
Distributed Hash Tables

Christian Grothoff

Technische Universität München

April 11, 2013

Distributed Hash Tables (DHTs)

I Distributed index

I GET and PUT operations like a hash table

I JOIN and LEAVE operations (internal)

I Trade-off between JOIN/LEAVE and GET/PUT costs

I Typically use exact match on cryptographic hash for lookup

I Typically require overlay to establish particular connections

DHTs: Key Properties

To know a DHT, you must know (at least) its:

I routing table structure

I lookup procedure

I join operation process

I leave operation process

... including expected costs (complexity) for each of these
operations.

A trivial DHTs: The Clique

I routing table: hash map of all peers

I lookup: forward to closest peer in routing table

I join: ask initial contact for routing table, copy table, introduce
us to all other peers, migrate data we’re closest to to us

I leave: send local data to remaining closest peer, disconnect
from all peers to remove us from their routing tables

Complexity?

A trivial DHTs: The Circle

I routing table: left and right neighbour in cyclic identifier space

I lookup: forward to closest peer (left or right)

I join: lookup own peer identity to find join position, transfer
data from neighbour for keys we are closer to

I leave: ask left and rigt neighbor connect directly, transfer data
to respective neighbour

Complexity?

Additional Questions to ask

I Security against Eclipse attack?

I Survivability of DoS attack?

I Maintenance operation cost & required frequency?

I Latency? (6= number of hops!)

I Data persistence?

Content Addressable Network: CAN

I routing table: neighbours in d-dimensional torus space

I lookup: forward to closest peer

I join: lookup own peer identity to find join position, split
quadrant (data areas) with existing peer

I leave: assign quadrant space to neighbour (s)

Interesting CAN properties

I CAN can do range queries along ≤ n dimensions

I CAN’s peers have 2d connections (independent of network
size)

I CAN routes in O(d d
√

n)

Chord

I routing table: predecessor in circle and at distance 2i , plus r
successors

I lookup: forward to closest peer (peer ID after key ID)

I join: lookup own peer identity to find join position, use
neighbor to establish finger table, migrate data from
respective neighbour

I leave: join predecessor with successor, migrate data to
respective neighbour, periodic stabilization protocol takes care
of finger updates

Interesting Chord properties

I Simple design

I log2 n routing table size

I log2 n lookup cost

I Asymmetric, inflexible routing tables

Kademlia

I routing table:

I lookup: iteratively forward to α peers from the “best” bucket,
selected by latency

I join: lookup own peer identity, populate table with peers from
iteration

I maintenance: when interacting with a peer, add to bucket if
not full; if bucket full, check if longest-not-seen peer is live
first

I leave: just drop out

Interesting Kademlia properties

I XOR is a symmetric metric: connections are used in both
directions

I α replication helps with malicious peers and churn

I Iterative lookup gives initiator much control,

I Lookup helps with routing table maintenance

I Bucket size trade-off between routing speed and table size
I Iterative lookup is a trade-off:

I good UDP (no connect cost, initiator in control)
I bad with TCP (very large number of connections)

Kademlia

0 1

0 1
10 11

0 1
00 01

Connections
Route path

Additional Questions to ask

I Possibility of link-encryption?

I Risks of topology exposure / participant visibility?

I UDP and NAT?

I NAT?

Additional Questions to ask

I Possibility of link-encryption?

I Risks of topology exposure / participant visibility?

I UDP and NAT?

I NAT?

Kademlia

0 1

0 1
10 11

0 1
00 01

Connections
Route path

Kademlia and Restricted Routes

0 1

0 1
10 11

0 1
00 01

Connections

Connection does not exist
Route path

Network Size Estimation: Structured Methods [6]

I Assume DHT with equal key distribution between peers

I (average) distance between keys is 1
n

Network Size Estimation: Non-local Structured Methods

I Each iteration, perform a “GET” request for a random key

I Observe distance d to closest peers to the key

I Calculate average n ≈ 1
d over many rounds

I Cost: O(n · log n) per round for the network

Network Size Estimation: Local Structured Methods 1

Basic Idea

I Observe DHT routing table

I Suppose there are pk entries in bucket k

I Calculate size n ≈ pk · 2k

I Average over all non-full buckets

I Cost: no network overhead

Problems

I The formula above is intuitive but wrong.

1Bartlomiej Polot: “Adapting blackhat approaches to increase the resilience
of whitehat application scenarios”, MS Thesis, TUM, 2010

Bloom Filters

I Probabilistic data structure to answer the question “is element
X in set S” with “no” or “maybe”

I If an element is not in the set, the probability is high that the
answer is “no”

I Uses a bit-array where k bits based on H(X) are set to 1 for
each element X ∈ S .

