Evil networks: BotNets

HOW TO GET REALLY RICH USING JUST COMPUTERS
(side effect: how to build secure and resilient P2P applications)

Bart Polot
Technische Universität München

May 27, 2014
Keywords

- BotNet
- C&C
- Resilience
- FastFlux
- Randomization
BotNet?

Infected Computer
BotNet?

Infected Computer x A LOT
BotNet?

Infected Computer x A LOT
+ Anonymous Botmaster
BotNet?

Infected Computer x A LOT
+ Anonymous Botmaster
=

BotNet?

Infected Computer x A LOT
+ Anonymous Botmaster
=
FUN
BotNet?

Infected Computer x A LOT
+ Anonymous Botmaster
=
FUN
BotNet?

Infected Computer x A LOT
+ Anonymous Botmaster
=
TROUBLE
BotNet?

Infected Computer x A LOT
+ Anonymous Botmaster
=
TROUBLE
(seriously, don't try this at home)
BotNet?

- SPAM
- DDoS
- ID Theft
- IP Theft
- Theft
- Phishing
- Scareware
- Virus distribution
- Anonymous VPN
BotNet?

- Money
BotNet?

• Requirements
 – Availability: ready for business
 – Stealth: don't show up on the radar
 – Anonymity: jail bad place to enjoy money
 – Authentication: private botnet
 – Size estimation: marketing counts
 – Confidentiality, Latency, Ease of use...
BotNet?

- **Requirements**
 - Availability: ready for business
 - Stealth: don't show up on the radar
 - Anonymity: onion routing
 - Authentication: asymmetric crypto
 - Size estimation: timestamp algorithm
 - Confidentiality, Latency, Ease of use...
Regular Activity: Web, etc

- Attacker
 - DDoS

- Defense
 - CDN

Akamai
Forbidden Activity: SPAM, etc

- Attacker
 - DDoS
 - Law
 - Experts
 - A / V
 - ISP

- Defense
 - ???
Pre - History

- Remote control of individual PC
 - NetBus
 - BackOrifice2000
 - Novelty / Spyware
Ancient History

- Centralized server
 - Hacked server
 - Botmaster owned
Ancient History

- Centralized server
 - Hacked server
 - Botmaster owned
- Easy to attack
 - Clean server
 - Disconnect server
- Trivial to implement
Ancient History

- IRC server
 - IRC resilience
 - Password
 - Botmaster via Tor
- Easy to attack
 - Clean server
 - Disconnect server
- Easy to implement
Modern History

- P2P networks
 - P2P resilience
 - Botmaster peer
- Harder to attack
 - No server
 - Exploit bot software
Modern History

- P2P networks
 - P2P resilience
 - Botmaster peer
- Harder to attack
 - No server
 - Exploit bot software
- Difficult to implement
Modern History

- Storm Worm
 - Jan 2007
 - P2P C&C
 - Up to 50 million
 - Computing power
 - Top 500
 - Bandwidth
 - Country
 - Revengeful
Modern History

• Storm Worm
 – Overnet
 • Kademlia
 – Cell structure
 • Hide size
 – Fast Flux
Modern History

- Storm Worm
 - Stormfucker
 - Poor crypto
 - No authentication
 - 4 byte XOR
 - 64 bit RSA
Modern History

- Carna Botnet
 - Routers
 - Default credentials
 - Internet Census 2012
 - Polite Botnet
First vulnerability: Content Server

- Content Server is taken down: SPAM is useless
- Hide Content Server
- Use bots as proxies
DNS Round Robin

• Anatomy of a DNS request: google.com
 – Get NS . (root level) → 13 root servers
 – Get NS com. → 13 “.com” servers
 – Get NS google.com → Google's DNS server
 – Get A google.com → Google WEB server
DNS Round Robin

• Anatomy of a DNS request: google.com
 - . 14922 IN NS a.root-servers.net.
 - com. 172800 IN NS a.gtld-servers.net.
 - google.com. 172800 IN NS ns2.google.com.
 - google.com. 300 IN A 173.194.44.4
DNS Round Robin

