Evil networks: BotNets

HOW TO GET REALLY RICH USING JUST COMPUTERS

(side effect: how to build secure and resilient P2P applications)

Bart Polot

Technische Universität München

May 27, 2014

Keywords

- BotNet
- C&C
- Resilience
- FastFlux
- Randomization

Infected Computer

Infected Computer x A LOT

Infected Computer x A LOT

+ Anonymous Botmaster

Infected Computer x A LOT

+ Anonymous Botmaster

=

Infected Computer x A LOT

+ Anonymous Botmaster

_

FUN

Infected Computer x A LOT

+ Anonymous Botmaster

_

FUN

Infected Computer x A LOT

+ Anonymous Botmaster

_

TROUBLE

Infected Computer x A LOT

+ Anonymous Botmaster

_

TROUBLE

(seriously, don't try this at home)

- SPAM
- DDoS
- ID Theft
- IP Theft
- Theft
- Phishing
- Scareware
- Virus distribution
- Anonymous VPN

- Money

- Requirements
 - Availability: ready for business
 - Stealth: don't show up on the radar
 - Anonymity: jail bad place to enjoy money
 - Authentication: private botnet
 - Size estimation: marketing counts
 - Confidentiality, Latency, Ease of use...

- Requirements
 - Availability: ready for business
 - Stealth: don't show up on the radar
 - Anonymity: onion routing
 - Authentication: asymmetric crypto
 - Size estimation: timestamp algorithm
 - Confidentiality, Latency, Ease of use...

Regular Activity: Web, etc

- Attacker
 - DDoS

- Defense
 - CDN

Forbidden Activity: SPAM, etc

- Attacker
 - DDoS
 - Law
 - Experts
 - A/V
 - ISP

- Defense
 - ???

Pre - History

- Remote control of individual PC
 - NetBus
 - BackOriffice2000
 - Novelty / Spyware

Ancient History

- Centralized server
 - Hacked server
 - Botmaster owned

Ancient History

- Centralized server
 - Hacked server
 - Botmaster owned
- Easy to attack
 - Clean server
 - Disconnect server
- Trivial to implement

Ancient History

- IRC server
 - IRC resilience
 - Password
 - Botmaster via Tor
- Easy to attack
 - Clean server
 - Disconnect server
- Easy to implement

- P2P networks
 - P2P resilience
 - Botmaster peer
- Harder to attack
 - No server
 - Exploit bot software

- P2P networks
 - P2P resilience
 - Botmaster peer
- Harder to attack
 - No server
 - Exploit bot software
- Difficult to implement

- Storm Worm
 - Jan 2007
 - P2P C&C
 - Up to 50 million
 - Computing power
 - Top 500
 - Bandwidth
 - Country
 - Revengeful

- Storm Worm
 - Overnet
 - Kademlia
 - Cell structure
 - Hide size
 - Fast Flux

- Storm Worm
 - Stormfucker
 - Poor crypto
 - No authentication
 - 4 byte XOR
 - 64 bit RSA

- Carna Botnet
 - Routers
 - Default credentials
 - Internet Census 2012
 - Polite Botnet

First vulnerability: Content Server

- Content Server is taken down: SPAM is useless
- Hide Content Server
- Use bots as proxies

- Anatomy of a DNS request: google.com
 - Get NS. (root level) → 13 root servers
 - Get NS com. → 13 ".com" servers
 - Get NS google.com → Google's DNS server
 - Get A google.com → Google WEB server

Anatomy of a DNS request: google.com

	14922 IN	NS	a.root-servers.net.
- com.	172800 IN	NS	a.gtld-servers.net.
- google.com.	172800 IN	NS	ns2.google.com.
- google.com.	300 IN	Α	173.194.44.4

- Return a list multiple results
- Each query return a different list

- Load Distribution
- Avoid dead machines
- Simple and effective
- Not perfect: Distributon vs Balancig
- CLI Example (run twice)
 - \$ dig google.com +trace

Example: google.com

```
google.com.
                   300
                         IN
                                    173.194.44.41
google.com.
                   300
                         IN
                              Α
                                    173.194.44.36
                                    173.194.44.37
                   300
                         IN
google.com.
                              Α
google.com.
                   300
                         IN
                              Α
                                    173.194.44.33
[...]
google.com.
                   300
                         IN
                                    173.194.44.33
                              Α
google.com.
                   300
                         IN
                                    173.194.44.39
                              Α
google.com.
                   300
                         IN
                                    173.194.44.40
                              Α
google.com.
                   300
                         IN
                                    173.194.44.41
                              Α
[...]
```

Fast Flux

- Very aggressive Round Robin
- Thumb rule: TTL < 300 s
 - High load domains conflict with this
 - Yahoo: TTL 1800
 - Facebook: TTL 900
 - Google: TTL 300
 - Amazon: TTL 60 (!)
- Updated by destinations themselves

Fast Flux

- 1) Registration
- 2) Query
- 3) Response
- 4) Request
- 5) Forward
- 6) Content
- 7) Forward

Fast Flux

Single failure point: DNS server

Double Fast Flux

- Fast Flux: Single A result → Multiple A (proxies)
- Double FF: Signle NS result → Multiple NS
- Do Fast Flux on both A and NS records
 - Different sets of nodes (specialized)

- Stage 1: Registration
 - NS nodes to TLD
 - Proxy Nodes toNS content server

- Stage 2: Operation
 - 1) Get NS for domain client,
 - 2) Reply: NS proxy
 - 3) Get A for domain
 - 4) Forward
 - 5) Reply A
 - 6) Forward
 - 7) HTTP request

Perfect? No single point of failure?

