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Distributed Hash Tables (DHTs)

I Distributed index

I GET and PUT operations like a hash table

I JOIN and LEAVE operations (internal)

I Trade-off between JOIN/LEAVE and GET/PUT costs

I Typically use exact match on cryptographic hash for lookup

I Typically require overlay to establish particular connections



DHTs: Key Properties

To know a DHT, you must know (at least) its:

I routing table structure

I lookup procedure

I join operation process

I leave operation process

... including expected costs (complexity) for each of these
operations.



A trivial DHTs: The Clique

I routing table: hash map of all peers

I lookup: forward to closest peer in routing table

I join: ask initial contact for routing table, copy table, introduce
us to all other peers, migrate data we’re closest to to us

I leave: send local data to remaining closest peer, disconnect
from all peers to remove us from their routing tables

Complexity?



A trivial DHTs: The Circle

I routing table: left and right neighbour in cyclic identifier space

I lookup: forward to closest peer (left or right)

I join: lookup own peer identity to find join position, transfer
data from neighbour for keys we are closer to

I leave: ask left and rigt neighbor connect directly, transfer data
to respective neighbour

Complexity?



Additional Questions to ask

I Security against Eclipse attack?

I Survivability of DoS attack?

I Maintenance operation cost & required frequency?

I Latency? ( 6= number of hops!)

I Data persistence?



Content Addressable Network: CAN

I routing table: neighbours in d-dimensional torus space

I lookup: forward to closest peer

I join: lookup own peer identity to find join position, split
quadrant (data areas) with existing peer

I leave: assign quadrant space to neighbour (s)



Interesting CAN properties

I CAN can do range queries along ≤ n dimensions

I CAN’s peers have 2d connections (independent of network
size)

I CAN routes in O(d d
√

n)



Chord

I routing table: predecessor in circle and at distance 2i , plus r
successors

I lookup: forward to closest peer (peer ID after key ID)

I join: lookup own peer identity to find join position, use
neighbor to establish finger table, migrate data from
respective neighbour

I leave: join predecessor with successor, migrate data to
respective neighbour, periodic stabilization protocol takes care
of finger updates



Interesting Chord properties

I Simple design

I log2 n routing table size

I log2 n lookup cost

I Asymmetric, inflexible routing tables



Kademlia

I routing table:

I lookup: iteratively forward to α peers from the “best” bucket,
selected by latency

I join: lookup own peer identity, populate table with peers from
iteration

I maintenance: when interacting with a peer, add to bucket if
not full; if bucket full, check if longest-not-seen peer is live
first

I leave: just drop out



Interesting Kademlia properties

I XOR is a symmetric metric: connections are used in both
directions

I α replication helps with malicious peers and churn

I Iterative lookup gives initiator much control,

I Lookup helps with routing table maintenance

I Bucket size trade-off between routing speed and table size
I Iterative lookup is a trade-off:

I good UDP (no connect cost, initiator in control)
I bad with TCP (very large number of connections)
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Additional Questions to ask

I Possibility of link-encryption?

I Risks of topology exposure / participant visibility?

I UDP and NAT?

I NAT?
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Kademlia and Restricted Routes

0 1

0 1
10 11

0 1
00 01

Connections

Connection does not exist
Route path



Network Size Estimation: Structured Methods [6]

I Assume DHT with equal key distribution between peers

I (average) distance between keys is 1
n



Network Size Estimation: Non-local Structured Methods

I Each iteration, perform a “GET” request for a random key

I Observe distance d to closest peers to the key

I Calculate average n ≈ 1
d over many rounds

I Cost: O(n · log n) per round for the network



Network Size Estimation: Local Structured Methods 1

Basic Idea

I Observe DHT routing table

I Suppose there are pk entries in bucket k

I Calculate size n ≈ pk · 2k

I Average over all non-full buckets

I Cost: no network overhead

Problems

I The formula above is intuitive but wrong.

1Bartlomiej Polot: “Adapting blackhat approaches to increase the resilience
of whitehat application scenarios”, MS Thesis, TUM, 2010



Bloom Filters

I Probabilistic data structure to answer the question “is element
X in set S” with “no” or “maybe”

I If an element is not in the set, the probability is high that the
answer is “no”

I Uses a bit-array where k bits based on H(X ) are set to 1 for
each element X ∈ S .



The R5N DHT

I Designed to work well in restricted route networks (many
nearest peers) and reduce the impact of malicious peers.

I Requires recursive routing; less control for initiator, better
performance; stateful return routing

I Kademlia style routing table — so-called “k-buckets” storing
k peers; such that the i th k-bucket stores peers with XOR
distance between [2i , 2i+1)



The R5N Routing Algorithm

I Random- and Kademlia-style routing phases
⇒ combines path diversity with efficient routing

I Random phase: “start” Kademlia routing from random
location.

I Kademlia phase: efficiently find nearest peers.

I Requests have desired replication level r ; the number of
nearest peers a request should reach.

I Achieved by probabilistic path branching, at each hop a
request may be forwarded to one or more peers.