- Return a list of multiple results
- Each query returns a different list
DNS Round Robin

- Load Distribution
- Avoid dead machines
- Simple and effective
- Not perfect: Distribution vs Balancing
- CLI Example (run twice)
 - $ dig google.com +trace
DNS Round Robin

• **Example: google.com**

 - google.com. 300 IN A 173.194.44.41
 - google.com. 300 IN A 173.194.44.36
 - google.com. 300 IN A 173.194.44.37
 - google.com. 300 IN A 173.194.44.33
 - [...]
 - google.com. 300 IN A 173.194.44.33
 - google.com. 300 IN A 173.194.44.39
 - google.com. 300 IN A 173.194.44.40
 - google.com. 300 IN A 173.194.44.41
 - [...]

Fast Flux

- Very aggressive Round Robin
- Thumb rule: TTL < 300 s
 - High load domains conflict with this
 - Yahoo: TTL 1800
 - Facebook: TTL 900
 - Google: TTL 300
 - Amazon: TTL 60 (!)
- Updated by destinations themselves
Fast Flux

1) Registration
2) Query
3) Response
4) Request
5) Forward
6) Content
7) Forward

Diagram: [Diagram of Fast Flux process]

- Client
- Authoritative DNS Server
- Botnet
- Content Server
Fast Flux

Single failure point: DNS server
Double Fast Flux

- Fast Flux: Single A result \rightarrow Multiple A (proxies)
- Double FF: Single NS result \rightarrow Multiple NS
- Do Fast Flux on both A and NS records
 - Different sets of nodes (specialized)
Double Fast Flux

- Stage 1: Registration
 - NS nodes to TLD
 - Proxy Nodes to NS content server
Double Fast Flux

- Stage 2: Operation
 1) Get NS for domain
 2) Reply: NS proxy
 3) Get A for domain
 4) Forward
 5) Reply A
 6) Forward
 7) HTTP request
Double Fast Flux

- Perfect? No single point of failure?
Double Fast Flux

• Perfect? No single point of failure?

evildomain.com
Domain Name Randomization

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains
 - Different every day
 - Download signed content
 - Affects up to 15 million Microsoft SERVER systems
Domain Name Randomization

• Conficker A: Nov 2008
 – Pseudorandom list of 250 domains
 – Different every day
 – Download signed content
 – Affects up to 15 million Microsoft SERVER systems
 • French Navy and Airforce
 • UK Ministry Defence (submarines, warships)
 • Bundeswehr
 • Police, Hospitals
Domain Name Randomization

• Conficker A: Nov 2008
 – Pseudorandom list of 250 domains
 – Different every day
 – Download signed content

• Response
 – Dec 16, 2008 Patch from Microsoft
 – Feb 12, 2009 “Conficker Cabal”
 – Feb 13, 2009 Microsoft offers 250.000 USD
Domain Name Randomization

- Conficker Cabal
 - ICANN
 - Microsoft
 - Verisign
 - Symantec
 - F-Secure
Domain Name Randomization

- Conficker Cabal
 - ICANN
 - Microsoft
 - Verisign
 - Symantec
 - F-Secure
 - Afiliias, Neustar, China Internet Network Information Center, Public Internet Registry, Global Domains International, M1D Global, America Online, ISC, Georgia Tech, The Shadowserver Foundation, Arbor Networks, Support Intelligence
Domain Name Randomization

- Conficker Cabal
 - Pre-register all Conficker A domains
 - Starts in March, 2009
 - Finishes by mid-April, 2009
Domain Name Randomization

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains
- Response
 - Dec 16, 2008 Patch from Microsoft
 - Feb 12, 2009 “Conficker Cabal”
 - Feb 13, 2009 Microsoft offers 250,000 USD
Domain Name Randomization

• Conficker A: Nov 2008
 – Pseudorandom list of 250 domains

• Response
 – Dec 16, 2008 Patch from Microsoft
 – Feb 12, 2009 “Conficker Cabal”
 – Feb 13, 2009 Microsoft offers 250,000 USD
 – Feb 20, 2009 Conficker C
Domain Name Randomization

