
A Tutorial for GNUnet 0.9.x (C version)
Christian Grothoff Bart Polot Matthias Wachs

April 25, 2012

1 Getting Started

First of all you have to install a current version of GNUnet. You can obtain the latest development version from subversion by
cloning the repository using:

$ svn checkout https : // gnunet . org /svn/gnunet

or you can download a tarball of a more stable version from GNU FTP mirrors:

ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.9.2.tar.gz

Detailed installation instructions for various operating systems and a detailed list of all dependencies can found on our website
at

https://gnunet.org/installation.

Assuming all dependencies are installed, the following commands should work:

$ c o n f i g u r e −−p r e f i x=$HOME
$ make
$ make i n s t a l l
$ export GNUNET PREFIX=$HOME
$ export PATH=$PATH:$GNUNET PREFIX/ bin
$ make check
$ mkdir ˜/ . gnunet/
$ touch ˜/ . gnunet/gnunet . conf

The configure prefix defines where to install GNUnet. If you do not specifiy a prefix, GNUnet is installed your home directory.
For development purposes you can specify a directory like /tmp/gnunet. You should add export GNUNET PREFIX=$HOME
to your .bash rc or .profile to be sure the environment variable is always set.

1.1 Background: GNUnet Architecture

GNUnet is organized in layers or services. Each service is composed of a main service implementation and a client library for
other programs to use, described by an API.

Very often it is other GNUnet services that will use these APIs to build the higher layers of GNUnet on top of the lower
ones. Each layer expands or extends the functionality of the service below (for instance, to build a mesh on top of a DHT).

The main service implementation runs as a standalone process in the operating system and the client code runs as part of the
client program, so crashes of a client do not affect the service process or other clients. The service and the clients communicate
via a message protocol to be defined and implemented by the programmer.

1

ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.9.2.tar.gz
https://gnunet.org/installation

1.2 Baby Steps

First, you may want to just generate the peer’s private key:

$ gnunet−p e e r i n f o −s

GNUnet can then be started with gnunet−arm −s and stopped with gnunet−arm −e. You can specify a configuration for
all services using the −c switch.

$ gnunet−arm − i dht
$ gnunet−dht−monitor −k KEY −T 0 # run in a separa t e termina l (op t i ona l)
$ gnunet−dht−put −k KEY −d VALUE
$ gnunet−dht−get −k KEY
$ gnunet−s t a t i s t i c s
$ gnunet−s t a t i s t i c s −s dht

Using the “monitor” line given above, you can observe the behavior of your own peer’s DHT with respect to the specified KEY.

1.3 Starting Two Peers by Hand

For the second peer, you will need to manually create a modified configuration file to avoid conflicts with ports and directories. A
peers configuration file is by default located in /.gnunet/gnunet.conf. This file is typically very short as only the differences
to the defaults need to be specified. The defaults are located in many files in the $GNUNET PREFIX/share/gnunet/config.d

directory.
To configure the second peer, use the files $GNUNET PREFIX/share/gnunet/config.d as a template for your main configu-

ration file:

$ cat $GNUNET PREFIX/ share /gnunet/ c o n f i g . d /∗ . conf > peer2 . conf

Now you have to edit peer2.conf and change:

• SERVICEHOME under PATHS

• Every value for “PORT” (add 10000) in any section

• Every value for “UNIXPATH” in any section

to a fresh, unique value. Make sure that the PORT numbers stay below 65536. From now on, whenever you interact with the
second peer, you need to specify -c peer.conf as an additional command line argument.

Now, generate the 2nd peer’s private key:

$ gnunet−p e e r i n f o −s −c peer2 . conf

This may take a while, generate entropy using your keyboard or mouse as needed. Also, make sure the output is different
from the gnunet-peerinfo output for the first peer (otherwise you made an error in the configuration).

Then, you can start a second peer using:

$ gnunet−arm −c peer2 . conf −s
$ gnunet−arm −c peer2 . conf − i dht
$ gnunet−dht−put −c peer2 . conf −k KEY −d VALUE
$ gnunet−dht−get −c peer2 . conf −k KEY

If you want the two peers to connect, you can use the peerinfo tool or change the first one to be a hostlist server by:

2

• Creating an empty configuration file peer1.conf

• Adding a line in the “[hostlist]” section with “OPTIONS = -p”

Then change peer2.conf, replacing the “SERVERS” line with “http://localhost:8080/”. Restart both peers using gnunet-arm.
Note that if you start your peers without changing these settings, they will use the “global” hostlist servers of the GNUnet P2P
network and likely connect to those peers. At that point, debugging might become tricky as you’re going to be connected to
many more peers and would likely observe traffic and behaviors that are not explicitly controlled by you.

