
Peer-to-Peer Systems and Security
Incentives

Christian Grothoff

Technische Universität München

April 13, 2013



Why Incentives?

Client-server:

I Server in control & trusted

I Faulty clients are dropped

⇒ clients forced to obey

⇒ focus on protocol spec

P2P:

I Users may deviate from
protocol spec

I rational nodes:
I maximize own utility
I can try to be “tricky”

I irrational nodes:
I altruistic
I disruptive



Example

Gnutella — Ader & Huberman (2000):

I 70% of peers provide no files

I 1% of peers provide 37% of all files

Maze — Yang & Zhang & Li & Dai (2005) [2]:

I 22% of peers with one account are free-riders

I 77% of peers with eight or more accounts are free-riders



Reasons

Reasons for free-riding:

I Motivation (better performance, lower risk, ...)

I Opportunity (no authority, anonymity/pseudonymity, lack of
group cohesiveness)

Reasons for cooperation:

I Inherent generosity (self-esteem, political motivations, ...)

I Monetary payment schemes

I Reciprocity-based schemes — Incentives



Incentives

Trust is no assurance that the other entity will cooperate.

Incentives are mechanisms to make a peer cooperate by giving it
benefits from cooperation



Basics of Game Theory: The Prisoner’s Dilemma

I two suspects are arrested

I asked to testify against each other

I If both testify, both serve 7 years

I If one testifies, only other serves 10 years

I If neither testifies, both serve 2 years

A talks A silent

B talks A: 7, B: 7 A: -10, B: 0

B silent A: 0, B: 10 A: -2, B: -2



Solution

I Best social strategy: no one testifies
I Nash equilibrium:

I for constant choice of the other party, each player optimizes
his benefit

I if both talk, then there is a Nash equilibrium

A strategy is dominant if is always better than every other
strategy.



Solution

I Best social strategy: no one testifies
I Nash equilibrium:

I for constant choice of the other party, each player optimizes
his benefit

I if both talk, then there is a Nash equilibrium

A strategy is dominant if is always better than every other
strategy.



The Prisoner’s Dilemma of Filesharing

U shares U rejects

D downloads U: -, D: ++ U: 0, D: 0

Note that “D” doesn’t really have a choice here.



BitTorrent: reward uploader

If U is also downloading and the download for U becomes faster if
it uploads, then:

U shares U rejects

D downloads U: +, D: ++ U: 0, D: 0

New rational strategy and Nash equilibrium: uploading!



The Game of Game Theory: Mechanism Design

I Define rules of the game
I Rules must be enforced:

I central control
I non-free, hacker-proof software
I cryptography

I Design rules such that desired outcome occurs

⇒ rational behaviour ≡ good behavior



Mechanism Design: Common Concerns

I calculating optimal strategy might be hard

I do all players have the required information to do so?

I does asymmetric knowledge create unfairness?

I what is “the best” rule system?

I what is best for society as a whole?



HashCash

Adam Back proposed HashCash as a solution to stop unsolicited
mass E-mailing (also known as spam). Key idea:

I the sender pays per E-mail

I instead of money, use CPU time (BitCoin anyone?)

Dot-bit (aka “namecoin”) uses the same idea to limit “.bit”
domain registrations.



HashCash

Adam Back proposed HashCash as a solution to stop unsolicited
mass E-mailing (also known as spam). Key idea:

I the sender pays per E-mail

I instead of money, use CPU time (BitCoin anyone?)

Dot-bit (aka “namecoin”) uses the same idea to limit “.bit”
domain registrations.



HashCash: protocol

I In order to send an E-mail, the sender must find a collision in
a hashcode.

I The hashcode can be provided by the receiver (challenge) or
be derived from the E-mail with the receiver address and time
for a non-interactive version.

I The number of bits that must match in the two hashcodes
can be used to make it more or less expensive for the sender.



HashCash: problems

I Cost applies also for legitimate mass-mailings (aka
mailinglists)

I CPU time is wasted, increased transaction costs

I Cost must be adjusted to match current CPUs, thus the
protocol never benefits as better hardware becomes available!