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains each day
- Conficker C: Feb 2009
 - Pseudorandom list of 50,000 domains each day
Domain Name Randomization

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains each day

- Conficker C: Feb 2009
 - Pseudorandom list of 50,000 domains each day
 - Try to connect to 500 of them
 - Success chance: ~1%
 - Distribute payload via P2P
Domain Name Randomization

- **Conficker A: Nov 2008**
 - Pseudorandom list of 250 domains each day
- **Conficker C: Feb 2009**
 - Pseudorandom list of 50,000 domains each day
 - Try to connect to 500 of them
 - Success chance: ~1%
 - Distribute payload via P2P
 - Game over
That pesky DNS

- DNS is controlled by authorities
 - Registration can be risky / expensive
That pesky DNS

• DNS is controlled by authorities
 – Registration can be risky / expensive
• Solution: no DNS!
That pesky DNS

- DNS is controlled by authorities
 - Registration can be risky / expensive
- Solution: no DNS!
- Zer0n3t
 - Use TOR hidden service to host C&C
That pesky DNS

• DNS is controlled by authorities
 – Registration can be risky / expensive
• Solution: no DNS!
• Zer0n3t
 – Use TOR hidden service to host C&C
 – Back to IRC!
Stealth communication

- Twitter / Facebook
 - Base64 encoded bit.ly pastebin hosted CMD
 - Koobface: spread via Social Networks

- HTTPS
 - Traffic on unknown ports: suspicious
 - Cleartext on know port: easy fingerprinting
 - Encrypted traffic on known ports: suspicious to DPI
 - Encrypted traffic on port 443: bingo!
Stealth communication

• Jabber/XMPP
 – For users: Modern and flexible IRC replacement
 – For botnets: Modern and flexible IRC replacement
 – More complicated account creation

• DNS
 – Morto, Feeder
 – TXT requests
 – Base64 → bit.ly → pastebin → zip → exe, dll
Other Features

- Rootkit
 - Bot is module of OS
- Bootkit
 - OS is module of Bot
- Integrated Antivirus
 - Less competition, less attention
- GPL license violation
Other Attacks

- **White Hat Botmaster**
 - Exploit vulnerabilities in Bot code
 - Exploit vulnerabilities in BotNet design
 - Send autodestruction commands
 - Ethical and legal concerns
 - Defense: Learning to program.
Other Attacks

- Sinkholing
 - Sybil attack: Impersonate control nodes
 - Isolate and disconnect nodes
 - Sybils must be responsive to avoid bootstrapping
- Defense
 - Reputation systems
 - Smart FF re-bootstrap
Other Attacks

● Enumerate and block
 - Add bots to spam blacklist
 - Defense: Brute force (have millions of bots)

● Spamming
 - Insert bogus data (theft botnet)
 - Defense: ??
Other Attacks

• Size estimation
 – Crawl P2P network: recursive queries of peer lists
 • Inefective (sometimes as low as 2% discovered)
 – Emulate protocol and join
 – Defense: clustering
The Perfect Botnet

• No C&C: pure P2P based
 – No special nodes

• Domain name randomization
 – Instead of time, based on random but public data
 • Weather
 • Stock Market
 – Use Fast Flux for bootstrap

• Sign (and verify!) commands with proper crypto
The Perfect Botnet

- Use port 22, 443 for communication
 - Use proper crypto!

- Extra restricted situation: DNS
 - 8 'A' responses: 256 bits → DHT key
 - Google uses 11 'A' responses
 - Avoid invalid IP (127. - 10. - 172.16. - 5. - 224.)
The Perfect Botnet

- Improve Fast Flux
 - NS proxies → DNS servers
 - 'A' proxies → CDN servers
 - 'A' nodes register with DNS servers
The Perfect Botnet

- Too much work? Find a framework!
The End

DON'T TRY THIS AT HOME

(IF YOU DO TRY, I DEMAND MY SHARE)

Questions?