
A Tutorial for GNUnet 0.9.x (Java version)

Florian Dold

April 25, 2012

1 Getting Started

1.1 Installing GNUnet

This tutorial assumes that you have GNUnet ≥ 0.9.3 installed on your system. Instructions on how to do this can be found
at https://gnunet.org/installation. Make sure that you run configure with the option --enable-javaports. Start
GNUnet with the command gnunet-arm -s and convince yourself that the default GNUnet services are running by typing
gnunet-arm -I.

1.2 Installing gnunet-java

Check out the latest version of gnunet-java with subversion:

$ svn checkout https : // gnunet . org /svn/gnunet−java /

Tools for gnunet-java development are located in tools/, while the bin/ directory contains shell wrappers for java programs
interfacing with GNUnet. Now run the command

$. / t o o l s / bu i ld

to compile gnunet-java.
To test whether your gnunet-java installation is working, try to run the ”gnunet-nse” program (in bin, which should display

the current estimated size of the network).
Throughout the tutorial it will be useful to consult the javadocs for GNUnet-java, either built them yourself with

$. / t o o l s /make−javadoc

or use the online version at https://gnunet.org/javadoc/

2 Creating an extension

3 A simple gnunet-java program

Check out the template directory for gnunet-java extensions with the following command:

$ svn checkout https : // gnunet . org /svn/gnunet−java−ext /

1

https://gnunet.org/installation
https://gnunet.org/javadoc/

Now edit envcfg. This file contains the necessary information so that scripts in the gnunet-java-ext/tools directory,
as well as the shell-wrappers in gnunet-java-ext/bin can find your gnunet-java installation. Note that the template directory
already contains an executable example extension that will print a ”hello world” message, in this section you will learn how to
write your own.

3.1 The Basics

public class HelloGnunet {
public stat ic void main (St r ing [] a rgs) {

new Program (args) {
public void run () {

System . out . p r i n t l n (” Hel lo , GNUnet”) ;
}

} . s t a r t () ;
}

Calling start initializes gnunet-java, parses the command line, loads configuration files and starts the task scheduler, with
the code in the run method as initial task.
Exercise: Try to get the code above running. Place your code in the src/ directory (so that you can use the build script in
tools, copy and modify the example shell-wrapper bin/gnunet-ext until you can run your own program with it.

3.2 Adding and using command line arguments

Command line options are added by annotating members of your org.gnunet.util.Program subclass with the Option-
annotation.

Here is a simple example:

new Program (args) {
@Option (

shortname = ”n” ,
longname = ”name” ,
ac t i on = OptionAction .STORE STRING,
d e s c r i p t i o n = ” the name o f the person you want to g r e e t ”)

S t r ing name ;
[. . .]
}

You can now specify value for the member name at the command line, either by the long name with two dashes (--name=Foo
/ --name FOO) or the short name (-n Foo) with one dash.

Inside of the run method, the field name will then be initialized with the passed argument, or null if the option has not
been passed.

The Option annotation can not only be used with Strings, but also with booleans and numbers. These are a few of the
available options:

• STORE STRING: Store a string in a String variable

• STORE NUMBER: Store a number in a member of primitive type

• SET: Set a boolean to true

2

By default, the following arguments are available on the command line:

• -h / --help shows the help text

• -v / --version shows version information

• -c / --config specify an additional configuration file to load

• -L / --log specify the log level

• -l / --logfile specify a file to write the logs to

You can change the about text and the version information by overriding the getVersion or getAboutTest methods in
your Program subclass.

Exercise: Add a few different command line options to your program and print them to System.out!

4 The statistics API

In this section we will use the statistics API of gnunet-java. This service allows us to store numbers under a subsystem and a
name, which are still available to you and other components of your peer after your program exits.

4.1 Establishing a connection with the statistics service

S t a t i s t i c s s t a t i s t i c s = new S t a t i s t i c s (ge tCon f i gura t i on ()) ;

The Statistics constructor is called with the default configuration, provided by the method getConfiguration of the Program
class. Calling the constructor establishes a connection to the statistics service. As with most API calls in gnunet-java, this
operation is asynchronous. This is one of the main reasons why you have to wrap your program in the overridden run method
of Program: Once all your asynchronous calls are made, the run method returns, and gnunet-java keeps the system running
until all work has been done.

Always remember that you always explicitly have to destroy your Statistics instance with the destroy(boolean sync)

method. Otherwise there might be pending operations that prevent the termination of your program. The parameter of destroy
determines whether pending set-requests to the statistics service should be satisfied or dropped.1

4.2 Setting statistics

You can use the newly created statistics handle like this to set a value:

s t a t i s t i c s . s e t (”gnunet−java−h e l l o ” , ” the answer” , 4 2) ;

4.3 Retrieving statistics

Retrieving a value is a little bit more complex. Because of the asynchronous nature of the gnunet-java APIs, the startGet

method does not directly return values, but a handle (implementing the interface Cancelable to cancel the get request. The
actual values are accessed by passing a callback object to the startGet method.

Example:

1This argument is about to be removed in the C version and will likely be removed soon. So don’t worry about it, just passing true will do.