Reputation

R. Dingledine, N. Mathewson and P. Syverson wrote about
Reputation in Privacy Enhancing Technologies:

I Reputation is a way to track past performance and reward
(Freehaven: you stored 1k for a week, I store 7k for a day).

I If reputation is global, claims must be verified, which can be
very hard.

I If reputation is local, servers must risk resources to new nodes
to keep the network open

⇒ Vulnerability: “screw every server once” attack



Problems with Reputation Systems

I Time-dependency of behaviour (Ebay attack)

I Whitewashing (Sybil attack)

I Collusion of attackers



Global Trust: Who watches the Watchers?

R. Dingledine and P. Syverson wrote about Reliable MIX Cascade
Networks through Reputation:

I traditional approach uses external trusted witnesses that
probe the mix

Key idea — allow a mix-cascade to monitor itself:

I nodes send test-messages to monitor their own cascade

I nodes announce the failure of their own cascade, damaging
the reputation of all nodes in the cascade

I nodes that misbehave by incorrectly reporting cascade failure
damage their own reputation!



Global Trust: Who watches the Watchers?

R. Dingledine and P. Syverson wrote about Reliable MIX Cascade
Networks through Reputation:

I traditional approach uses external trusted witnesses that
probe the mix

Key idea — allow a mix-cascade to monitor itself:

I nodes send test-messages to monitor their own cascade

I nodes announce the failure of their own cascade, damaging
the reputation of all nodes in the cascade

I nodes that misbehave by incorrectly reporting cascade failure
damage their own reputation!



Problems

I All-bad cascade would never report failure and have perfect
reputation

I Creeping death: adversary fails cascade if good nodes lose
more than bad ones

I Still does not detect failure instantly (loss)

I Adversary could create fresh identities (need strong identities
/ WoT)



Reputation & Currency

R. Dingledine, N. Mathewson and P. Syverson ask in Reputation in
Privacy Enhancing Technologies:

I Reputation as currency? Transitivity?

I Does reputation expire?

I Multiple currencies and convertability?

I Where does currency come from?



Marx & the Origins of Capital

Capital is money that can be used to make more money.

Historically, original accumulation needed to create capital.

Original accumulation = resource extraction, spoils of war.



Marx & the Origins of Capital

Capital is money that can be used to make more money.

Historically, original accumulation needed to create capital.

Original accumulation = resource extraction, spoils of war.



Marx & the Origins of Capital

Capital is money that can be used to make more money.

Historically, original accumulation needed to create capital.

Original accumulation = resource extraction, spoils of war.



Where does Money come from?

Money is loaned into existence.

I This requires a central bank and/or strong identities

I Resource extraction requires some kind of mining...

I Transaction costs are important for an efficient economy



Where does Money come from?

Money is loaned into existence.

I This requires a central bank and/or strong identities

I Resource extraction requires some kind of mining...

I Transaction costs are important for an efficient economy



Where does Money come from?

Money is loaned into existence.

I This requires a central bank and/or strong identities

I Resource extraction requires some kind of mining...

I Transaction costs are important for an efficient economy



Where does Money come from?

Money is loaned into existence.

I This requires a central bank and/or strong identities

I Resource extraction requires some kind of mining...

I Transaction costs are important for an efficient economy



Where does Money come from?

Money is loaned into existence.

I This requires a central bank and/or strong identities

I Resource extraction requires some kind of mining...

I Transaction costs are important for an efficient economy



The Excess Based Economy

C. Grothoff proposed an Excess Based Economy [1]:

I use respect as a “private currency”

I but trust no one except your resource allocation algorithm

Goals:

I Support accounting for fair resource allocation

⇒ Reward contributing nodes with better service

I Fully decentralized, no trusted authority

I New nodes must be able to join the network,
Sybil attack must be ineffective

I Efficient in bandwidth and CPU consumption



Excess Based Economy: Security Model

Adversary model:

I Everybody else is malicious and violates the protocols

I Everybody can make-up a new identity at any time (without
being detected)

I Public keys are identities

Threat model:

I detect flooding / abusive behaviour / excessive free-loading

I but allow harmless amounts of free-loading



Excess Based Economy: Human Relationships

I We do not have to respect anybody to form an opinion.

