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Expressive type-systems for object-oriented languages can help improve program-

mer productivity and system performance. This thesis describes type-based solu-

tions for problems that are commonly addressed using flow-analysis. Specifically,

this thesis introduces two extensions to standard object-oriented type systems

that enable the programmer to concisely specify additional common and useful

invariants. A concise specification is facilitated in both cases by using problem-

specific constraint systems in the type rules.

The first extension enables programmers to control aliasing of objects and

thereby strengthens the encapsulation paradigm in object-oriented languages.

Existing object-oriented languages provide little support for encapsulating ob-

jects. Reference semantics allow objects to escape their defining scope, and the

pervasive aliasing that ensues remains a major source of software defects. Chap-

ter 2 introduces a type system that can guarantee confinement – the property that

all instances of a given type are encapsulated in their defining package Chapter 2

presents Kacheck/J, a tool for inferring confined types for large Java programs.

Our goal is to develop practical tools to assist software engineers, thus we focus

on simple and scalable techniques. Confinement can be used to identify acciden-

tal leaks of sensitive objects, as well as for compiler optimizations. We report on

the analysis of a large body of code and discuss language support and refactoring
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for confinement.

The second extension focuses on memory safety, specifically for accesses to

distributed arrays. A fundamental concept for programming with these arrays is

the use of regions. A region is a set of points, and enables the programmer to

give high-level specifications for the shape of arrays and for iterations over sets

of indices. Arrays over regions were introduced in ZPL in the late 1990s and

later adopted in Titanium and X10 as a means of simplifying the programming

of high-performance software. While convenient, regions do not eliminate the

risk of memory safety violations in the form of accesses outside of the bounds

of arrays. Until now, language implementations have resorted to checking array

accesses dynamically or to warning the programmer that bounds violations lead

to undefined behavior. Chapter 3 shows that a type system for a language with

arrays over regions can guarantee that array bounds violations cannot occur. Our

type system uses dependent types and enables safety without dynamic bounds

checks. We have developed a core language and a type system, proven type

soundness and settled the complexity of the key decision problems.

A prototype implementation which embodies the ideas of our core language

has been developed for X10, a new language for high performance computing. We

have implemented a type checker for our variant of X10 and experimented with

a variety of benchmark programs. Some of the internals of the implementation

of both type system extensions are covered in Appendix A.
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CHAPTER 1

Introduction

Correctness and performance are fundamental goals in software engineering. This
thesis will demonstrate that sophisticated type systems can be an important tool
in helping programmers achieve these goals. Type systems combine the bene-
fits of program verification and static analysis techniques. Specifically, they give
the programmer certain correctness guarantees and at the same time enable the
compiler to generate faster code. Successful type systems allow programmers
to concisely declare important properties that are interesting for the correctness
of the program and at the same time also convey new information for program
optimization. Capturing such properties with type systems is desirable for mul-
tiple reasons. First of all, type checking is modular and is, thus, scalable. Types
enforce a certain programming discipline which can in turn give certain guaran-
tees, such as memory safety. Type systems usually rely on type rules that state
constraints for particular operations. In order to facilitate programming, these
rules are generally formulated in ways that allow modular checking. Type system
designs attempt to use only a limited amount of context; type-checking usually
allows the type checker to independently verify small program units. Further-
more, types often provide useful documentation about the program and in ways
that are concise and standardized. The fact that the compiler checks the type
annotations also ensures that the documentation provided by the types is always
up-to-date.

However, types, as they are used in mainstream languages, have limitations.
They can rarely offer the complete correctness guarantees desired in program veri-
fication and are at best a complementary tool for program optimization. Program
verification tools and optimizing compilers often rely instead on flow analysis as
an alternative to types. The information obtained from flow analysis determines
if data or control is guaranteed to (not) reach certain locations. Flow analysis
can generally give more precise answers about program correctness and enable
more aggressive compiler optimizations than types can. However, the results of a
flow analysis are harder to predict for the programmer, as the source code usually
does not describe the expected results from the flow analysis and changes in one
part of the code can unexpectedly impact the flow analysis results of other parts
of the application. Flow analysis is also usually harder to scale than equivalently
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powerful analyses based on types.

This thesis describes two extensions to standard object-oriented type sys-
tems that enhance the expressiveness of such type systems. As a result, the
type checker can verify the absence of a broader set of programming errors, thus
improving programmer productivity. Furthermore, compilers can use the addi-
tional type information to generate better code. This use of types improves on
the state-of-the-art use of flow analysis for program verification and optimization
by improving scalability, usability and predictability.

The capabilities of standard object-oriented type systems will be illustrated
later in the introduction, followed by a comparison of the uses of flow analysis
and types and their respective advantages and disadvantages. This illustration
focuses on a standard compiler optimization, devirtualization and inlining. The
approach based on types is called class-hierarchy analysis (CHA), and the flow
analysis approach is known as control-flow analysis (0-CFA).

While type systems and flow analysis are often competing techniques, it is
sometimes beneficial to combine them. Type systems can use flow analysis in
their type rules, and similarly, flow analysis can exploit type information. An
example of a type system using flow analysis results is described in Section 2.4.1.
Section 1.2.3 is an example of the use of type information in flow analysis.