If you want to use the peerinfo tool to connect your peers, you should:

• Remove hostlist from DEFAULTSERVICES (to not connect to the global GNUnet)

• Start both peers running gnunet-arm -s and gnunet-arm -c peer2.conf -s

• Get HELLO message of the first peer running gnunet-peerinfo -g

• Give the output to the second peer by running gnunet-peerinfo -c peer2.conf -p ’<output>’

Check that they are connected using gnunet-statistics -s core.

1.4 Starting Peers Using the Testing library

In case of tests where a big network is needed, the testing library allows to start any number of peers with a single configuration
file. On a single not-so-powerful computer, it should be possible to run 100 peers easily.

The only configuration file needed should include a testing section with basic performance characteristics; the default
settings are:

[TESTING]

How long before failing a connection?

CONNECT_TIMEOUT = 30 s

How many connect attempts should we make?

CONNECT_ATTEMPTS = 3

How many connections can happen simultaneously?

MAX_OUTSTANDING_CONNECTIONS = 50

Should we clean up the files on peer group shutdown?

DELETE_FILES = YES

When starting peers using the testing library, the library takes care of modifiying all variable fields (SERVICEHOME, PORT,
UNIXPATH), copying the files to different directories (possibly using scp for distributed execution), starting and connecting
the peers, and many more tasks that need to be done in order to have a running network ready to run experiments on.

#include ” g n u n e t t e s t i n g l i b . h”

stat ic struct GNUNET TESTING PeerGroup ∗pg ;

stat ic void
ready cb (void ∗ c l s , const char ∗ error msg)
{

/∗ Network i s running ! ∗/
}

3

stat ic void
run (void ∗ c l s ,

char ∗const ∗ args ,
const char ∗ c f g f i l e ,
const struct GNUNET CONFIGURATION Handle ∗ c f g)

{
/∗ Read t e s t i n g parameters from con f i g f i l e (number o f peers , e t c) ∗/
/∗ connec t cb and hos t s can be NULL ∗/
pg = GNUNET TESTING peergroup start (c fg , NUMBER OF PEERS, TIMEOUT,

NULL /∗ connec t cb ∗/ , &ready cb ,
c l s , NULL /∗ hos t s ∗/) ;

}

int
main (int argc , char ∗const ∗argv)
{

stat ic const struct GNUNET GETOPT CommandLineOption opt ions [] = {
GNUNET GETOPT OPTION END
} ;
return (GNUNET OK ==

GNUNET PROGRAM run (argc ,
argv ,
” binary−name” ,
ge t text noop (” binary d e s c r i p t i o n text ”) ,
opt ions , &run , NULL)) ? r e t : 1 ;

}

Once the ready cb callback is executed the network is up and running. By passing a connect cb you can receive notifications
whenever two peers are connected by testing. With the hosts argument, you can specify which hosts to use for distributed
execution. Using NULL means to run all peers locally.

You can write some test code in the program itself and call it from there or just interact with the testbed using the command
line programs as before. In the latter case, you need to specify the -c option with a file in /tmp/binary-name/NUMBER/gnunet-testing-XXXXXX

to select which of the peers the command line tool should connect to.

Exercise: Find out how many peers you can run on your system.

Exercise: Find out how to create connections from within run and create a 2D torus topology. Then use the DHT API to
store and retrieve values in the network.

1.5 gnunet-ext

A template build system for writing GNUnet extensions in C can be obtained as follows:

$ svn checkout https : // gnunet . org /svn/gnunet−ext /
$ cd gnunet−ext /
$. boots t rap
$. / c o n f i g u r e −−p r e f i x=$HOME −−with−gnunet=$GNUNET PREFIX
$ make

4

$ make i n s t a l l
$ make check

The first step for writing any extension with a new service is to ensure that the defaults.conf file contains entries for the
UNIXPATH, PORT and BINARYNAME for the service in a section named after the service. The defaults.conf is located
in the $GNUNET PREFIX/share/gnunet/ directory (and will be overwritten if you run make install for the main GNUnet
distribution afterwards, so be careful about this!).1

2 Writing a Client Application

When writing any client application (for example, a command-line tool), the basic structure is to start with the GNUNET PROGRAM run

function. This function will parse command-line options, setup the scheduler and then invokes the run function (with the re-
maining non-option arguments) and a handle to the parsed configuration (and the configuration file name that was used, which
is typically not needed):

#include <gnunet/ g n u n e t u t i l l i b . h>

stat ic void
run (void ∗ c l s ,

char ∗const ∗ args ,
const char ∗ c f g f i l e ,
const struct GNUNET CONFIGURATION Handle ∗ c f g)

{
/∗ main code here ∗/

}

int
main (int argc , char ∗const ∗argv)
{

stat ic const struct GNUNET GETOPT CommandLineOption opt ions [] = {
GNUNET GETOPT OPTION END
} ;
return (GNUNET OK ==

GNUNET PROGRAM run (argc ,
argv ,
” binary−name” ,
ge t text noop (” binary d e s c r i p t i o n text ”) ,
opt ions , &run , NULL)) ? r e t : 1 ;

}

2.1 Handling command-line options

Options can then be added easily by adding global variables and expanding the options array. For example, the following
would add a string-option and a binary flag (defaulting to NULL and GNUNET NO respectively):

1A more elegant solution for extending defaults.conf will be provided in the future.