Perfect? No single point of failure?

evildomain.com

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains
 - Different every day
 - Download signed content
 - Affects up to 15 million Microsoft SERVER systems

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains
 - Different every day
 - Download signed content
 - Affects up to 15 million Microsoft SERVER systems
 - French Navy and Airforce
 - UK Ministry Defence (submarines, warships)
 - Bundeswehr
 - Police, Hospitals

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains
 - Different every day
 - Download signed content
- Response
 - Dec 16, 2008 Patch from Microsoft
 - Feb 12, 2009 "Conficker Cabal"
 - Feb 13, 2009 Microsoft offers 250.000 USD

- Conficker Cabal
 - ICANN
 - Microsoft
 - Verisign
 - Symantec
 - F-Secure

- Conficker Cabal
 - ICANN
 - Microsoft
 - Verisign
 - Symantec
 - F-Secure
 - Afilias, Neustar, China Internet Network Information Center,
 Public Internet Registry, Global Domains International, M1D
 Global, America Online, ISC, Georgia Tech, The Shadowserver Foundation, Arbor Networks, Support Intelligence

- Conficker Cabal
 - Pre-register all Conficker A domains
 - Starts in March, 2009
 - Finishes by mid-April, 2009

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains
- Response
 - Dec 16, 2008 Patch from Microsoft
 - Feb 12, 2009 "Conficker Cabal"
 - Feb 13, 2009 Microsoft offers 250.000 USD

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains
- Response
 - Dec 16, 2008 Patch from Microsoft
 - Feb 12, 2009 "Conficker Cabal"
 - Feb 13, 2009 Microsoft offers 250.000 USD
 - Feb 20, 2009 Conficker C

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains each day
- Conficker C: Feb 2009
 - Pseudorandom list of 50.000 domains each day

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains each day
- Conficker C: Feb 2009
 - Pseudorandom list of 50.000 domains each day
 - Try to connect to 500 of them
 - Success chance: ~1%
 - Distribute payload via P2P

- Conficker A: Nov 2008
 - Pseudorandom list of 250 domains each day
- Conficker C: Feb 2009
 - Pseudorandom list of 50.000 domains each day
 - Try to connect to 500 of them
 - Success chance: ~1%
 - Distribute payload via P2P
 - Game over

- DNS is controlled by authorities
 - Registration can be risky / expensive

- DNS is controlled by authorities
 - Registration can be risky / expensive
- Solution: no DNS!

- DNS is controlled by authorities
 - Registration can be risky / expensive
- Solution: no DNS!
- Zer0n3t
 - Use TOR hidden service to host C&C

- DNS is controlled by authorities
 - Registration can be risky / expensive
- Solution: no DNS!
- Zer0n3t
 - Use TOR hidden service to host C&C
 - Back to IRC!

Stealth communication

- Twitter / Facebook
 - Base64 encoded bit.ly pastebin hosted CMD
 - Koobface: spread via Social Networks

HTTPS

- Traffic on unknown ports: suspicious
- Cleartext on know port: easy fingerprinting
- Encrypted traffic on known ports: suspicious to DPI
- Encrypted traffic on port 443: bingo!

Stealth communication

Jabber/XMPP

- For users: Modern and flexible IRC replacement
- For botnets: Modern and flexible IRC replacement
- More complicated account creation

DNS

- Morto, Feeder
- TXT requests
- Base64 → bit.ly → pastebin → zip → exe, dll

Other Features

- Rootkit
 - Bot is module of OS
- Bootkit
 - OS is module of Bot
- Integrated Antivirus
 - Less competition, less attention
- GPL license violation

- White Hat Botmaster
 - Exploit vulnerabilities in Bot code
 - Exploit vulnerabilities in BotNet design
 - Send autodestruction commands
 - Ethical and legal concerns
 - Defense: Learning to program.

- Sinkholing
 - Sybil attack: Impersonate control nodes
 - Isolate and disconnect nodes
 - Sybils must be responsive to avoid bootstrapping
 - Defense
 - Reputation systems
 - Smart FF re-bootstrap

- Enumerate and block
 - Add bots to spam blacklist
 - Defense: Brute force (have millions of bots)
- Spamming
 - Insert bogus data (theft botnet)
 - Defense: ??

- Size estimation
 - Crawl P2P network: recursive queries of peer lists
 - Inefective (sometimes as low as 2% discovered)
 - Emulate protocol and join
 - Defense: clustering

- No C&C: pure P2P based
 - No special nodes
- Domain name randomization
 - Instead of time, based on random but public data
 - Weather
 - Stock Market
 - Use Fast Flux for bootstrap
- Sign (and verify!) commands with <u>proper</u> crypto

- Use port 22, 443 for communication
 - Use <u>proper</u> crypto!
- Extra restricted situation: DNS
 - 8 'A' responses: 256 bits → DHT key
 - Google uses 11 'A' respones
 - Avoid invalid IP (127. 10. 172.16. 5. 224.)

Improve Fast Flux

NS proxies → DNS servers

Too much work? Find a framework!

The End

DON'T TRY THIS AT HOME

(IF YOU DO TRY, I DEMAND MY SHARE)

Questions?