Neuro - Taxable Electronic Payments with Customer-Anonymity

Florian Dold, Benedikt Müller

Department for Computer Science
Technische Universität München

June 12, 2014
Motivation

What we want.
Motivation

Where we want it.
Motivation

What we have.
Naming

- borrowed from Euro and new/network or possibly gNu
- other awesome suggestions are welcome
Requirements

- Customer anonymity
- Unlinkability
- Taxability
- Verifiability
- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments
Requirements

▶ **Customer anonymity**
 It should not be possible to trace the spending behavior of a customer.

▶ Unlinkability

▶ Taxability

▶ Verifiability

▶ Ease of deployment

▶ Green / low resource consumption

▶ Macro- and micropayments
Requirements

- Customer anonymity

- **Unlinkability**
 It should be infeasible to link a set of transactions (even aborted ones) to the same customer.

- Taxability

- Verifiability

- Ease of deployment

- Green / low resource consumption

- Macro- and micropayments
Requirements

▶ Customer anonymity

▶ Unlinkability

▶ **Taxability**
 As it is the responsibility of the merchant to deduct taxes, he should be fully auditable and non-anonymous. Additionally it must not be possible to transfer cash illicitly (i.e. evading audit).

▶ Verifiability

▶ Ease of deployment

▶ Green / low resource consumption

▶ Macro- and micropayments
Requirements

- Customer anonymity
- Unlinkability
- Taxability
- **Verifiability**
 The trust necessary between the participants of the system should be minimized. Signatures over contractual information should be available in order to resolve disputes.

- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments
Requirements

▶ Customer anonymity
▶ Unlinkability
▶ Taxability
▶ Verifiability
▶ Ease of deployment
Low entry-barrier by providing a gateway to the existing financial system (i.e. Internet-banking protocols such as HBCI/FinTS), a free software reference implementation and a open protocol standard.
▶ Green / low resource consumption
▶ Macro- and micropayments
Requirements

- Customer anonymity
- Unlinkability
- Taxability
- Verifiability
- Ease of deployment
- **Green / low resource consumption**
 Avoid reliance on expensive and especially "wasteful" computations such as proof-of-work.
- Macro- and micropayments
Requirements

- Customer anonymity
- Unlinkability
- Taxability
- Verifiability
- Ease of deployment
- Green / low resource consumption

Macro- and micropayments
The system should be able to provide a solution for macro as well as micropayments.
Related Work

- Chaum style electronic cash [Cha83]
- Opencoin
- Peppercoin
- Bitcoin
- Zerocoin
- Brands
Chaum style electronic cash

Key ideas proposed by Chaum:

- Anonymity of customer
- Verifiability of payment
- Blind signatures as a means of providing anonymity of customer
- Possibility to utilize post-hoc detection of double-spending
Chaum style electronic cash

Requirements by Chaum:

- Public/private key digital signatures
- Blind signatures (as proposed by Chaum)
- Conservation of signatures (i.e. from one blindly signed value only one unblinded signed value can be derived)
Blind signatures

Original Message → Envelope containing Message and Carbon Paper → Sent to Signer → Envelope is signed (by Signer) → Signature

Signed Message → Envelope Removed
Chaum style electronic cash

Requirements for blind signatures by Chaum:

- Public key crypto such that $D_{pub}(E_{priv}(x)) = x$ where E_{priv} is the private encryption function and E_{pub} the public decryption function.
- A commuting function c and its inverse c' both only known to the customer with $c'(E_{pub}(c(x))) = E(x)$.
Basic protocol for blind signatures:

1. Customer chooses x at random, computes and provides $c(x)$ to mint

2. Mint signs $c(x)$ with E_{priv} and returns $E_{priv}(c(x))$ to customer

3. Customer strips signed matter by application of c'.
$$c'(E_{priv}(c(x))) = E_{priv}(x)$$
Example RSA blind signature scheme

- Generate RSA key pair
- Choose a random value r that is relatively prime to N
- Blinding factor $B = r^e \mod N$

