Peer-to-Peer Systems and Security
The GNUnet Architecture

Christian Grothoff

Technische Universitat Miinchen

April 16, 2013

“The architects who benefit us most maybe those generous enough
to lay aside their claims to genius in order to devote themselves to
assembling graceful but predominantly unoriginal boxes.
Architecture should have the confidence and the kindness to be a
little boring.” —Alain de Botton

Review: gsort

void gsort(void xbase, size_t nmemb, size_t size,
int (xcompar)(const void %, const void x));

static int
cmpstringp (const void xpl, const void xp2) {
return strcmp(* (char % const x) pl,
x (char x const x) p2);
}

int main(int argc, char xargv[]) {
gsort(&argv[1l], argc — 1, sizeof(argv[1l]),
&cmpstringp);

What is GNUnet?

» GNU software package with 400k+ LOC in C
» P2P framework with focus on “security”

> Research project with over 20 related publications

Applications built using GNUnet

» Anonymous and non-anonymous file-sharing

» IPv6-IPv4 protocol translator and tunnel (P2P-based IPv6
migration)
» “The GNUnet Naming System”, a censorship-resistant

replacement for DNS

v

SecuShare social networking application

GNUnet 0.9.x Release Status

>

>

GNUnet 0.9.5a is an alpha release

GNUnet 0.9.5a works on GNU/Linux, OS X, W32, likely
Solaris

GNUnet 0.9.5a has known bugs (see
https://gnunet.org/bugs/)

GNUnet 0.9.5a lacks documentation
GNUnet 0.9.5a has a somewhat steep learning curve

We hope to release 0.10 shortly with fewer bugs, better
documentation, ...

https://gnunet.org/bugs/

P2P Application Needs

» Operating system abstraction layer

> Logging

» Configuration management

» Command-line parsing

» O(1)-Datastructures (heap, hash table, Bloom filter)
» Bandwidth management

» Cryptographic primitives

» Asynchronous DNS resolution

Key Layers of (most) P2P Systems

Graphical User Interface

Application Logic

Overlay routing

Communication

Layers in GNUnet: SecuShare

Graphical User Interface

Application Logic

secushare

psyc
psyc-db

Overlay routing

multicast
mesh
dht

Communication

core
transport, ats
udp, tcp, http

Layers in GNUnet: File-Sharing

Graphical User Interface

gnunet-fs-gtk

Application Logic

fs
fs-block
datastore

Overlay routing

gap
mesh
dht

Communication

core
transport, ats
udp, tcp, http

Layers in GNUnet: Protocol Translation

Graphical User Interface

gnunet-setup

Application Logic

pt
exit, vpn
tun

Overlay routing

regex
mesh
dht

Communication

core
transport, ats
udp, tcp, http

Layers in GNUnet: Naming System

Graphical User Interface

gnunet-setup

Communication

gns
Application Logic namestore
dns
Overlay routing dht
core

transport, ats
udp, tcp, http

General-purpose Services

v

Peer discovery (hostlist, peerinfo)

v

Neighbour management (topology)

v

Monitoring (statistics)

v

Testing and profiling (testing, testbed)

https://gnunet.org/gnunet-source-overview lists all
GNUnet subsystems and briefly describes their purpose.

https://gnunet.org/gnunet-source-overview

Dependencies

GNUnet Architecture: Goals

v

Security

v

Extensibility
Portability

v

Performance
Usability

v

v

GNUnet is written in C

Key concerns:

v

Deadlocks, data races

v

Memory corruption (stack overflow, double-free,
use-after-free)

v

Use of uninitialized data

v

Memory leaks, socket leaks

v

Arithmetic underflows and overflows, division by zero, etc.

Architecture against Insanity

Problem

Solution

Deadlocks, races

Use event loop, forbid threads

Memory corruption

Multi-process, static analysis

Uninitialized data

Wrappers around std. C functions

Memory leaks

Multi-process, dynamic analysis

Arithmetic issues

ARM, static analysis

Event-Driven Programming

No threads

v

v

Network communication is asynchronous

v

P2P networking requires talking to many peers at once

v

Clearly need to do many things at the same time!