The remainder of the introduction is structured as follows. Section 1.1 de-
scribes features common to most statically typed object-oriented languages; such
languages form the basis for the extensions presented in the thesis. Section 1.2 will
contrast type-based and flow analysis-based techniques for a well-known compiler
optimization, devirtualization and inlining in object-oriented languages. Finally,
Section 1.3 highlights the contributions of this thesis.

1.1 Standard Object-Oriented Type Systems

Commonly-used ahead-of-time-compiled object-oriented languages such as C++,
C# and Java use type systems to ensure the absence of errors like “message not
understood” and “no such field”.1 In these statically typed object-oriented lan-
guages, the types in the type system closely mirror the class hierarchy. Figure 1.1
gives some simple examples in Java.

Subclasses understand the same messages and contain the same fields as their
parent classes (because they inherit these members). Thus, subtyping and sub-

1Note that runtime errors in Java, such as NoSuchMethodException can be caught by the
type checker and are only thrown at runtime due to reflection or incompatible class changes
(version mismatches) that occur after processing of the code by javac.
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class A {
int f;

}
class B {
}
class C extends A {

void m() {
A a = this; // legal: C subtype of A
a.f++; // type system ensures field f exists
B b = this; // illegal: C not subtype of B
b.m(); // illegal: B has no method m

}
}

Figure 1.1: This example illustrates some of Java’s type rules. C is a subclass of
A and thus it is legal to assign instances of C (here this) to variables of type A.
C is not a subclass of B so the assignment to b is illegal. The method m() is not
defined in B and hence the call to b.m() is also illegal. Note that in an untyped
language the above code would run despite the presence of type errors.

classing relationships become homomorphisms in these type systems. This simple
duality breaks down, however, with the addition of generics or templates to these
languages, resulting in a large design space [IPW01, RS06, MBL97, CS98, OAC05,
Tho97]. Consequently, some of the largest differences between the type systems
of C++, C# and Java are in terms of generics. We will now briefly describe
the problem that lies beneath these differences in order to illustrate some of the
inherent limitations of type systems.

The fundamental problem with generics was first formalized in [Mad95, MMM90]
and is easily illustrated using arrays, which can be thought of as a generic type
Array<T>. Suppose S is a subtype of T. The question is, should Array<S> be a
subtype of Array<T>? Surprisingly, the answer is that it depends: if the array is
read-only, Array<S> can be a subtype of Array<T> (covariance). If the array is
write-only, Array<T> can be a subtype of Array<S> (contravariance). And if the
array is both read and written to, the two types should be incomparable (invari-
ance). Figure 1.2 illustrates the problem why Array<S> cannot be a subtype of
Array<T> in the case of writes. The design space is further complicated by the
possibility of resorting to runtime checks for assignments (as in Java).

Ignoring complications arising from generics, simple object-oriented type sys-
tems are often considered to be easy to understand (in part probably because the
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class T {
}
class S extends T {

int f;
void m() {

S[] a = new S[1];
T[] b = a; // array subtyping
b[0] = new T(); // (*)
S s = a[0]; // magic: T becomes S
s.f++; // oops

}
}

Figure 1.2: This example illustrates a fundamental problem with generics using
the example of array subtyping. Note that while Java allows the assignment b

= a in this case, the VM performs a costly dynamic check for the assignment in
the line marked with (*). Since these costly dynamic checks are required for any
aastore in Java, Java’s array subtyping rule (covariance) is generally considered
a design mistake.

confusion between subclassing and subtyping blurs the vision). However, they
are inherently limited, in that they cannot prevent a large class of runtime er-
rors. Examples include the absence of operations dereferencing null, safe stack
allocation of objects, guaranteeing liveness requirements and various forms of
controlling aliasing and side-effects. More powerful type systems are constantly
being developed. A good general overview of type systems can be found in a
recent book by Pierce [Pie02].

1.2 Types vs. Flow Analysis

From the point of view of the compiler, flow analysis is the primary alternative
to using type information. With types, the type verification stage checks that
all statements obey the respective type rules; as a result, it constructs a proof
that the invariants described by the types are satisfied. On the other hand, with
flow analysis, the compiler analyzes the data and control flow in the program to
establish the desired invariants.

In general, flow analysis is theoretically capable of deriving stronger invariants
than type systems; however, type systems can be constructed that are equal to a
large class of flow analyses [PO95, Pal98, PP01]. Consequently, the real distinc-
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tion between type systems and flow analysis arises from the kind of usage that is
being considered. Type systems are used to reject unsafe code and thus types are
commonly used for program verification, whereas a flow analysis must accept all
programs, making flow analysis suitable for optimization. Furthermore, type sys-
tems are usually defined inductively. As a result, programmers can easily reason
about the kinds of programs that the type system will accept. A common way
to define a flow analysis, on the other hand, is coinductively, making the results
harder to predict for the application programmer. The coinductive definition
is also one reason that flow analyses are often more expensive than type-based
approaches.

This point is easily illustrated with a technique that is frequently used in
optimizing compilers for Java-like languages: inlining of devirtualized function
calls. In order to inline a virtual call site, the optimizing compiler first needs to
devirtualize the call site – that is establish the existence of a unique receiver. A
common type-based technique for devirtualization is called class hierarchy anal-
ysis (CHA) [DC94, DGC95]. Here the compiler looks at the type hierarchy. The
call can be devirtualized if a single class in the applicable part of the hierarchy
implements the respective method. An alternative approach based on flow anal-
ysis is 0-CFA – control flow analysis with zero context. By “context”, we refer
to the call stack at the site of the virtual function call. In 0-CFA, the analysis is
context insensitive.

