)

GNUNET_assert (0 != (tc—>reason & GNUNET_SCHEDULER.REASON.SHUTDOWN));
GNUNET_CORE_disconnect (core);

static void
my_run (...)

GNUNET_SCHEDULER_.add_delayed (GNUNET_TIME_UNIT_.FOREVER.REL,
&my_shutdown, NULL);




m Part of libgnunetutil

m Used to receive requests from service APIs

m For example, GET/PUT requests from DHT API

m Main uses: register handler, transmit response to client




m Used to define message types
m Each message in GNUnet begins with 4 bytes: type & size
m 64k message types, up to 64k of data per message

m You will need to define some message type(s) for your
services




The STATISTICS service provides an easy way to track
performance information:

struct GNUNET_STATISTICS.Handle =
GNUNET_STATISTICS_create (const char xsubsystem,
const struct GNUNET_.CONFIGURATION-Handle xcfg);
void
GNUNET_STATISTICS_set (struct GNUNET_STATISTICS_Handle xhandle,
const char xname,
uint64_t value, int make_persistent);
void
GNUNET_STATISTICS_update (struct GNUNET_STATISTICS_Handle xhandle,
const char xname,
int64_t delta, int make_persistent);

With this, you can then use gnunet-statistics to inspect the
current value of the respective statistic.




The TESTING library provides an easy way to setup testbeds:

struct GNUNET_TESTING_PeerGroup x*
GNUNET_TESTING_testbed_start (const struct GNUNET_.CONFIGURATION-Handle =cfg,
unsigned int total ,
struct GNUNET_TIME_Relative timeout,
GNUNET_TESTING_NotifyConnection connect.cb,
GNUNET_TESTING_NotifyCompletion peergroup._cb,
void *peergroup_cls,
const struct GNUNET_TESTING.Host xhostnames);