» How can we do this without threads?

An Event Loop

Example for an event-driven application’s main loop:

int main() {
scheduler = create_scheduler ();
scheduler_add (scheduler, &first_task);
while (scheduler_has_task (scheduler)) {
task = scheduler_get_task (scheduler);
task—>run ();

}

destroy_Scheduler (scheduler);

The ldea

struct Task xscheduler_get_task () {
wait_for = empty_event_list ();
for (task = head; task; task = task—>next)
add_to_event_list (wait_for, task—event);
for (task = head; task; task = task—>next)
ready = os_wait_event_ready (wait_for);
if (ins_ready (ready, task.event))
return task;
return NULL;

}

Closer to Reality: select

struct Task xscheduler_get_task () {
fd_set read_set;
fd_set write_set;

FD_ZERO (&read_set); FD_ZERO (&write_set);

for (task = tasks—>head; NULL != task; task = task—>next) {
if (task—>wants_read) FD_.ADD (&read_set, task—>fd);
if (task—>wants_write) FD_.ADD (&write_set , task—>fd);

select (&read_set, &write_set , ;
for (task = tasks—>head; NULL != task; task = task—>next) {
if (task—>wants_read && FD_ISSET (task—>fd, &read_set))
return task;
if (task—>wants_write && FD_ISSET (task—>fd, &write_set))
return task;

return NULL; // error

Further Reading

> man 2 select

> man 2 select_tut

» man 2 poll

» man 2 epoll

> http://www.kegel.com/c10k.html

http://www.kegel.com/c10k.html

GNUnet API: gnunet_scheduler_lib.h

» Part of libgnunetutil

> Main event loop for GNUnet

» Each task is supposed to never block (disk 1O is considered
OK)

» Scheduler is used to schedule tasks based on 10 being ready
or a timeout occuring

» Each task has a unique 64-bit
GNUNET_SCHEDULER _TaskIdentifier that can be used to
cancel it

> The event loop is typically started using the higher-level
GNUNET_PROGRAM_run or GNUNET_SERVICE_run APls.

APls: SHUTDOWN

The scheduler provides a somewhat tricky way to install a function
that will be run on shutdown:
static void

my_shutdown (void *cls ,
const struct GNUNET_SCHEDULER_TaskContext xtc)

GNUNET.assert (0 != (tc—>reason & GNUNET_SCHEDULER_REASON.SHUTDOWN));
GNUNET_CORE_disconnect (core);

static void
my_run (...)

GNUNET_SCHEDULER_add_delayed (GNUNET_TIME_UNIT_FOREVER_REL,
&my_shutdown, NULL);

Reality Check

» select works fine for sockets (networking)
» not all APIs support event-driven programming:

gethostbyname
database APlIs
crypto APIs

v

vV VvYyy

Solution: event loops and processes

Multi-Process: A Service

Service

Multi-Process: A Daemon

Multi-Process: A GNUnet Peer

Service Service | Service

A Typical Subsystem: statistics

>

libgnunetstatistics library provides functions to get and
set statistic values

gnunet_service _statistics.h defines the public APl of
libgnunetstatistics

gnunet-service-statistics binary implements server that
takes requests from libgnunetstatistics
statistics.conf specifies default configuration values for
the subsystem

gnunet-statistics offers a command-line interface to the
service

gnunet-statistics.1 is a man page for the command-line
tool

test_gnunet_statistics.py is a test case using the
command-line tool, testing also the APl and the service
gnunet-statistics-gtk is a GTK interface displaying
statistics

Example API: gnunet service statistics.h

The STATISTICS service provides an easy way to track
performance information:

struct GNUNET_STATISTICS_Handle =
GNUNET_STATISTICS _create (const char *subsystem,

const struct GNUNET_CONFIGURATION_Handle xcfg);

void
GNUNET_STATISTICS set (struct GNUNET_STATISTICS_Handle xhandle,
const char xname,
uint64_t value, int make_persistent);
void
GNUNET_STATISTICS_update (struct GNUNET_STATISTICS_Handle xhandle,
const char xname,
int64_t delta, int make_persistent);

Use gnunet-statistics to inspect the current value of the

respective statistic.