Figure 1.3 gives a simple example that illustrates some of the differences
between CHA and 0-CFA. Since CHA only looks at the class hierarchy using the
receiver type, it can devirtualize fewer calls. A program verifier based on 0-CFA
could determine that the example would always print 01; an analysis using CHA,
on the other hand, would have to assume that it might also output 11.2

The rest of this section will contrast and quantify the differences between
type-based and flow analysis-based approaches to inlining in a particular setting,
the optimization of software that has a plug-in architecture and that is written in
a type-safe object-oriented language. Section 1.2.1 first motivates and illustrates
the complications that arise when analyzing code that uses plugins. Section 1.2.2

2The example also illustrates the problem with 0-CFA which is addressed with TSMI, a
0-CFA variant for which we also give experimental results. Suppose the main method only
contained the second print statement. Then an inliner based on 0-CFA would determine that
B.o can be inlined in A.n. However, a type checker would reject the resulting method n with
the statement return this.f because A does not have a field f. This does not make 0-CFA
unsound (because this in A.n would, during execution, always be of type B for which the field
f exists). However, it makes it impossible to use 0-CFA in a compiler that wants to preserve
typeability in its intermediate representation. The TSMI variant of 0-CFA adds additional
constraints to 0-CFA which ensure that code will type check after inlining.
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class A {
static void main() {

System.out.print(new A().m());
System.out.print(new B().m());

}
int m() {

return this.n();
}
int n() {

return this.o();
}
int o() {

return 0;
}

}
class B extends A {

int f = 1;
int m() {

return this.o();
}
int n() {

return 2;
}
int o() {

return this.f;
}

}

Figure 1.3: The calls to m above can be devirtualized by both CHA and 0-CFA.
The call to n can also be devirtualized by 0-CFA, because this in m always has
type A. However, CHA must assume that this could also be of type B and would
thus not devirtualize the call to n. The call to o in A cannot be devirtualized by
CHA for the same reason, but the call to o in B can be devirtualized using both
CHA or 0-CFA.

gives experimental results comparing CHA and 0-CFA. Finally Section 1.2.3 dis-
cusses some of the limitations of using control flow analysis in this context. More
details about this particular analysis can be found in [GPG05].
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1.2.1 Plugin Architectures

In a rapidly changing world, software has a better chance of success when it
is extensible. Rather than having a fixed set of features, extensible software
allows new features to be added on the fly. For example, modern browsers such
as Firefox, Konqueror, Mozilla, and Viola [Wei94] allow downloading of plug-
ins that enable the browser to display new types of content. Using plugins can
also help keep the core of the software smaller and make large projects more
manageable thanks to the resulting modularization. Plugin architectures have
become a common approach to achieving extensibility and include well-known
software such as Eclipse [Fou04] and Jedit [Pes04].

While good news for users, plug-in architectures are challenging for optimizing
compilers. Consider the following typical snippet of Java code for loading and
running a plugin.

String className = ...;
Class c = Class.forName(className);
Object o = c.newInstance();
Runnable p = (Runnable) o;
p.run();

The first line gets the name of a plugin class. The list of plugins is typi-
cally supplied in the system configuration and loaded using I/O, preventing the
compiler from doing a data-flow analysis to determine all possible plugins. The
second line loads a plugin class with the given name. The third line creates an
instance of the plugin class, which is subsequently cast to an interface and used.

In the presence of this dynamic loading, a compiler has two choices: either
treat dynamic-loading points very conservatively or make speculative optimiza-
tions based only on currently loaded classes. The former can pollute the analysis
of much of the program, potentially leading to little optimization. The latter can
often lead to more optimization, but dynamically-loaded code might invalidate
earlier optimization decisions, thus requiring the compiler to undo such optimiza-
tions. When a method inlining is invalidated by class loading, the runtime must
revirtualize the call; that is, it must replace the inlined code with a virtual call.
Naturally, rolling back optimizations, in particular optimizations such as inlining
that often enable additional code transformations, can be costly.

The next section gives experimental results for analyses based on CHA (types)
and 0-CFA (flow analysis) that quantify the potential invalidations and suggest
how to significantly decrease the number of invalidations. We count which sites
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are likely candidates for future invalidation, which sites are unlikely to require in-
validation, and which sites are guaranteed to stay inlined forever. These numbers
suggest that speculative optimization is beneficial and that invalidation can be
kept manageable. An optimizing compiler can use these hints to decide whether or
not to inline, for which call sites data for fast deoptimization should be preserved,
and what subset of sites will have to be actively considered for revirtualization
when the application loads plugins.

1.2.2 Experimental Results

Using the plugin architectures Eclipse and Jedit as our benchmarks, we have
conducted an experiment that addresses the following questions:

• How many call sites can be inlined?

• How many inlinings remain valid and how many can be invalidated?

• Is there a measurable and significant gain in preanalyzing the plugins that
are statically available?