The R5N DHT

I Designed to work well in restricted route networks (many
nearest peers) and reduce the impact of malicious peers.

I Requires recursive routing; less control for initiator, better
performance; stateful return routing

I Kademlia style routing table — so-called “k-buckets” storing
k peers; such that the i th k-bucket stores peers with XOR
distance between [2i , 2i+1)

The R5N Routing Algorithm

I Random- and Kademlia-style routing phases
⇒ combines path diversity with efficient routing

I Random phase: “start” Kademlia routing from random
location.

I Kademlia phase: efficiently find nearest peers.

I Requests have desired replication level r ; the number of
nearest peers a request should reach.

I Achieved by probabilistic path branching, at each hop a
request may be forwarded to one or more peers.

The R5N Routing Algorithm

0 1 2 3 4 5
0

1

2

3

4

5

The R5N Routing Algorithm

PUT Request

if nearest(r) then
store data(r)

else
for i = 0 → num forwards(r) do

p = get forward peer(r)
forward request(r, p)

end for
end if

GET Request

if NULL 6= (d = find data(r)) then
route result(r, d)

end if
for i = 0 → num forwards(r) do

p = get forward peer(r)
store route(p, r)
forward request(r, p)

end for

Routes with Loops

I R5N cannot loop forever due to the hop counter

I Looping is still inefficient

⇒ R5N uses a Bloom filter to avoid loops

Performance Analysis for R5N

I Randomized routing takes c steps, c ∼ log n

I Kademlia-style routing takes O(log n) steps

⇒ Finding a nearest peer is O(log n)

Performance Analysis for R5N

I There are |N|
2

|E | ∈ O(|N|) nearest peers

I For a 50% success rate for a single GET, we need O(
√
|N|)

replicas

I Then repeat GET O(
√
|N|) times for “high” success rate

⇒ Total routing cost is O(
√

n log n)

Absolute Performance

Size of Average hops per PUT Average hops per GET
network R-Kademlia R5N R-Kademlia R5N

100 2.70 ± 0.06 3.96 ± 0.06 2.54 ± 0.03 4.63 ± 0.17
250 3.06 ± 0.10 4.26 ± 0.10 3.10 ± 0.06 5.96 ± 0.27
500 3.08 ± 0.46 4.38 ± 0.45 3.38 ± 0.06 6.17 ± 1.14
750 3.19 ± 0.74 4.37 ± 0.83 3.50 ± 0.04 6.29 ± 1.04

1000 3.63 ± 0.07 4.47 ± 0.93 3.64 ± 0.04 7.29 ± 0.95

The DHT API

I GNUNET DHT connect, GNUNET DHT disconnect

I GNUNET DHT put, GNUNET DHT put cancel

I GNUNET DHT get start, GNUNET DHT get stop

I GNUNET DHT monitor start, GNUNET DHT monitor stop

Special GET Options

GET requests can be given the following optional options:

I Bloom Filter: filter known results (duplicates)

I Bloom Filter Mutator: change hash function of Bloom Filter

I eXtended Query: additional query information beyond the
hash

Options for GET and PUT

I GNUNET DHT RO DEMULTIPLEX EVERYWHERE

I GNUNET DHT RO RECORD ROUTE

I Replication level

I Expiration time (provided to PUT, returned by GET)

I Block type ⇒ for content validation

Monitoring

DHT monitoring is useful for...

I Testing / debugging

I Performance analysis

I Application development!

The BLOCK API

I Block type determines responsible Block plugin

I Configuration option [block] PLUGINS specifies supported
plugins

I Implement a new plugin based on the
gnunet block plugin.h header

I “fs” for file-sharing, “dht” for DHT internals, “test” for no
verification (any data can match any key)

The BLOCK Plugin API

Each plugin must provide two functions:

I GNUNET BLOCK EvaluationFunction: does the given block
satisfy the requirements of the given query? Possible answers

include: Yes, and other replies can exist; yes, and this is the only

answer; no, duplicate reply; no, invalid reply

I GNUNET BLOCK GetKeyFunction: given a block, what key
should it be stored under? Possible answers are: A key; bad

block; not supported

Experimental Results: Replication

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

T
o
ta

l
N

u
m

b
e
r

o
f
R

e
p
lic

a
s
 i
n
 N

e
tw

o
rk

Number of Rounds of PUTs

R5N Random
R-Kademlia Random

R5N Same
R-Kademlia Same

Experimental Results: Sybils

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

G
E

T
 S

u
c
c
e
s
s
 P

e
rc

e
n
ta

g
e

Number of Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

R-Kademlia All Rounds

Questions?