5

stat ic char ∗ s t r i n g o p t i o n ;
stat ic int a f l a g ;

// . . .
stat ic const struct GNUNET GETOPT CommandLineOption opt ions [] = {
{ ’ s ’ , ”name” , ”SOMESTRING” ,

get text noop (” text d e s c r i b i n g the s t r i n g o p t i o n NAME”) , 1 ,
&GNUNET GETOPT set string , &s t r i n g o p t i o n } ,
{ ’ f ’ , ” f l a g ” , NULL,

get text noop (” text d e s c r i b i n g the f l a g opt ion ”) , 0 ,
&GNUNET GETOPT set one , &a f l a g } ,

GNUNET GETOPT OPTION END
} ;

// . . .

Issues such as displaying some helpful text describing options using the --help argument and error handling are taken care
of when using this approach. Other GNUNET GETOPT -functions can be used to obtain integer value options, increment counters,
etc. You can even write custom option parsers for special circumstances not covered by the available handlers.

Inside the run method, the program would perform the application-specific logic, which typically involves initializing and
using some client library to interact with the service. The client library is supposed to implement the IPC whereas the service
provides more persistent P2P functions.

Exercise: Add a few command-line options and print them inside of run. What happens if the user gives invalid arguments?

2.2 Writing a Client Library

The first and most important step in writing a client library is to decide on an API for the library. Typical API calls include
connecting to the service, performing application-specific requests and cleaning up. Many examples for such service APIs can
be found in the gnunet/src/include/gnunet * service.h files.

Then, a client-service protocol needs to be designed. This typically involves defining various message formats in a header
that will be included by both the service and the client library (but is otherwise not shared and hence located within the
service’s directory and not installed by make install). Each message must start with a struct GNUNET MessageHeader and
must be shorter than 64k. By convention, all fields in IPC (and P2P) messages must be in big-endian format (and thus should
be read using ntohl and similar functions and written using htonl and similar functions). Unique message types must be
defined for each message struct in the gnunet protocols.h header (or an extension-specific include file).

2.2.1 Connecting to the Service

Before a client library can implement the application-specific protocol with the service, a connection must be created:

c l i e n t = GNUNET CLIENT connect (” s e r v i c e−name” , c f g) ;

As a result a GNUNET CLIENT Connection handle is returned which has to used in later API calls related to this service.
The complete client API can be found in gnunet client lib.h

2.2.2 GNUnet Messages

In GNUnet, messages are always sent beginning with a struct GNUNET MessageHeader in big endian format. This header
defines the size and the type of the message, the payload follows after this header.

6

struct GNUNET MessageHeader
{

/∗∗
∗ The l en g t h o f the s t r u c t (in by tes , i n c l ud i n g the l en g t h f i e l d i t s e l f) ,
∗ in b ig−endian format .
∗/

u i n t 1 6 t s i z e GNUNET PACKED;

/∗∗
∗ The type o f the message (GNUNETMESSAGE TYPE XXXX) , in big−endian format .
∗/

u i n t 1 6 t type GNUNET PACKED;

} ;

Existing message types are defined in gnunet protocols.h

A common way to create a message is:

struct GNUNET MessageHeader ∗msg =
GNUNET malloc(p a y l o a d s i z e + s izeof (struct GNUNET MessageHeader)) ;

msg−>s i z e = htons (p a y l o a d s i z e + s izeof (struct GNUNET MessageHeader)) ;
msg−>type = htons (GNUNET MY MESSAGE TYPE) ;
memcpy(&msg [1] , &payload , p a y l o a d s i z e) ;
// use ’msg ’

Exercise: Define a message struct that includes a 32-bit unsigned integer in addition to the standard GNUnet MessageHeader.
Add a C struct and define a fresh protocol number for your message.

2.2.3 Sending Requests to the Service

Any client-service protocol must start with the client sending the first message to the service, since services are only notified
about (new) clients upon receiving a the first message.

Clients can transmit messages to the service using the GNUNET CLIENT notify transmit ready API:

stat ic s i z e t
t ransmit cb (void ∗ c l s , s i z e t s i z e , void ∗buf)
{

// . . .
i f (NULL == buf) { h a n d l e e r r o r () ; return 0 ; }
GNUNET assert (s i z e >= msg s i ze) ;
memcpy (buf , my msg , msg s i z e) ;
// . . .
return msg s i ze ;

}

// . . .
th = GNUNET CLIENT notify transmit ready (c l i e n t ,

7

msg s ize ,
timeout ,

GNUNET YES,
&transmit cb , c l s) ;

// . . .