I Opinions are formed on a one-on-one basis, and

I may not be perceived equally by both parties.

I We do not charge for every little favour.

I We are grateful for every favour.

I There is no guarantee in life, in particular Alice does not have
to be kind to Bob because he was kind to her.



Excess-based Economy Illustrated (1/8)



Excess-based Economy Illustrated (2/8)



Excess-based Economy Illustrated (3/8)



Excess-based Economy Illustrated (4/8)



Excess-based Economy Illustrated (5/8)



Excess-based Economy Illustrated (6/8)



Excess-based Economy Illustrated (7/8)



Excess-based Economy Illustrated (8/8)



Excess-based Economy

The Excess-based economy is based on the following principals:

I if you are idle, doing a favour for free does not cost anything;

I if somebody does you a favour, remember it;

I if you are busy, work for whoever you like most, but remember
that you paid the favour back;

I have a neutral attitude towards new entities;

I never disrespect anybody (they could create a new identity
anytime).



Excess Based Economy: Transitivity

If a node acts on behalf on another, it must ensure that the sum of
the charges it may suffer from other nodes is lower than the
amount it charged the sender:

A B

C

D

10
3

3



Excess Based Economy: Open Issues

I If a node is idle, it will not charge the sender; if a node
delegates (indirects), it will use a lower priority than the
amount it charged itself; if an idle node delegates, it will
always give priority 0. A receiver can not benefit from
answering a query with priority 0.

I If the priority is 0, content will not be marked as valuable.

I under heavy use and long attacks, all respect may disappear



Excess Based Economy: Achievements

We have presented an economic model, that:

I solves the problem of primitive accumulation

I does not rely on trusted entities

I can be used for resource allocation

I requires link-to-link authenticated messages, but no other
cryptographic operations

I does not require a global view of the transaction and can thus
be used with anonymous participants



Economy: Requirements for Encoding

I Need content encoding that makes cheating not viable!



The Encoding for Censorship Resistant Sharing (ECRS)

GNUnet file-sharing uses ECRS to:

I prevent cheating

I preserve privacy

I support search



Problems with Other Encoding Mechanisms

I Content distributed in plaintext (e.g. gnutella) facilitates
censorship and may void deniability

I Content must be inserted into the network and is then stored
twice, in plaintext (by the originator) and encrypted (by the
network – e.g. Freenet)

I Independent insertions of the same file result in different
copies in the network (e.g. Publius)

I Verification of content integrity can only occur after download
is complete (most systems)



ECRS Overview

Document Metadata

"keyword"

provides

"keyword"

knows/guesses

ECRS encoded Blocks priv-key & sym-key
forwarding 

(gap)

forwarding 
(gap)

verify and
forward

verify and
forward

H(pub-key)H(pub-key)

matches UBlock UBlock UBlock
decrypts

decrypts
Document

Metadata

CHK

matches DBlock
DBlock DBlock

CHK-queryCHK-query



Properties of ECRS

I Breaks files into small blocks
⇒ operations performed by routers are O(1)

I Operations performed by responders are O(log n) where n is
the size of the datastore

I All receiver operations have (amortized) runtime O(n) where
n is the size of the result set or the size of the file; memory
use for files is O(log n)

I Intermediaries cannot view content or queries
⇒ Peers can send replies to queries and plausibly deny having
knowledge of their contents

I Intermediaries are able to verify validity of responses
⇒ Enables swarming, even in the presence of malicious peers
trying to corrupt files



Properties of ECRS

I Breaks files into small blocks
⇒ operations performed by routers are O(1)

I Operations performed by responders are O(log n) where n is
the size of the datastore

I All receiver operations have (amortized) runtime O(n) where
n is the size of the result set or the size of the file; memory
use for files is O(log n)