Preanalyzing plugins can be beneficial. Consider the code in Figure 1.4. The
devirtualization analysis can see that the plugin calls method m in Main and
passes it an Main.B2; since main also calls m with a Main.B1, it is probably not
a good idea to inline the a.n() call in m as it will be invalidated by loading the
plugin. The analysis can also see which methods are overridden by the plugin,
in case only run of Runnable is. The analysis must still be conservative in some
places, as, for example, with the three statements of the for loop, since these
could load any plugin. However, it can gather much more information about the
program and make decisions based on likely invalidations by dynamically loading
the known plugins.

Being able to apply the inlining optimization in the first place still depends
on the flow analysis being powerful enough to establish the unique target. Thus,
the answer to each of the three questions raised earlier depends on which static
analysis is used to determine what call sites have a unique target. We have
experimented with four different interprocedural flow analyses, all implemented
for Java bytecode (here listed in order of increasing precision):

• Class Hierarchy Analysis (CHA, [DC94, DGC95])

• Rapid Type Analysis (RTA, [BS96, Bac97])

• subset-based, context-insensitive, flow-insensitive flow analysis for type-safe
method inlining (TSMI, [GP04]) and
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• subset-based, context-insensitive, flow-insensitive flow analysis, commonly
known as 0-CFA ([Shi91, PS91]).

class Main {
static Main main;
public static void main(String[] args) throws Exception {

main = new Main();
for (String arg : args) {

Class c = Class.forName(arg);
Runnable p = (Runnable) c.newInstance();
p.run(); // virtual if plugins define multiple run methods

}
main.m(new B1()); // can stay optimized for given Plugin

}
void m(A a) { a.n(); } // needs to be virtual for given Plugin
static abstract class A {

abstract void n();
}
static class B1 extends A {

void n() { }
}
static class B2 extends Main.A {

void n() { }
}

}
class Plugin implements Runnable {

public void run() { new Main().m(new Main.B2()); }
}

Figure 1.4: Example code loading a known plugin. The Plugin does not modify
Main.main, which ensures that the call to main.m() can remain inlined. If only
Plugin is loaded, p.run() can also be inlined. Pre-analyzing Plugin reveals that
a.n() should be virtual, even if the flow analysis of the code without Plugin may
say otherwise. Note that for the example, CHA would not be able to inline a.n(),
while CHA would inline main.m(), which could be wrong if a plugin is loaded
that subclasses Main and updates Main.main.

In order to show that deoptimization is a necessity for optimizing compilers
for plugin architectures, we also give the results for a simple intraprocedural flow
analysis (“local”) which corresponds to the number of inlinings that will never
have to be deoptimized, even if arbitrary new code is added to the system. The
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“local” analysis essentially makes conservative assumptions about all arguments,
including the possibility of being passed new types that are not known to the
analysis. A runtime system that cannot perform deoptimization is limited to the
optimizations found by “local” if loading arbitrary plugins is to be allowed.

We use two benchmarks in our experiments:

Jedit 4.2pre13 A free programmer’s text editor which can be extended with
plugins from http://jedit.org/, 865 classes; analyzed with GNU class-
path 0.09, from http://www.classpath.org, 2706 classes.

Eclipse 3.0.1 An open extensible Integrated Development Environment from
http://www.eclipse.org/, 22858 classes from the platform and the CDT,
JDT, PDE and SDK components; analyzed with Sun JDK 1.4.2 for Linux3,
10277 classes.

While these are “only” two benchmarks, note that the combined size of
SPECjvm98 and SPECjbb2000 is merely 11% of the size of Eclipse. Furthermore,
these are the only freely available large Java systems with plugin architectures
that we are aware of. Analyzing benchmarks that do not have plugins, such as
the SPEC benchmarks, is pointless. We are also not aware of any previously-
published results on 0-CFA for benchmarks of this size.

We will use app to denote the core application together with the plugins
that are available to ahead-of-time analysis. Automatically drawing a clear line
between plugins and the main application is difficult considering that parts of
the core may only be reachable from certain plugins.

Flow analyses are usually implemented with a form of reachability analysis
built in, and more powerful powerful analyses are better at reachability. To
further ensure a fair comparison of the analyses, reachability is first done once in
the same way for all analyses. Then each of the analyses is run with reachability
disabled. This ensures that all analyses work with the same total number of
virtual call sites and the same code overall. The initial reachability analysis is
based on RTA and assumes that all of app is live; in particular, all local plugins are
treated as roots for reachability. The analysis determines the part of the library
(classpath, JDK) which is live, denoted lib, and then we remove the remainder
of the library.

The combination app + lib is the “closed world” that is available to the
ahead-of-time compiler, in contrast to all of the code that could theoretically be
dynamically loaded from the “open world”. We use the abbreviations:

3using the JARs dnsns, rt, sunrsasign, jsse, jce, charsets, sunjce provider, ldapsec and lo-
caledata
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Jedit Can be inlined Cannot be inlined
Remain valid Can be invalidated

By DLCW By DLOW
not DLCW

app lib app lib app lib app lib
Local 682 297 0 0 0 0 20252 7808
CHA 682 297 69 7 18720 6178 1463 1623
RTA 682 297 97 51 18723 6178 1432 1579
TSMI 682 297 99 59 19449 7091 704 658
0-CFA 682 297 103 83 19592 7191 557 534

Eclipse Can be inlined Cannot be inlined
Remain valid Can be invalidated

By DLCW By DLOW
not DLCW

app lib app lib app lib app lib
Local 15497 472 0 0 0 0 481939 26512
CHA 15497 472 4105 61 366114 20796 111720 5655
RTA 15497 472 9024 169 366169 20797 106746 5546
TSMI 15497 472 11479 439 420029 23097 50431 2976
0-CFA 15497 472 9921 46 428944 23971 43074 2495

Table 1.1: Experimental results; each number is a count of virtual call sites. The
total number of virtual call sites for Jedit are 20934 (app) and 8105 (lib). The
total number of virtual call sites for Eclipse are 497436 (app) and 26984 (lib).
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DLCW = Dynamic Loading from Closed World
DLOW = Dynamic Loading from Open World.