The client-service protocoll calls GNUNET CLIENT notify transmit ready to be notified when the client is ready to send
data to the service. Besides other arguments, you have to pass the client returned from the connect call, the message size and
the callback function to call when the client is ready to send.

Only a single transmission request can be queued per client at the same time using this API. The handle th can be used to
cancel the request if necessary (for example, during shutdown).

When transmit cb is called the message is copied in the buffer provided and the number of bytes copied into the buffer
is returned. transmit cb could also return 0 if for some reason no message could be constructed; this is not an error and the
connection to the service will persist in this case.

Exercise: Define a helper function to transmit a 32-bit unsigned integer (as payload) to a service using some given client
handle.

2.2.4 Receiving Replies from the Service

Clients can receive messages from the service using the GNUNET CLIENT receive API:

/∗∗
∗ Function c a l l e d wi th messages from s t a t s s e r v i c e .
∗
∗ @param c l s c l o s u r e
∗ @param msg message rece ived , NULL on timeout or f a t a l e r ror
∗/

stat ic void
r e c e i v e mes sage (void ∗ c l s , const struct GNUNET MessageHeader ∗msg)
{

struct MyArg ∗ arg = c l s ;

// proces s ’msg ’
}

// . . .
GNUNET CLIENT receive (c l i e n t ,

&rece ive message ,
arg ,
t imeout) ;

// . . .

It should be noted that this receive call only receives a single message. To receive additional messages, GNUNET CLIENT receive

must be called again.

Exercise: Expand your helper function to receive a response message (for example, containing just the GNUnet Message-
Header without any payload). Upon receiving the service’s response, you should call a callback provided to your helper
function’s API. You’ll need to define a new ’struct’ to hold your local context (“closure”).

8

2.3 Writing a user interface

Given a client library, all it takes to access a service now is to combine calls to the client library with parsing command-line
options.

Exercise: Call your client API from your run method in your client application to send a request to the service. For example,
send a 32-bit integer value based on a number given at the command-line to the service.

3 Writing a Service

Before you can test the client you’ve written so far, you’ll need to also implement the corresponding service.

3.1 Code Placement

New services are placed in their own subdirectory under gnunet/src. This subdirectory should contain the API implementa-
tion file SERVICE api.c, the description of the client-service protocol SERVICE.h and P2P protocol SERVICE protocol.h, the
implementation of the service itself gnunet-service-SERVICE.h and several files for tests, including test code and configuration
files.

3.2 Starting a Service

The key API definitions for starting services are”

typedef void (∗GNUNET SERVICE Main) (void ∗ c l s ,
struct GNUNET SERVER Handle ∗ s e rver ,
const struct GNUNET CONFIGURATION Handle ∗ c f g) ;

int GNUNET SERVICE run (int argc ,
char ∗const ∗argv ,
const char ∗ serviceName ,
enum GNUNET SERVICE Options opt ,
GNUNET SERVICE Main task ,
void ∗ t a s k c l s) ;

Here is a starting point for your main function for your service:

stat ic void my main (void ∗ c l s ,
struct GNUNET SERVER Handle ∗ s e rver ,
const struct GNUNET CONFIGURATION Handle ∗ c f g)

{
/∗ do work ∗/

}

int main (int argc , char ∗const∗argv)
{

i f (GNUNET OK !=
GNUNET SERVICE run (argc , argv , ”my” ,

GNUNET SERVICE OPTION NONE,
&my main , NULL) ;

return 1 ;

9

return 0 ;
}

Exercise: Write a stub service that processes no messages at all in your code. Create a default configuration for it, integrate
it with the build system and start the service from gnunet-service-arm using gnunet-arm -i NAME.

3.3 Receiving Requests from Clients

Inside of the my main method, a service typically registers for the various message types from clients that it supports by providing
a handler function, the message type itself and possibly a fixed message size (or 0 for variable-size messages):

stat ic void
hand l e ge t (void ∗ c l s ,

struct GNUNET SERVER Client ∗ c l i e n t ,
const struct GNUNET MessageHeader ∗message)

{
GNUNET SERVER receive done (c l i e n t , GNUNET OK) ;

}
stat ic void
hand l e ge t (void ∗ c l s ,

struct GNUNET SERVER Client ∗ c l i e n t ,
const struct GNUNET MessageHeader ∗message)

{
GNUNET SERVER receive done (c l i e n t , GNUNET OK) ;

}

stat ic void my main (void ∗ c l s ,
struct GNUNET SERVER Handle ∗ s e rver ,
const struct GNUNET CONFIGURATION Handle ∗ c f g)