1. Customer \rightarrow Mint: $m' \equiv mr^e \pmod{N}$
2. Customer \leftarrow Mint: $s' \equiv (m')^d \pmod{N}$
3. Customer removes the blinding factor to reveal s, the valid RSA signature of m: $s \equiv s' \cdot r^{-1} \pmod{N}$

- RSA keys satisfy $r^{ed} \equiv r \pmod{N}$ and thus $s \equiv s' \cdot r^{-1} \equiv (m')^d r^{-1} \equiv m^d r^{ed} r^{-1} \equiv m^d r r^{-1} \equiv m^d \pmod{N}$
Architecture of Chaum style currencies

- Mint
 - withdraw coins
 - deposit coins
- Customer
 - spend coins
- Merchant
Payment scheme by Chaum

1. Customer chooses random coin identifier, blinds and send it to mint.
2. Mint signs blinded value, giving the coin its value as note of currency and sends it back to customer
3. Customer unblinds the value. The coin is now spendable
4. Coin is sitting in customer’s wallet for some time
5. Customer provides signed value to merchant as means of payment
6. Merchant forwards the signed value to the mint
7. ▶ Mint adds the value to the list of spent coins and informs merchant of acceptance
 ▶ Mint recognizes double spending and reconstructs identity of customer
8. Mint credits account of merchant
Related work

- Chaum style electronic cash
- **Opencoin**
- Peppercoin
- Bitcoin
- Zerocoin
- Brands
Opencoin

- Attempt to implement Chaum style digital cash
- Free software implementation (GPL)
- Uses post-hoc double spending
- Project status: abandoned
- See opencoin.org
Related work

- Chaum style electronic cash
- Opencoin
- Peppercoin[Riv04]
- Bitcoin
- Zerocoin
- Brands
Peppercoin

- Based on probabilistic selection
- Proposed as extension to current payment systems (such as credit card)
- Addresses problem of expensive transactions
- $1\text{ct} \approx 0.1\% \cdot 10\text{€}$
Peppercoin - aggregation models

- Session level aggregation
- Aggregation by intermediation
- Universal aggregation
Peppercoin - aggregation models

- **Session level aggregation**
 - Consumer repeatedly makes small purchases with same vendor
 - Limited scope, not applicable in general
- Aggregation by intermediation
- Universal aggregation
Peppercoin - aggregation models

- Session level aggregation
- **Aggregation by intermediation**
 - Intermediary has to emulate financial system
 - Increases complexity and processing instead of minimizing it
 - Intermediary still needs to handle each payment
- Universal aggregation
Peppercoin - aggregation models

- Session level aggregation
- Aggregation by intermediation
- **Universal aggregation**
 - Merchant processes micropayments
 - Only “upgraded” micropayments - macropayments are relayed to the mint
 - Mint buffers upgraded payments in case the cumulative value of spent micropayments is lower than the upgraded payment
 - Upgrade selection not random but based on deterministic values
Peppercoin - Downsides

- No exact payments possible
- No customer anonymity
- Customer and merchant can conspire against mint
Related work

- Chaum style electronic cash
- Opencoin
- Peppercoin
- Bitcoin[08]
- Zerocoin
- Brands
Why Bitcoin will NOT be the payment system of the future:

- No taxability
- No unlinkability → limited anonymity
- No fast and cheap transactions
- No stable value
- Waste of resources (transaction-chain, proof-of-work, bandwidth)
Related work

- Chaum style electronic cash
- Opencoin
- Peppercoin
- Bitcoin
- Zerocoin[MGGR13]
- Brands
Zerocoin

- Extension to Bitcoin
- Removes linkability by conversion (BC → ZC → BC)
- No trusted third parties necessary
-Uses massive crypto (zero-knowledge proofs, cryptographic accumulators, commitment schemes, etc)
- → secure money laundering
Related Work

