
Project & Training 3: Networking Project

Gerhard Hassenstein & Christian Grothoff

Berner Fachhochschule

KW 47/2020

Agenda

Lab overview

Organization

Hardware

Software

Strategy

Ethernet Labs

There are three main Ethernet labs deliverables:

1. Implement a Hub & Switch

2. Implement ARP

3. Implement a Router

The Hub is not graded and serves as a quick warm-up.

Team

Suggested are teams of 4 students:

I One Scrum-Master (documentation, planning)

I One for main product deliverable

I Two testers

This is a suggestion, not a requirement!

Process

Three 2-week sprints:

I Plan algorithms, data structures and testing

I Implement

I Unit-test

I Integration test

⇒ Version in Git at submission time is graded!

Virtual Hardware

https://gitlab.ti.bfh.ch/demos/vlab

https://gitlab.ti.bfh.ch/demos/vlab

Hardware

I There are two custom USB-to-4x-Ethernet adapters for each
team in N.111 (below secretary’s office) in the lab.

I You can open the door with your BFH card. Please add your
name to the list with the number of the adapter taken.

I Also take single USB-Ethernet adapters if your notebook/PC
does not have an Ethernet port. You may also take an
Ethernet cable if needed.

I You must bring everything back after the final submission
deadline. When you have returned the adapter, you may cross
your name off the list again.

Suggested setup

hub/switch
arp/router

test client
10.0.0.2

test client
10.0.0.1

test client
10.0.0.3

Ethernet Ethernet

Ethernet

USB

Skeleton

Your Gitlab team repository should have been provisioned with a
skeleton that is a starting point. It includes:

hub.c Template for the hub project. Add 3 lines to get a
working hub!

switch.c Template for the switch project.

arp.c Template for the arp project.

router.c Template for the router project.

Makefile Build system. Modify as needed.

network-driver.c Completed driver to allow you to send and receive
Ethernet frames. You do not need to modify this
code!

Running the network-driver

I LAN driver provided in C in Git (glab/network-driver.c)

I Launch driver with list of names of physical network device
(i.e. “lan0”) followed by “-” followed by the command to run
your program:

$ sudo network-driver eth0 eth1 eth2 - ./my-hub eth0 eth1 eth2

The network devices MUST be passed twice: once to the
network-driver as arguments, and once to your program (hub,
switch, arp, router)!

I Driver will pass received frames to your stdin

I Driver will read frames from your stdout and pass to network

I Driver will not touch stderr, you can use stderr for logging

I Terminate driver via signal (kill) or closing stdout

Your code can be in any language!

The Driver I/O Format

I First 6 bytes written by driver to your stdin are the HW
MACs for each of the network interfaces (in the same order).

I Henceforth, the message format is 16-bit length prefix (in big
endian), followed by 16-bit interface identifier, followed by
Ethernet frame (destination MAC, source MAC, etc.).

I To send frames, also use 16-bit length prefix followed 16-bit
interface identifier, followed by Ethernet frame.

I Interace number 0 is reserved for interacting with the console.

I You must set the source MAC correctly (in particular for
arp/router)!

I Some hardware may not support using source MACs other
than your HW MAC. If you do not use the provided
equipment, check that you have hardware that supports
sending with arbitrary MACs!

Skeleton: Helper files

Other code in the Gitlab team repository:

loop.c Shared logic for all programs. Functions you may
use, but do not need to modify.

print.c Replacement for printf() given that stdout is for
Ethernet frames and MUST NOT be used for
program output.

crc.c Internet checksum. Feel free to use.

glab.h Packet format for the interaction with the
network-driver.

You do NOT have to modify this code, but it may be useful to
understand it. You MUST re-implement this logic if your project is
in languages other than C.

Suggested Strategy

I Understand what a hub/switch/arp/router really has to do.

I Plan your data structures first. The algorithms are always
trivial. Use simple tables (except for routing).1

I For testing, write a program that pretends to be the network
driver. Remember the shell project from CS Basics. Use
dup, fork and exec to run your main program with
stdin/stdout being controlled by your test harness.2

I Perform compatibility tests with real hardware once above
tests work.

Tests and main program do not have to be in the same language.

1Until the router, you do not need malloc() at all!
2java.lang.ProcessBuilder can also be used.

Test requirements

The quality of your tests will also be graded.

I Make sure your tests are run via the make check target.

I The tests should succeed by returning 0, and fail with
non-zero.

I make check MUST NOT create binaries like switch, arp or
router.

I If you write unit tests for individual functions, please put them
under a different target, like make tests. Those will NOT be
graded.

Why? We will run your test suite against our reference
implementation and implementations of other students, and
vice-versa!

Test starting point

int meta (int argc, char **argv) {

int cin[2], cout[2]; pipe (cin); pipe (cout);

if (0 == (chld = fork ()) {

close (STDIN_FILENO); close (STDOUT_FILENO);

close (cin[1]); close (cout[0]);

dup2 (cin[0], STDIN_FILENO);

dup2 (cout[1], STDOUT_FILENO);

execvp (argv[0], argv);

printf (stderr, "Failed to run binary ‘%s’\n", argv[0]);

exit (1);

}

close (cin[0]); close (cout[1]);

child_stdin = cin[1]; child_stdout = cout[0];

// send MACs, run test, cleanup

kill (chld, SIGKILL);

}

	Lab overview
	Organization
	Hardware
	Software
	Strategy