In other words, DLCW means loading a local plugin, whereas DLOW means
loading a plugin from, say, the Internet. In effect, DLCW means loading one of
the locally available plugins that the compiler was able to include in the original
whole-program flow analysis, while DLOW means loading a plugin from, say, the
Internet. The assumption is that loading locally available plugins is a frequent
event, whereas downloading new code, while allowed, should happen rarely and
may thus be more costly.

Table 1.1 shows the static number of virtual call sites that can be inlined
under the respective circumstances. The numbers show that loading from the
local set of plugins results in an extremely small number of possible invalidations
(DLCW). The numbers also show that preanalyzing plugins is about 50% more
effective for 0-CFA than for CHA: the number of additional devirtualizations is
respectively 57% and 49% higher for 0-CFA after compensating for the higher
number of devirtualizations of 0-CFA. When loading arbitrary code from the
open world (DLOW), the compiler has to consider almost all devirtualized call
sites for invalidation. Only a tiny fraction of all virtual calls can be guaranteed
to never require revirtualization in a setting with dynamic loading—a compiler
that cannot revirtualize calls can only perform a fraction of the possible inlining
optimizations.

The data also shows that TSMI and 0-CFA are quite close in terms of pre-
cision, which is good news since this means it is possible to use the type-safe
variant without losing a large number of opportunities for optimization. As ex-
pected, using 0-CFA or TSMI instead of CHA or RTA cuts the number of virtual
calls left in the code after optimization in half. Notice that for Eclipse, in the
column for call sites that can be inlined and invalidated by DLCW, 0-CFA has
a smaller number than TSMI. This is not an anomaly; on the contrary, it shows
that 0-CFA is so good that it both identifies 7,357 more call sites in app for
inlining than TSMI and determines that many call sites cannot be invalidated
by DLCW. Obviously the flow analyses (TSMI and 0-CFA) perform significantly
better than the type-based analyses (CHA and RTA). However, this improved
precision comes at a dramatic cost in performance and scalability.

1.2.3 Scaling 0-CFA

As expected, the 0-CFA [Shi91, PS91] style analyses have more precision than
CHA on inlining in the presence of dynamic class loading. The numbers also show
that if a compiler analyses all plugins that are locally available, then dynamically
loading from these plugins will lead to a miniscule number of invalidations. In
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contrast, when dynamically loading an unanalyzed plugin, the runtime will have
to consider a significantly larger number of invalidations. However, running an
analysis like 0-CFA on large benchmarks is an extraordinary challenge. While
CHA is trivial to scale, 0-CFA generally takes O(n3) time and O(n2) in space.

Running benchmarks like Eclipse with an algorithm that uses O(n2) space
is not feasible, in particular since all of our experiments were run with at most
1.8 GB of memory.4 In order to be able to run Eclipse, our implementation
trades space for speed. In essence, instead of representing flow sets directly (with
O(n) flow-sets of size O(n) each) the analysis represents flow sets implicitly using
dependency graphs using only O(n) space. However, as a result the analysis has
to traverse the flow graph more often; and the execution time is increased to
O(n4).

This huge cost in computation time can be offset with help from CHA. Since
CHA already devirtualizes a large number of call sites, all of those sites can be
ignored by the 0-CFA implementation. Furthermore, even if a call site cannot be
devirtualized, CHA can also give an upper bound on the set of interesting types
of receivers. Thus, it is possible to exploit type information in the control flow
analysis to reduce the computation time to be cubic in practice. Table 1.2 gives
space and time measurements for the various analyses. The time given is system
execution time, including parsing, abstract interpretation and constraint solving.
Space is the maximum number of megabytes memory utilization observed using
top for the JVM process.

In conclusion, a type-based approach (represented in this section by CHA
and RTA) is often trivial to scale for large applications. Using types can give the
compiler many opportunities for code optimization, and these opportunities are
generally easy to predict for the programmer. Type annotations also increase code
readability; both CHA and standard practices necessitate declaration of types of
arguments, fields and local variables (the reader should imagine erasing these type
declarations from Java or C++ applications to see what the programs would look
like without these standard types). The experiments presented in this section also
show that information obtained from flow analyses (represented in this section by
TSMI and 0-CFA) is generally more precise compared with information obtained
from types. However, flow analyses can also be significantly more expensive. The
results are more difficult to predict for the programmer and easily invalidated by
changes to the application; for the devirtualization and inlining analysis described
in this section, this is demonstrated by the fact that if the code changes due to