- Chaum Style Electronic Cash
- Opencoin
- Peppercoin
- Bitcoin
- Zerocoin
- Brands[Bra93]
Based on Chaums architecture
- Realizes divisibility by k-show signatures
- Post-hoc double spending detection
- Proposes the integration of a "secure" observer into customers wallet :(
- Mainly theoretical, has never been implemented
Neuro
Assumptions

- Existence of anonymous channel (customer → mint, customer → merchant)
- **Curve25519 elliptic curve cryptography**
- Blind signatures over elliptic curves
- Hash functions :)
- but: no global/state PKI
Curve25519

- Elliptic curve cryptography curve by Daniel J. Bernstein
- Used by wide variety of software (e.g. GNUnet)
- Optimized for and fast on 64-bit x86 processors
- No magic constants by NIST/NSA
- EdDSA: small signature (64 byte) and private/public key (32 byte)
Assumptions

- Existence of anonymous channel
- Curve25519 elliptic curve cryptography
- **Blind signatures over elliptic curves**
- Hash Functions
Blind signatures on elliptic curves

- Multiple new proposals
- Different message order
- Some contain errors or are faulty
- Different but similar
- No final decision on protocol yet
Architecture of Neuro

- **Mint**
 - withdraw coins
 - deposit coins

- **Customer**
- **Merchant**
 - spend coins
The Neuro Coin

- Identified by public key
- Only owner knows private key
- Signature of public key by mint denomination key
- Operations are authorized by signature of coin private key
- Expiration date defined by denomination key
The Neuro Mint

- Mints new Neuro coins
- Holds list of all (partially) spent but not expired coins
- Earns money by collecting fees
- Restricted trust necessary, correctness legally enforceable
- It is of economical interest for the mint to operate correctly
Security model: financial security

- Mint is compromised (key lost)
- Mint goes offline
- Hardware failure
- Packet loss/network loss
Security model: adversary

Adversary cannot break crypto primitives \rightarrow privacy guarantee
- Mint can only link customers to coin set
- Customer is not required to use his identity
Modes of spending

- Partial Spending
 - Online Payment
 - Lock fraction of a coin
 - Give deposit permission for a fraction
 - Repeat with remaining fraction of the coin

- Incremental spending
 - Online payment
 - Lock maximum amount of coin customer wants to spend
 - Incrementally give deposit permission

- Probabilistic spending (bona fide)
 - Offline payment
 - Gambling for payment "upgrade"
 - Interaction with mint only when payment gets upgraded
 - Anti-piracy strategies: “Accept and Embrace”, “Detect and Adapt”
Refreshing

Crucial to avoid linkability as merchant knows Coin from
- aborted transactions
- partially spent coins
Illicit transactions

- Transaction after which the private key of a coin is only known by the new owner.
- Transaction that is not registered as a payment by the mint.
Refreshing extended

Avoid possibility to use refreshing for illicit/black market transactions

▶ Store encrypted private key of new coin with mint
▶ Make it possible to retrieve the private key of every new coin derived from the old coin with only the private key of the old coin
▶ Use cut-and-choose to prevent customer from using fake old coin key
SEPA and HBCI Integration

Homebanking Computer Interface (HBCI)
- German standard
- Finalized by Zentraler Kreditausschuss (ZKA)
- Using custom protocol on port 3000 or standard HTTPS
- Supported by most German banks
REST API / JSON

REST API
- using HTTP1.1
- and JSON
A Mint can charge fees for:

- Minting
- Refreshing
- Depositing
The End

Questions?
BRANDS, Stefan A.:
An efficient off-line electronic cash system based on the representation problem.
1993

CHAUM, David:
Blind signatures for untraceable payments.

MIERS, Ian; GARMAN, Christina; GREEN, Matthew; RUBIN, Aviel D.:
Zerocoin: Anonymous distributed e-cash from bitcoin.

NAKAMOTO, Satoshi:
Bitcoin: A peer-to-peer electronic cash system.
In: *Consulted* 1 (2008), S. 2012

RIVEST, Ronald L.:
Peppercoin micropayments.