{
stat ic const struct GNUNET SERVER MessageHandler hand le r s [] = {
{&hand le se t , NULL, GNUNET MESSAGE TYPE MYNAME SET, 0} ,
{&handle get , NULL, GNUNET MESSAGE TYPE MYNAME GET, 0} ,
{NULL, NULL, 0 , 0}

} ;
GNUNET SERVER add handlers (se rver , hand le r s) ;
/∗ do more se tup work ∗/

}

Each handler function must eventually (possibly in some asynchronous continuation) call GNUNET SERVER receive done.
Only after this call additional messages from the same client may be processed. This way, the service can throttle processing
messages from the same client. By passing GNUNET SYSERR, the service can close the connection to the client, indicating an
error.

Services must check that client requests are well-formed and must not crash on protocol violations by the clients. Similarly,
client libraries must check replies from servers and should gracefully report errors via their API.

Exercise: Change the service to “handle” the message from your client (for now, by printing a message). What happens if
you forget to call GNUNET SERVER receive done?

10

3.4 Responding to Clients

Servers can send messages to clients using the GNUNET SERVER notify transmit ready API:

stat ic s i z e t
t ransmit cb (void ∗ c l s , s i z e t s i z e , void ∗buf)
{

// . . .
i f (NULL == buf) { h a n d l e e r r o r () ; return 0 ; }
GNUNET assert (s i z e >= msg s i ze) ;
memcpy (buf , my msg , msg s i z e) ;
// . . .
return msg s i ze ;

}

// . . .
th = GNUNET SERVER notify transmit ready (c l i e n t ,

msg s ize ,
timeout ,
&transmit cb , c l s) ;

// . . .

Only a single transmission request can be queued per client at the same time using this API. Additional APIs for sending
messages to clients can be found in the gnunet server lib.h header.

Exercise: Change the service respond to the request from your client. Make sure you handle malformed messages in both
directions.

4 Interacting directly with other Peers using the CORE Service

One of the first things any service that extends the P2P protocol typically does is connect to the CORE service:

struct GNUNET CORE Handle ∗
GNUNET CORE connect (struct GNUNET SCHEDULER Handle ∗ sched ,

const struct GNUNET CONFIGURATION Handle ∗ cfg ,
struct GNUNET TIME Relative timeout ,
void ∗ c l s ,
GNUNET CORE StartupCallback i n i t ,
GNUNET CORE ConnectEventHandler connects ,
GNUNET CORE DisconnectEventHandler d i s connect s ,
GNUNET CORE MessageCallback inbound not i fy ,
int inbound hdr only ,
GNUNET CORE MessageCallback outbound not i fy ,
int outbound hdr only ,
const struct GNUNET CORE MessageHandler ∗ hand le r s) ;

11

4.1 New P2P connections

Before any traffic with a different peer can be exchanged, the peer must be known to the service. This is notified by the CORE
connects callback, which communicates the identity of the new peer to the service:

void
connects (void ∗ c l s ,

const struct GNUNET PeerIdentity ∗ peer ,
const struct GNUNET ATS Information ∗ a t s i ,
unsigned int a t s i c o u n t)

{
/∗ Save i d e n t i t y f o r l a t e r use ∗/
/∗ Optiona l : s t a r t sending messages to peer ∗/

}

Exercise: Create a service that connects to the CORE. Then start (and connect) two peers and print a message once your
connect callback is invoked.

4.2 Receiving P2P Messages

To receive messages from CORE, services register a set of handlers (parameter *handlers in the CORE connect call) that are
called by CORE when a suitable message arrives.

stat ic int
c a l l b a c k f u n c t i o n f o r t y p e o n e (void ∗ c l s ,

const struct GNUNET PeerIdentity ∗peer ,
const struct GNUNET MessageHeader ∗message ,
const struct GNUNET TRANSPORT ATS Information
∗ a t s i)

{
/∗ Do s t u f f ∗/
return GNUNET OK; /∗ or GNUNET SYSERR to c l o s e the connect ion ∗/

}

/∗∗
∗ Functions to handle messages from core
∗/

stat ic struct GNUNET CORE MessageHandler c o r e h a n d l e r s [] = {
{&c a l l b a c k f u n c t i o n f o r t y p e o n e , GNUNET MESSAGE TYPE MYSERVICE TYPE ONE, 0} ,
/∗ more hand l e r s ∗/
{NULL, 0 , 0}

} ;

Exercise: Start one peer with a new service that has a message handler and start a second peer that only has your “old”
service without message handlers. Which “connect” handlers are invoked when the two peers are connected? Why?