41.8 GB is the maximum total process memory for the Hotspot Java Virtual Machine running
on OS X as reported by top and also the memory limit specified at the command line using
the -Xmx option.
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Time (s) Space (MB)

Local, Jedit 14 84
CHA, Jedit 14 83
RTA, Jedit 14 80
TSMI, Jedit 85 93
0-CFA, Jedit 144 122

Local, Eclipse 6749 1800
CHA, Eclipse 13710 1800
RTA, Eclipse 4719 1800
TSMI, Eclipse 209371 1800
0-CFA, Eclipse 183171 1800

Table 1.2: Time and space consumption for the various analyses. Note that
implementations of the five analyses share as much code as possible; our goal was
to create the fairest comparison possible, not to optimize the analysis time of a
particular analysis.

dynamic loading (DLCW), more than twice as many devirtualizations might have
to be undone for 0-CFA compared to CHA.

1.3 Contributions of Our Work

This thesis explores new type systems in areas that have traditionally been dom-
inated by flow analysis. Specifically, the two main chapters of the thesis will
present two extensions of object-oriented type systems for Java-like languages
that allow the programmer to use concise annotations to address common pro-
gramming problems. By extending the type systems we are able to reap the
general benefits of types over flow analysis – scalability, predictability and mod-
ularity – for these problems.

Confined types (Chapter 2) can help programmers reason about aliasing,
achieving encapsulation of objects. The crucial invariant established by confined
types is that all instances of a confined type are encapsulated in their defining
package. Encapsulated, in this context, means that no direct references exist
to instances of confined type from outside of its defining package. The rules for
confinement are simple to understand and allow for fast static verification and in-
ference of the confinement property. Experimental results show that confinement
occurs frequently.
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Region types (Chapter 3) give programmers memory safety guarantees when
manipulating complex distributed and (possibly) multi-dimensional arrays. While
generally applicable to other languages, region types have been developed specif-
ically for X10, a new type-safe programming language for distributed high-per-
formance computing. The Chapter 3 describes an extension to the basic object-
oriented Java-like type system of X10. Region types exploit a high-level algebra
of operations over sets of indices to reason about essential safety properties of
accesses to X10’s sparse and distributed arrays. The type system allows the pro-
grammer to express why accesses to possibly sparse and distributed X10 arrays
are both in-bounds and place-local. As a result, the type system enables the
programmer to use concise type annotations to provide useful documentation
that allows the compiler to eliminate safety checks resulting in faster, statically
checked code.

Both extensions simplify the use of the type system for programmers by using
constraint solvers in their type checking algorithms. The constraint solvers reduce
the amount of annotations that are necessary for the type checker to verify that
the desired invariants hold. The remaining annotations have the desirable prop-
erty that they simply express the interface of the code; in previous work [VB01],
the programmer had to declare additional invariants that did not directly relate
to the interface and instead were only there to help the type checker verify the
type constraints.

The language extensions for the two type system extensions have been imple-
mented in a new compiler framework called XTC (pronounced ecstasy, short for
extensible archtecture for compilation). Aspects of the framework are discussed
in Appendix A.
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CHAPTER 2

Encapsulating Objects with Confined Types

2.1 Introduction

Object-oriented languages rely on reference semantics to allow sharing of objects.
Sharing occurs when an object is accessible to different clients, while aliasing
occurs when an object is accessible from the same client through different access
paths. Sharing and aliasing are both powerful tools as well as sources of subtle
program defects. One potential consequence of aliasing is that methods invoked
on an object may depend on each other in a manner not anticipated by designers
of those objects, and updates in one sub-system can affect apparently unrelated
sub-systems, thus undermining the reliability of the program.

While object-oriented languages provide linguistic support for protecting ac-
cess to fields, methods, and entire classes, they fail to provide any systematic
way of protecting objects. A class may well declare some field private and yet
expose the contents of that field by returning it from a public method. In other
words, object-oriented languages protect the state of individual objects, but can-
not guarantee the integrity of systems of interacting objects. They lack a notion
of an encapsulation boundary that would ensure that references to ‘protected’
objects do not escape their scope.

The goal of this chapter is to describe a pragmatic notion of encapsulation
that enables us to provide software engineers with tools to guide them in the
design of robust systems. To this end, we focus on simple models of encapsula-
tion that can easily be understood. We deliberately ignore more powerful escape
analyses [Bla99, Bla03, BH99, Deu95] which are sensitive to small code changes
and may be difficult to interpret, as well as more powerful notions of owner-
ship [AKC02, BN02, BDF04, BLR02, BSB03, Boy01, Cla01, CW03b, DLN96,
LM04, MP99]. Of course, the tradeoff is that we will sometimes deem an ob-
ject as ‘escaping’ when a more precise analysis would discover that this is not
the case. In particular, we have chosen to investigate the concept of confined
types introduced by Bokowski and Vitek in [VB01]. Confined types give rise to
a form of encapsulation that is relatively simple to understand. Furthermore, as
we demonstrate in this chapter, confined types are useful in practice and can be
checked or inferred with little cost. The basic idea underlying confined types is
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Figure 2.1: Confinement is a property of object references. The diagram
illustrates confinement in a tiny program with two packages called inside

and outside and three classes inside.Confined, inside.Unconfined and
outside.Other. Arrows denote allowed reference patterns. If the class Confined
obeys the confinement rules, then objects defined in package outside cannot hold
references to instances of the class Confined, the class is said to be encapsulated
in the inside package.

the following:

Objects of a confined type are encapsulated in their defining, sealed
package.