I Intermediaries cannot view content or queries
⇒ Peers can send replies to queries and plausibly deny having
knowledge of their contents

I Intermediaries are able to verify validity of responses
⇒ Enables swarming, even in the presence of malicious peers
trying to corrupt files



ECRS Details: Document Encoding

I Split content into 32k blocks
B

I AES-256 encrypt B with
H(B)

I Store EH(B)(B) under
H(EH(B)(B))

I Build tree containing up to
256 CHK pairs:
H(B),H(EH(B)(B))



ECRS Details: Document Encoding

I Encryption of blocks
independent of each other

I Inherent integrity checks

I Multiple (independent)
insertions result in identical
blocks

I Small blocksize makes traffic
more uniform
⇒ traffic analysis is harder



ECRS Details: Document Encoding Limitations

I If the exact data can be guessed... participating hosts can
match the content.
Intended to reduce storage costs!



ECRS Search Design Requirements

I Retrieve content with
simple, natural-language
keyword

I Guard against malicious
hosts:
prevent attackers from
providing useless replies!

I Do not expose actual
keyword used

I Do not expose CHK or
metadata:
encrypt CHK and metadata
as well!



ECRS Searching: UBlocks

Let R be the (plaintext) metadata and CHK.

I For each keyword K use d := H(H(K )) mod n to generate
ECDSA key (d ,Q) with Q := dG .

I Store EH(K)(R),Q, r , s under H(Q) where (r , s) is ECDSA
signature with d

I User searching also computes Q from K and sends query
H(Q)

I Intermediates match Q against H(Q) and verify signature



Benefits and Limitations of UBlocks

+ Malicious peer cannot learn d or H(K ) without guessing the
keyword

+ Malicious peer must guess keyword to generate valid reply

+ Malicious peer cannot modify reply without being detected

- Requies public key cryptography



Pseudonyms, Namespaces and Updates

Let x be the private ECDSA key for some pseudonym and
h := H(H(K )) for each identifier K .

I Let Q := xG be the public key of the namespace.

I Let d := x + h mod n and V := dG .

I Sign EH(K)xorQ(R) with ECDSA key d and store under H(V ).

I User searching has Q and K , computes V = Q + hG and
sends query H(V )

I Intermediates match V against H(V ) and verify signature

Meta data R can include information about updates.



Benefits and Limitations of UBlocks

+ Only pseudonym owner knows x

+ Only pseudonym owner can publish in namespace

+ Malicious peer cannot generate valid reply

+ Malicious peer cannot modify reply without being detected

+ Malicious peer cannot distinguish keyword search from
namespace search (without guessing keyword)

- Requies public key cryptography



The Multiple Search Result Problem

I Responder can not send “fake” response (ECRS)

I Responder can send same response again and again

⇒ No incentive to look for alternative responses!

⇒ First (few) responses to keyword spread far and wide, others
will never be displayed!

⇒ Need to use creative keywords (but in that case, caching is
much less effective!)



Solution (1/2)

I As part of the query, communicate what replies are not
acceptable

I Can not include full replies (too big)

⇒ Use bloomfilter of hash codes of encrypted replies



Solution (2/2)

I Bloomfilter is probabilistic

I Even relatively generous bloomfilters would filter
approximately 1:210 valid replies

I Solution: add random 32-bit nounce to hash function, change
nounce (sometimes) when repeating requests

⇒ False-positives less than 1:242



Open Issues

I Approximate queries



References

Christian Grothoff.
An Excess-Based Economic Model for Resource Allocation in
Peer-to-Peer Networks.
Wirtschaftsinformatik, 3-2003, June 2003.

Mao Yang, Zheng Zhang, Xiaoming Li, and Yafei Dai.
An empirical study of free-riding behavior in the maze p2p
file-sharing system.
In Proceedings of the 4th international conference on
Peer-to-Peer Systems, IPTPS’05, pages 182–192, Berlin,
Heidelberg, 2005. Springer-Verlag.


	References