4.3 Sending P2P Messages

In response to events (connect, disconnect, inbound messages, timing, etc.) services can then use this API to transmit messages:

12

typedef s i z e t
(∗GNUNET CONNECTION TransmitReadyNotify) (void ∗ c l s ,

s i z e t s i z e ,
void ∗buf)

{
/∗ F i l l ”∗ bu f ” wi th up to ” s i z e ” by tes , must s t a r t wi th GNUNET MessageHeader ∗/
return n ; /∗ Tota l s i z e o f the message put in ”∗ bu f ” ∗/

}

struct GNUNET CORE TransmitHandle ∗
GNUNET CORE notify transmit ready (struct GNUNET CORE Handle ∗handle ,

int cork , u i n t 3 2 t p r i o r i t y ,
struct GNUNET TIME Relative maxdelay ,
const struct GNUNET PeerIdentity ∗ target ,
s i z e t n o t i f y s i z e ,
GNUNET CONNECTION TransmitReadyNotify not i f y ,
void ∗ n o t i f y c l s) ;

Exercise: Write a service that upon connect sends messages as fast as possible to the other peer (the other peer should run
a service that “processes” those messages). How fast is the transmission? Count using the STATISTICS service on both
ends. Are messages lost? How can you transmit messages faster? What happens if you stop the peer that is receiving your
messages?

4.4 End of P2P connections

If a message handler returns GNUNET SYSERR, the remote peer shuts down or there is an unrecoverable network disconnection,
CORE notifies the service that the peer disconnected. After this notification no more messages will be received from the peer
and the service is no longer allowed to send messages to the peer. The disconnect callback looks like the following:

void
d i s connec t s (void ∗ c l s ,

const struct GNUNET PeerIdentity ∗ peer)
{

/∗ Remove peer ’ s i d e n t i t y from known peers ∗/
/∗ Make sure no messages are sen t to peer from now on ∗/

}

Exercise: Fix your service to handle peer disconnects.

5 Using the DHT

The DHT allows to store data so other peers in the P2P network can access it and retrieve data stored by any peers in the
network. This section will explain how to use the DHT. Of course, the first thing to do is to connect to the DHT service:

dht handle = GNUNET DHT connect (c fg , p a r a l l e l r e q u e s t s) ;

The second parameter indicates how many requests in parallel to expect. It is not a hard limit, but a good approximation will
make the DHT more efficiently.

13

5.1 Storing data in the DHT

Since the DHT is a dynamic environment (peers join a leave frequently) the data that we put in the DHT does not stay there
indefinitely. It is important to “refresh” the data periodically by simply storing it again, in order to make sure other peers can
access it.

The put API call offers a callback to signal that the PUT request has been sent. This does not guarantee that the data
is accessible to others peers, or even that is has been stored, only that the service has requested to a neighboring peer the
retransmission of the PUT request towards its final destination. Currently there is no feedback about whether or not the data
has been sucessfully stored or where it has been stored. In order to improve the availablilty of the data and to compensate for
possible errors, peers leaving and other unfavorable events, just make several PUT requests!

void
message sent cont (void ∗ c l s , const struct GNUNET SCHEDULER TaskContext ∗ tc)
{

/∗ Request has l e f t l o c a l node ∗/
}

GNUNET DHT put (dht handle ,
&key ,
r e p l i c a t i o n ,
GNUNET DHT RO NONE, /∗ Route opt ions , see next c a l l ∗/
block type ,
d a t a s i z e ,
data ,
exp i ra t i on , /∗ When does the data e xp i r e ? ∗/
timeout , /∗ How long to t r y to send the r e que s t ∗/
&message sent cont ,
c l s) ;

Exercise: Store a value in the DHT periodically to make sure it is available over time. You might consider using the function
GNUNET SCHEDULER add delayed and call GNUNET DHT put from inside a helper function.

5.2 Obtaining data from the DHT

As we saw in the previous example, the DHT works in an asynchronous mode. Each request to the DHT is executed “in the
background” and the API calls return immediately. In order to receive results from the DHT, the API provides a callback. Once
started, the request runs in the service, the service will try to get as many results as possible (filtering out duplicates) until the
timeout expires or we explicitly stop the request. It is possible to give a “forever” timeout with GNUNET TIME UNIT FOREVER REL.