The notion of sealed ensures that all of the code in the package is known. In
Java, sealing a package forces the Java Virtual Machine to load all classes from
that package from the same jar file. Thus, if a class is confined, instances of
that class (and all of its subclasses) cannot be manipulated by code belonging
to other packages. An instance of a confined type cannot flow to an object
outside the package of the confined type. In terms of aliasing, confinement allows
aliases within a package but prevents them from spreading to other packages as
illustrated in Figure 2.1.

The original definition of confinement [VB01] required explicit annotations
and thus presupposes that software is designed with confinement in mind. In some
sense, the underlying assumption was that confinement is an unusual property
that may require substantial changes to the original program. In this work we
take a different point of view. We claim that confinement is a natural property
of well designed software systems. We validate our hypothesis empirically with a
tool that infers confinement in Java programs. We gathered a suite of forty-six
thousand Java classes and analyzed them for confinement. Our results show that,
without any change to the source, 24% of the package-scoped classes (exactly
3,804 classes or 8% of all classes) are confined. Furthermore, we found that by
using generic container types, the number of confined types could be increased by
close to one thousand additional classes. Finally, with appropriate tool support to
tighten access modifiers, the number of confined classes can be well over 14,500 (or
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over 29% of all classes) for that same benchmark suite. While a more powerful
program analysis may yield higher numbers of confined classes, especially if a
whole-program approach is taken, our current numbers are already high and can
be obtained efficiently as the average time to analyze a class file is less than eight
milliseconds.

In a related effort, Zhao, Palsberg and Vitek [ZPV06] have shown that the
confinement rules are sound for a simple object calculus inspired by Featherweight
Java [IPW01] in which sharing is impossible. This was achieved by recasting
the confinement rules into a type system. They also showed the soundness of an
extension of the confinement rules to generic types; we will discuss that extension
later in this chapter.

Since their introduction, confined types have been applied in several different
contexts. Clarke, Richmond, and Noble have shown that minor changes to the
confinement rules presented here can be used to check the architectural integrity
constraints that must be satisfied by Enterprise Java Beans applications [CRN03].
Zhao, Noble and Vitek have applied the same ideas to Real-time Specification for
Java to ensure static safety of scoped memory usage [ZNV04]. Herrmann intro-
duced confinement as a software engineering mechanism for a new programming
language [Her03]. Skalka and Smith have studied a somewhat different notion
of confinement within the context of programming language security [SS05]. In
their work the main goal is to control not the flow of references to objects but
rather which methods are invoked on those objects.

This chapter makes the following contributions and improvements on previous
work on confinement:

• We simplify and generalize the confinement rules presented in the original
paper on confined types [BV99].

• We present an efficient constraint-based confinement inference algorithm.

• We give an overview of the implementation of Kacheck/J, our confinement
inference tool.

• We give results of the confinement analysis of a large corpus of programs.

• We discuss refactorings aimed at improving confinement as well as better
language support.

Chapter overview The chapter is organized as follows. Section 2.2 presents
a practical an example of confinement using class taken from the Java standard
library. Section 2.3 introduces confined types and the associated confinement
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Figure 2.2: Analysis overview. All classes in the enclosing package, java.util
in this case, are checked for confinement. Parent classes of confined classes (e.g.
Object) are checked for anonymity. Client code need not be checked.

rules. Section 2.4 presents our constraint-based analysis algorithm. Section 2.5
discusses the implementation of the inference tool, with the complete constraint
generation rules given in Section 2.5.3. Section 2.6 gives result of the analysis
of the benchmark suite. Section 2.7 discusses refactoring and language support.
In Section 2.8, we present an example from the Freenet benchmark [CSW00,
CMH02], where Kacheck/J is used to detect that a class is not confined. The
code is then refactored such that the class becomes confined. Section 2.9 gives
an overview of related work.

2.2 A Practical Example of Confinement

In statically typed object-oriented programming languages such as Java, confine-
ment can be achieved by a disciplined use of built-in access control mechanisms
and some simple coding idioms. We will give a simple motivating example and
use it to illustrate our analysis. Consider the class HashtableEntry used within
the implementation of Hashtable in the java.util package. The access modi-
fier for this class is set to default access, which, in Java, means that the class is
scoped by its defining package. HashtableEntry instances are used to implement
linked lists of elements which have the same hash code modulo table size. They
are a prime example of an internal data structure which is only relevant to one
particular implementation of a hashtable and that should not escape the context
of that table and definitely not of its defining package. Yet how can we be sure
that code outside of the package cannot get access to an entry object?

Since HashtableEntry is a package-scoped class we need not worry that out-
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side code will create instances of the class. However, the implementation of the
hash table class itself could cast an entry object to some public superclass, and
then expose a reference to the object. Alternatively, in the case where a public
method were to return an entry object or a public field held a reference to such
an object, outside code might obtain a reference to it (possibly causing an unex-
pected memory leak – for example in a weak hash map). The outside code could
also use that reference as an argument (which might have security implications if
the object were representing ownership of a permission), or cast it to some public
parent class and invoke methods on it (which may be problematic, particularly if
the methods are overridden in the subclass and were not intended to be reachable
from outside of the package).