The R5N Routing Algorithm
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The R5N Routing Algorithm

PUT Request

if nearest(r) then
store data(r)

else
for i = 0 → num forwards(r) do

p = get forward peer(r)
forward request(r, p)

end for
end if

GET Request

if NULL 6= (d = find data(r)) then
route result(r, d)

end if
for i = 0 → num forwards(r) do

p = get forward peer(r)
store route(p, r)
forward request(r, p)

end for



Routes with Loops

I R5N cannot loop forever due to the hop counter

I Looping is still inefficient

⇒ R5N uses a Bloom filter to avoid loops



Performance Analysis for R5N

I Randomized routing takes c steps, c ∼ log n

I Kademlia-style routing takes O(log n) steps

⇒ Finding a nearest peer is O(log n)



Performance Analysis for R5N

I There are |N|
2

|E | ∈ O(|N|) nearest peers

I For a 50% success rate for a single GET, we need O(
√
|N|)

replicas

I Then repeat GET O(
√
|N|) times for “high” success rate

⇒ Total routing cost is O(
√

n log n)



Absolute Performance

Size of Average hops per PUT Average hops per GET
network R-Kademlia R5N R-Kademlia R5N

100 2.70 ± 0.06 3.96 ± 0.06 2.54 ± 0.03 4.63 ± 0.17
250 3.06 ± 0.10 4.26 ± 0.10 3.10 ± 0.06 5.96 ± 0.27
500 3.08 ± 0.46 4.38 ± 0.45 3.38 ± 0.06 6.17 ± 1.14
750 3.19 ± 0.74 4.37 ± 0.83 3.50 ± 0.04 6.29 ± 1.04

1000 3.63 ± 0.07 4.47 ± 0.93 3.64 ± 0.04 7.29 ± 0.95



The DHT API

I GNUNET DHT connect, GNUNET DHT disconnect

I GNUNET DHT put, GNUNET DHT put cancel

I GNUNET DHT get start, GNUNET DHT get stop

I GNUNET DHT monitor start, GNUNET DHT monitor stop



Special GET Options

GET requests can be given the following optional options:

I Bloom Filter: filter known results (duplicates)

I Bloom Filter Mutator: change hash function of Bloom Filter

I eXtended Query: additional query information beyond the
hash



Options for GET and PUT

I GNUNET DHT RO DEMULTIPLEX EVERYWHERE

I GNUNET DHT RO RECORD ROUTE

I Replication level

I Expiration time (provided to PUT, returned by GET)

I Block type ⇒ for content validation



Monitoring

DHT monitoring is useful for...

I Testing / debugging

I Performance analysis

I Application development!



The BLOCK API

I Block type determines responsible Block plugin

I Configuration option [block] PLUGINS specifies supported
plugins

I Implement a new plugin based on the
gnunet block plugin.h header

I “fs” for file-sharing, “dht” for DHT internals, “test” for no
verification (any data can match any key)



The BLOCK Plugin API

Each plugin must provide two functions:

I GNUNET BLOCK EvaluationFunction: does the given block
satisfy the requirements of the given query? Possible answers

include: Yes, and other replies can exist; yes, and this is the only

answer; no, duplicate reply; no, invalid reply

I GNUNET BLOCK GetKeyFunction: given a block, what key
should it be stored under? Possible answers are: A key; bad

block; not supported



Experimental Results: Replication
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Experimental Results: Sybils
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Questions?

?



Searching in DHT-based Peer-to-Peer Networks

I Distributed key/value storage, typically hashes for keys

I Range queries (PastryStrings [1], PHT [5])

I Pattern matching (Cubit [3], DPMS [2])

I Similarity queries (Karnstedt et al. [4])

I Today: regular expressions (Szengel et al.)



Searching in DHT-based Peer-to-Peer Networks

I Distributed key/value storage, typically hashes for keys

I Range queries (PastryStrings [1], PHT [5])

I Pattern matching (Cubit [3], DPMS [2])

I Similarity queries (Karnstedt et al. [4])

I Today: regular expressions (Szengel et al.)



Approach: Idea

1. Offerer creates regular expression describing service

2. Regular expression is converted to a DFA

3. DFA is stored in the DHT

4. Patron matches using a string

Offerer Patron

PUT GET

DFA

DHT

Search string

NFA



Problem: Mapping of States to Keys

Regular expression (ab|cd)e∗f and corresponding DFA

q0

a

c

(ab|cd)e* (ab|cd)e*f
a

c d

b
f

e

A regular expression is assigned to each state as its identifier.
The hash of the identifier is used as the key for DHT PUT.



Problem: Mapping of States to Keys

Regular expression (ab|cd)e∗f and corresponding DFA

q0

a

c

(ab|cd)e* (ab|cd)e*f
a

c d

b
f

e

DHT

h("(ab|cd)e*")

h("(ab|cd)e*f")h("a")

h("c")



Problem: Merging of DFAs

Regular expressions (ab|cd)e∗f and (ab|cd)e∗fg∗ with
corresponding DFAs

q0
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c
c (ab|cd)e*

b
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Problem: Merging of DFAs

Merged NFA for regular expressions (ab|cd)e∗fg∗ and (ab|cd)e∗f

q0

aa

c
c (ab|cd)e*

b

d

e

(ab|cd)e*f
f

(ab|cd)e*fg*

f g



Problem: Decentralizing the Start State

Regular expression: abc∗defg∗h and k = 4.

abc*

c
abc*defg*

def

g

abc*defg*hh

q0 ab

abcc

c

def

abcd
ef

abde
f



Future Work

RegEx search is implemented in GNUnet.

Future Work

I Use regular expression search in new applications

I Open problem: searching using a regular expression



Questions?

?
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