If we give a route option GNUNET DHT RO RECORD ROUTE the callback will get a list of all the peers the data has travelled,
both on the PUT path and on the GET path.

stat ic void
g e t r e s u l t i t e r a t o r (void ∗ c l s , struct GNUNET TIME Absolute exp i ra t i on ,

const GNUNET HashCode ∗ key ,
const struct GNUNET PeerIdentity ∗ get path ,
unsigned int ge t path l ength ,
const struct GNUNET PeerIdentity ∗put path ,
unsigned int put path length ,

14

enum GNUNET BLOCK Type type , s i z e t s i z e , const void ∗data)
{

/∗ Do s t u f f wi th the data and/or route ∗/
/∗ Opt iona l l y : ∗/
GNUNET DHT get stop (ge t hand l e) ;

}

get hand l e =
GNUNET DHT get start (dht handle ,

timeout ,
b lock type ,
&key ,
r e p l i c a t i o n ,
GNUNET DHT RO NONE, /∗ Route op t i ons ∗/
NULL, /∗ xquery : not used here ∗/
0 , /∗ xquery s i z e ∗/
&g e t r e s u l t i t e r a t o r ,
c l s)

Exercise: Store a value in the DHT and after a while retrieve it. Show the IDs of all the peers the requests have gone through.
In order to convert a peer ID to a string, use the function GNUNET i2s. Pay attention to the route option parameters in
both calls!

5.3 Implementing a block plugin

In order to store data in the DHT, it is necessary to provide a block plugin. The DHT uses the block plugin to ensure that
only well-formed requests and replies are transmitted over the network.

The block plugin should be put in a file plugin block SERVICE.c in the service’s respective directory. The mandatory
functions that need to be implemented for a block plugin are described in the following sections.

5.3.1 Validating requests and replies

The evaluate function should validate a reply or a request. It returns a GNUNET BLOCK EvaluationResult, which is an enu-
meration. All possible answers are in gnunet block lib.h. The function will be called with a reply block argument of NULL
for requests. Note that depending on how evaluate is called, only some of the possible return values are valid. The specific
meaning of the xquery argument is application-specific. Applications that do not use an extended query should check that the
xquery size is zero. The Bloom filter is typically used to filter duplicate replies.

stat ic enum GNUNET BLOCK EvaluationResult
block plugin SERVICE evaluate (void ∗ c l s ,

enum GNUNET BLOCK Type type ,
const GNUNET HashCode ∗ query ,
struct GNUNET CONTAINER BloomFilter ∗∗bf ,
i n t 3 2 t bf mutator ,
const void ∗xquery ,
s i z e t xquery s i z e ,
const void ∗ r ep ly b lo ck ,
s i z e t r e p l y b l o c k s i z e)

15

{
/∗ Ver i fy type , b l o c k and b l o om f i l t e r ∗/

}

5.3.2 Deriving a key from a reply

The DHT can operate more efficiently if it is possible to derive a key from the value of the corresponding block. The get key

function is used to obtain the key of a block — for example, by means of hashing. If deriving the key is not possible, the
function should simply return GNUNET SYSERR (the DHT will still work just fine with such blocks).

stat ic int
block plugin SERVICE get key (void ∗ c l s , enum GNUNET BLOCK Type type ,

const void ∗block , s i z e t b l o c k s i z e ,
GNUNET HashCode ∗ key)

{
/∗ Store the key in the key argument , re turn GNUNETOK on succe s s . ∗/

}

5.3.3 Initialization of the plugin

The plugin is realized as a shared C library. The library must export an initialization function which should initialize the plugin.
The initialization function specifies what block types the plugin cares about and returns a struct with the functions that are to
be used for validation and obtaining keys (the ones just defined above).

void ∗
l ibgnunet p lug in b lock SERVICE in i t (void ∗ c l s)
{

stat ic enum GNUNET BLOCK Type types [] =
{

GNUNET BLOCK TYPE SERVICE BLOCKYPE, /∗ l i s t o f b l o c k s we care about , from gn un e t b l o c k l i b . h ∗/
GNUNET BLOCK TYPE ANY /∗ end o f l i s t ∗/
} ;
struct GNUNET BLOCK PluginFunctions ∗ api ;

ap i = GNUNET malloc (s izeof (struct GNUNET BLOCK PluginFunctions)) ;
api−>eva luate = &block plugin SERICE evaluate ;
api−>get key = &block plugin SERVICE get key ;
api−>types = types ;
return api ;

}

5.3.4 Shutdown of the plugin

Following GNUnet’s general plugin API concept, the plugin must export a second function for cleaning up. It usually does very
little.

16

void ∗
l ibgnunet plugin block SERVICE done (void ∗ c l s)
{

struct GNUNET TRANSPORT PluginFunctions ∗ api = c l s ;

GNUNET free (api) ;
return NULL;

}

5.3.5 Integration of the plugin with the build system

In order to compile the plugin, the Makefile.am file for the service should contain a rule similar to this:

plugin LTLIBRARIES = \
l ibgnunet plugin block SERVICE . l a

libgnunet plugin block SERVICE la SOURCES = \
plugin block SERVICE . c

libgnunet plugin block SERVICE la LIBADD = \
$ (t o p b u i l d d i r)/ s r c / h e l l o / l i b g n u n e t h e l l o . l a \
$ (t o p b u i l d d i r)/ s r c / block / l ibgnunetb lock . l a \
$ (t o p b u i l d d i r)/ s r c / u t i l / l i b g n u n e t u t i l . l a

libgnunet plugin block SERVICE la LDFLAGS = \
$ (GN PLUGIN LDFLAGS)

libgnunet plugin block SERVICE la DEPENDENCIES = \
$ (t o p b u i l d d i r)/ s r c / block / l ibgnunetb lock . l a

Exercise: Write a block plugin that accepts all queries and all replies but prints information about queries and replies when
the respective validation hooks are called.