3

// the name parameter i s the empty s t r i n g , t h i s g e t s a l l op t i ons o f the s p e c i f i e d subsystem
Cance lable getCancel = s t a t i s t i c s . get (RelativeTime .SECOND, ”gnunet−java−h e l l o ” , ”” ,
new S t a t i s t i c s . S t a t i s t i c s R e c e i v e r {

public void onDone () {
System . out . p r i n t l n (” everyth ing done”) ;

}
public void onReceive (S t r ing subsystem , St r ing name , long va l) {

System . out . p r i n t l n (subsys te + ” ” + name + ” ” + va l) ;
}
public void onTimeout () {

System . out . p r i n t l n (” timeout occured ”) ;
}

}) ;

Exercise: Write a program that sets statistics values, and check the result with the gnunet-statistics command line tool.

Exercise: Write a program to read and print statistics values.

5 The core API

The core API allows sending messages to other connected peers.

5.1 Defining new Messages

All GNUnet messages follow a common communication protocol. Every message consists of a header (with the message size
and the message type) and a body.

You can define a new type of nessage in gnunet-java by annotating a class with how to represent its members in binary
format.

Additionaly, you have to register your new message type with gnunet-java, giving it a unique id. Here is an example:

@UnionCase (4242)
public class ExampleMessage implements GnunetMessage . Body {

@UInt8
public int age ;
@ZeroTerminatedString ;
public St r ing name ;

}

The @UnionCase annotation specifies the message id of the message body below (4242 in the example). GnunetMessage.Body
is a union of messages, and ExampleMessage is one (new) member of the union.

Every time you add a new type of GNUnet message, you have to run the tools/update-msgtypes command. This generates
the file src/org/gnunet/construct/MsgMap.txt, which allows the system to load the right java class when reading a message
from the network.

The above message then contains a value annotated with @UInt8: An 8-bit Unsigned integer. There are similar anno-
tations for integers of other sizes, and @IntN annotations for signed integers. The second member is a String, whose binary
representation appends a zero-byte to the string to mark its end.

4

Other useful annotations can be found in the package org.gnunet.construct. Among them are annotations for arrays of
fixed or variable size (@VariableSizeArray, @FixedSizeArray), for embeding other messages in your message (@NestedMessage
and for implementing your own message unions.

Exercise: Define a message that contains a 32-bit signed integer.

5.2 Connecting to Core

After creating a handle to core by calling the Core constructor, you have to specify what types of messages you are interested
in. The core service will only send messages of these types to you, and only notify you of connecting peers if they share a subset
of the messages you are interested in.

The handleMessages method allows you to specify an object of a class inheriting Runabout. The Runabout is a mechanism
for single-argument multiple dispatch in Java. You have to define one visit method for every type of message you are interested
in. Once Core receives a message, it is dispatched dynamically to the visit method with the appropriate signature. Note that
every visit method, as well as the receiver’s class, has to be public in order for the dynamic dispatch to work.

Example:

public class MyMessageReceiver extends Runabout {
public v i s i t (MyFooMessage m) { /∗ do something ∗/ }
public v i s i t (MyBarMessage m { /∗ do something e l s e ∗/ }

}

After specifing your message handler, the init method has to be called with a callback object. This starts the handshake
with the core service, once done the callback object’s onInit method will be called with your peer’s identity.

5.3 Sending a message to another peer

Before you can actually send a message, you have to wait until the core service is ready to send your message. This is done by
calling the notifyTransmitReady method. You have to provide a callback object to this method, whose transmit method is
invoked with a MessageSink object once the core is ready to transmit your message. Call the send method in the MessageSink

in order to finally transmit it.
Example:

// arguments : messagePrior i ty , t imeout , targe tPeer , messageSize , t r an smi t t e r
core . noti fyTransmitReady (0 , RelativeTime .FOREVER, myIdentity , 42 , new MessageTransmitter () {

public t ransmit (Connection . MessageSink s ink) {
s ink . t ransmit (myMessage) ;

}
public onError () {

// do something
}

You can use Construct.getSize to calculate the size of a message, or just do it manually.

Exercise: Write an echo program for core: Send a message to the local peer and receive it!

6 Other useful APIs

Many of GNUnet’s services are not yet available as a gnunet-java API.

5

The other two service APIs currently implemented are nse (in org.gnunet.java.nse.NetworkSizeEstimation), a service
that gives an estimation of the current size of the network, and DHT (in org.gnunet.java.dht.DistributedHashTable), a
service that allows key/value pairs to be stored distributed across the network.

7 Writing your own client/server

GNUnet is split up into components, every component runs in its own process. In the previous sections you have used existing
APIs to interface with other services written in C. gnunet-java also provides the tools necessary to directly interface with services
yourself. The org.gnunet.util.Client class allows to connect to a GNUnet service and exchange messages with the service.

At the time of writing of this tutorial, the server/service API is not yet fully implemented, so writing new services in Java
is not yet “easy” in 0.9.3. However, you can write daemons and user interfaces using the Program class.

Exercise: Write a Service and a Program with a client that communicates with it.

Exercise: Write an API for a GNUnet service that has not been implemented yet in gnunet-java and contribute it back to
the project.

8 The state of gnunet-java

The gnunet-java project is under heavy development, expect changes that break your stuff! Please report any bugs or feature
requests at https://gnunet.org/bugs/

6

https://gnunet.org/bugs/

	Getting Started
	Installing GNUnet
	Installing gnunet-java

	Creating an extension
	A simple gnunet-java program
	The Basics
	Adding and using command line arguments

	The statistics API
	Establishing a connection with the statistics service
	Setting statistics
	Retrieving statistics

	The core API
	Defining new Messages
	Connecting to Core
	Sending a message to another peer

	Other useful APIs
	Writing your own client/server
	The state of gnunet-java