?

Searching in DHT-based Peer-to-Peer Networks

I Distributed key/value storage, typically hashes for keys

I Range queries (PastryStrings [1], PHT [5])

I Pattern matching (Cubit [3], DPMS [2])

I Similarity queries (Karnstedt et al. [4])

I Today: regular expressions (Szengel et al.)

Searching in DHT-based Peer-to-Peer Networks

I Distributed key/value storage, typically hashes for keys

I Range queries (PastryStrings [1], PHT [5])

I Pattern matching (Cubit [3], DPMS [2])

I Similarity queries (Karnstedt et al. [4])

I Today: regular expressions (Szengel et al.)

Approach: Idea

1. Offerer creates regular expression describing service

2. Regular expression is converted to a DFA

3. DFA is stored in the DHT

4. Patron matches using a string

Offerer Patron

PUT GET

DFA

DHT

Search string

NFA

Problem: Mapping of States to Keys

Regular expression (ab|cd)e∗f and corresponding DFA

q0

a

c

(ab|cd)e* (ab|cd)e*f
a

c d

b
f

e

A regular expression is assigned to each state as its identifier.
The hash of the identifier is used as the key for DHT PUT.

Problem: Mapping of States to Keys

Regular expression (ab|cd)e∗f and corresponding DFA

q0

a

c

(ab|cd)e* (ab|cd)e*f
a

c d

b
f

e

DHT

h("(ab|cd)e*")

h("(ab|cd)e*f")h("a")

h("c")

Problem: Merging of DFAs

Regular expressions (ab|cd)e∗f and (ab|cd)e∗fg∗ with
corresponding DFAs

q0

aa

c
c (ab|cd)e*

b

d

e

(ab|cd)e*ff

q0

aa

c
c (ab|cd)e*

b

d

e

(ab|cd)e*fg*f

g

Problem: Merging of DFAs

Merged NFA for regular expressions (ab|cd)e∗fg∗ and (ab|cd)e∗f

q0

aa

c
c (ab|cd)e*

b

d

e

(ab|cd)e*f
f

(ab|cd)e*fg*

f g

Problem: Decentralizing the Start State

Regular expression: abc∗defg∗h and k = 4.

abc*

c
abc*defg*

def

g

abc*defg*hh

q0 ab

abcc

c

def

abcd
ef

abde
f

Future Work

RegEx search is implemented in GNUnet.

Future Work

I Use regular expression search in new applications

I Open problem: searching using a regular expression

Questions?

?

References
Ioannis Aekaterinidis and Peter Triantafillou.

PastryStrings: a comprehensive content-based publish/subscribe DHT network.

In Proc. 26th IEEE Int. Conf. on Distributed Computing Systems (ICDCS ’06), Lisboa, Portugal, page 23,
2006.

Reaz Ahmed and Raouf Boutaba.

Distributed pattern matching: A key to flexible and efficient P2P search.

In Proc. 10th IEEE/IFIP Network Operations and Management Symposium (NOMS 2006), pages 198–208.

Aleksandrs Slivkins Bernard Wong and Emin Gn Sirer.

Approximate matching for Peer-to-Peer overlays with Cubit.

Technical report, Cornell University, Computing and Information Science, 2008.

Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth, and Roman Schmidt.

Similarity queries on structured data in structured overlays.

In Proc. 22nd Int. Conf. on Data Engineering Workshops (ICDEW ’06), page 32, Washington, DC, USA,
2006. IEEE Computer Society.

Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott Shenker.

Range queries over DHTs.

Technical Report IRB-TR-03-009, Intel Research, 2003.

Tallat Shafaat, Ali Ghodsi, and Seif Haridi.

A practical approach to network size estimation for structured overlays.

In Karin Hummel and James Sterbenz, editors, Self-Organizing Systems, volume 5343 of Lecture Notes in
Computer Science, pages 71–83. Springer Berlin / Heidelberg, 2008.

	Distributed Hash Tables
	CAN
	Chord
	Kademlia

	Network Size Estimation: Structured Methods
	Basic Idea
	Non-Local Method
	Local Method

	Bloom Filters
	R5N
	Q & A

	Approximate Searching in DHTs
	Approach
	Idea
	Mapping of States to Keys
	Merging of DFAs
	Decentralizing the Start State

	Future Work
	Q & A
	References