5.4 Monitoring the DHT

It is possible to monitor the functioning of the local DHT service. When monitoring the DHT, the service will alert the
monitoring program of any events, both started locally or received for routing from another peer. The are three different types
of events possible: a GET request, a PUT request or a response (a reply to a GET).

Since the different events have different associated data, the API gets 3 different callbacks (one for each message type) and
optional type and key parameters, to allow for filtering of messages. When an event happens, the appropiate callback is called
with all the information about the event.

void
g e t c a l l b a c k (void ∗ c l s ,

enum GNUNET DHT RouteOption opt ions ,
enum GNUNET BLOCK Type type ,
u i n t 3 2 t hop count ,
u i n t 3 2 t d e s i r e d r e p l i c a t i o n l e v e l ,
unsigned int path length ,
const struct GNUNET PeerIdentity ∗path ,
const GNUNET HashCode ∗ key)

17

{
}

void
g e t r e s p c a l l b a c k (void ∗ c l s ,

enum GNUNET BLOCK Type type ,
const struct GNUNET PeerIdentity ∗ get path ,
unsigned int ge t path l ength ,
const struct GNUNET PeerIdentity ∗put path ,
unsigned int put path length ,
struct GNUNET TIME Absolute exp ,
const GNUNET HashCode ∗ key ,
const void ∗data ,
s i z e t s i z e)

{
}

void
p u t c a l l b a c k (void ∗ c l s ,

enum GNUNET DHT RouteOption opt ions ,
enum GNUNET BLOCK Type type ,
u i n t 3 2 t hop count ,
u i n t 3 2 t d e s i r e d r e p l i c a t i o n l e v e l ,
unsigned int path length ,
const struct GNUNET PeerIdentity ∗path ,
struct GNUNET TIME Absolute exp ,
const GNUNET HashCode ∗ key ,
const void ∗data ,
s i z e t s i z e)

{
}

monitor handle = GNUNET DHT monitor start (dht handle ,
b lock type , /∗ GNUNET BLOCK TYPE ANY for a l l ∗/
key , /∗ NULL fo r a l l ∗/
&g e t c a l l b a c k ,
&g e t r e s p c a l l b a c k ,
&put ca l lback ,
c l s) ;

6 Debugging with gnunet-arm

Even if services are managed by gnunet-arm, you can start them with gdb or valgrind. For example, you could add the
following lines to your configuration file to start the DHT service in a gdb session in a fresh xterm:

[dht]

18

PREFIX=xterm -e gdb --args

Alternatively, you can stop a service that was started via ARM and run it manually:

$ gnunet−arm −k dht
$ gdb −−args gnunet−s e r v i c e−dht −L DEBUG
$ va lg r ind gnunet−s e r v i c e−dht −L DEBUG

Assuming other services are well-written, they will automatically re-integrate the restarted service with the peer.
Finally, set the option “DEBUG=YES” to start services with logging of DEBUG messages (if you are using GNUNET log for

printf-style debugging).
You should also probably enable the creation of core files, by setting ulimit, and echo’ing 1 into /proc/sys/kernel/core uses pid.

Then you can investigate the core dumps with gdb, which is often the fastest method to find simple errors.

Exercise: Add a memory leak to your service and obtain a trace pointing to the leak using valgrind while running the
service from gnunet-service-arm.

19

	Getting Started
	Background: GNUnet Architecture
	Baby Steps
	Starting Two Peers by Hand
	Starting Peers Using the Testing library
	gnunet-ext

	Writing a Client Application
	Handling command-line options
	Writing a Client Library
	Connecting to the Service
	GNUnet Messages
	Sending Requests to the Service
	Receiving Replies from the Service

	Writing a user interface

	Writing a Service
	Code Placement
	Starting a Service
	Receiving Requests from Clients
	Responding to Clients

	Interacting directly with other Peers using the CORE Service
	New P2P connections
	Receiving P2P Messages
	Sending P2P Messages
	End of P2P connections

	Using the DHT
	Storing data in the DHT
	Obtaining data from the DHT
	Implementing a block plugin
	Validating requests and replies
	Deriving a key from a reply
	Initialization of the plugin
	Shutdown of the plugin
	Integration of the plugin with the build system

	Monitoring the DHT

	Debugging with gnunet-arm