Interactions between Subsystems

> library and service communicate using TCP or UNIX Domain
Sockets

» hostname, port or UNIX Domain path are specified in the
configuration

» all communications use some basic meta-format

» libgnunetutil provides basic abstractions for the IPC

Writing a new Service

No oA~ wbh =

define header with the public API

define IPC protocol between library and service
specify default configuration for service
implement service library

implement service interaction with library
implement service logic

test, evaluate, document

A GNUnet Service is a Process

> If all subsystems are used, GNUnet would currently use 38
processes (services and daemons)

» user interfaces increase this number further

» Please start them in the correct order!

ARM

v

Service processes are managed by gnunet-service-arm
> gnunet-service-arm is controlled with gnunet-arm

» Services are started on-demand or by-default

» Services that crash are immediately re-started

» gnunet-arm -s starts a peer

» gnunet-arm -e stops a peer

GNUnet System Overview: Help!

> https://gnunet.org/

>

vV vy vy VY VYY

How to build & run GNUnet
End-user and developer manuals, FAQ
Bug database

Doxygen source code documentation
Regression tests results

Code coverage analysis

Static analysis

> irc.freenode.net#gnunet

https://gnunet.org/

GNUnet System Overview: Dependencies

» autoconf, automake, libtool, gcc
> libgmp

> libgcrypt > 1.5, soon > 1.6

» gnuTLS > 2.12.0

> libmicrohttpd > 0.9.25

» libextractor > 0.6.1

> libcurl > 7.21.3

> libltdl > 2.2

» sqlite || mysql || postgres

APIs: gnunet util 1lib.h

» Header includes many other headers

» Should be included after platform.h

» Provides OS independence / portability layer
» Provides higher-level IPC APl (message-based)

» Provides some data structures (Bloom filter, hash map, heap,
doubly-linked list)

» Provides configuration parsing

» Provides cryptographic primitives (AES-256, SHA-512, RSA,
(P)RNG)

> Use: GNUNET malloc, GNUNET _free, GNUNET_strdup,

GNUNET_snprintf, GNUNET_asprintf, GNUNET log,
GNUNET_assert

APIls: GNUNET assert and GNUNET break

» GNUNET.assert aborts execution if the condition is false (0);
use when internal invariants are seriously broken and
continued execution is unsafe

» GNUNET _break logs an error message if the condition is false
and then continues execution; use if you are certain that the
error can be managed and if this has to be a programming
error with the local peer

> GNUNET _break_op behaves just like GNUNET break except
that the error message blames it on other peers; use when
checking that other peers are well-behaved

» GNUNET_log should be used where a specific message to the
user is appropriate (not for logic bugs!);
GNUNET_log_strerror and GNUNET_log strerror file
should be used if the error message concerns a system call and
errno

GNUnet Directories in Subversion

» svn/GNUnet — is GNUnet 0.8.x (do NOT use this!)
» svn/gnunet — is GNUnet 0.9.x
» svn/gnunet-java — Java bindings for GNUnet 0.9.x

» svn/gnunet-ext — template for writing C extensions to
GNUnet

» svn/gnunet-java-ext — template for writing Java extensions
to GNUnet

» svn/gnunet-gtk — Gtk GUIs (including gnunet-setup)

» svn/gnunet-cocoa,fuse,qt,planetlab,qt,update —
experimental, defuct or legacy (ignore!)

Follow

the tutorial and use gnunet-ext

First figure out the build system and how to compile the
existing code!

Do change “ext” (extension) to a project-specific name
everywhere

src/template/ in svn/gnunet/ might also be worth a look
Do update AUTHORS, README, etc.
Do consider adding man pages

Do install configuration defaults to
share/gnunet/config.d/

Do define your own protocol numbers
(gnunet_protocols_ext.h)

Feel free to add additional directories (“ext” is just a starting
point)

Do you have any questions?

“The architects who benefit us most maybe those generous enough
to lay aside their claims to genius in order to devote themselves to
assembling graceful but predominantly unoriginal boxes.
Architecture should have the confidence and the kindness to be a
little boring.” —Alain de Botton