It is likely that a programmer would consider these scenarios to be the result
of a programming error, and a good programmer would take care to prevent
such confinement breaches. One can view this issue as an escape problem: can
references to instances of a package-scoped class escape their enclosing package?
If not, then the objects of such a class are said to be encapsulated in the package.
In the example at hand, HashtableEntry is indeed encapsulated, as programmers
have carefully avoided exposing them to code outside of the java.util package.

Confinement can be checked by a simple program analysis which relies on
access modifiers of classes, fields and methods and performs a context- and flow-
insensitive analysis of the code of the confining package. We have implemented a
tool called Kacheck/J which uses this analysis, discovering potential confinement
violations and returning a list of confined types for each package analyzed. For
instance, in the above example, the expected result of the analysis would be that
HashtableEntry is confined to the package java.util, while Hashtable is not,
since Hashtable has been declared public. In order to determine this, the tool
must analyze the body of all classes declared in the package java.util package,
as well as all parent classes of confined classes. Figure 2.2 illustrates the checks
performed by the tool. The analysis is modular since only one package (and the
parent classes of confined types) needs to be considered at a time; this turns out
to be a key feature for scalability. Furthermore, since client code is not required
when checking confinement, it is possible to use our tool on library code.

It turns out that contrary to our expectation, our analysis infers that the class
HashtableEntry is not confined because the method clone() is invoked on one
of its instances. The problem is that clone() returns a copy of an entry which
is typed as Object. Manual inspection of the code reveals that each invocation
of this methods is immediately followed by a cast to HashtableEntry. Thus,
instances of the class do not actually escape; this is a typical pattern in a language
without adequate support for genericity. Our analysis is not precise enough to
discover the idiom—this is part of the price we pay for simplicity. One could
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consider extending the analysis to catch such idioms, and we leave that for future
work.

2.3 Confined Types

The goal of confinement is to satisfy the following soundness property: An object
of confined type is encapsulated in the scope of that type. Notice that scope is a
static notion whereas confinement controls runtime flow of objects. The idea of
confined types is to make the static scope define a bound on where an object can
flow. In this work we have set the granularity of confinement to be the package
(other granularities have been studied in [CRN03, ZNV04]; only minimal changes
to the rules are required). Thus, no instance of a confined type may escape the
package in which that type is defined. In order to ensure that the analysis is
modular and sound in the presence of dynamic loading we must ensure that new
code does not show up inside of the encapsulation boundary after the analysis.
In Java, this can easily be achieved by requiring that the encapsulating package
is sealed [Mic06, ZFA00]. Henceforth, when we say that instances of a confined
class are encapsulated in their defining package, we require that the package is
sealed.

Confinement is enforced by two sets of constraints. The first set of constraints,
confinement rules, apply to the enclosing package (the package in which the
confined class is defined). These rules track values of confined types and ensure
that they are neither exposed in public members nor widened to non-confined
types. We use the term widening to denote both:

• static widening from C to B: an expression or a statement that requires a
check that C is a subtype of B, and

• hidden widening to B: an expression or a statement which requires that the
type of the distinguished variable this is a subtype of B.

A typical example of static widening is an assignment x=y, where x is of type B
and y is of type C; Java requires that C is a subtype of B. A typical example of
hidden widening is an assignment x=this, where x is of type B; the dynamic type
of the this-object cannot be determined locally, so we say that the assignment
results in a hidden widening from that dynamic type of this to B.

The second set of constraints, so-called anonymity rules, applies to methods
inherited by the confined classes (potentially including library code) and ensures
that these methods do not leak a reference to this, which may refer to an object
of confined type.
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In this section, we adapt the rules of Bokowski and Vitek to infer confinement.
The new rules are both simpler and less restrictive (i.e., more classes can be
shown confined), while remaining sound. As in the original paper, the rules
presented here do not require a closed-world assumption. Confinement inference
is performed at the package level. The rules assume that all classes in a package
are known and, for confined classes, that their superclasses are available.

Enforcing confinement relies on tracking the spread of encapsulated objects
within a package and preventing them from crossing package boundaries. We
have chosen to track encapsulated objects via their types. Thus, a confinement
breach will occur as soon as a value of a confined type can escape its package.
Since we track types, widening a value from a confined type to a non-confined
type is a violation of the confinement property.

2.3.1 Anonymity Rules

Anonymity rules apply to inherited methods which may (but do not have to)
reside in classes outside of the enclosing package. The goal of this set of rules
is to prevent a method from leaking a reference aliasing the distinguished this

pointer. The motivation for these rules is that if this refers to an encapsulated
object, returning or storing it amounts to hidden widening.

We say that a method is anonymous if it satisfies the three rules in Table 2.1.
The first rule prevents an inherited method from storing or returning this unless
the static type of this also happens to be confined. The second rule ensures
that native methods are never anonymous. While rules A1 and A2 are direct
anonymity violations, the rule A3 tracks transitive violations. The call mentioned
in rule A3 depends on the dynamic type of this (the target of the call). Thus,
anonymity of a method is determined in relation to a specific type. One can use
a conservative flow analysis to determine a set of possible target methods, or one
can rely on the static type to determine possible targets.

A1 An anonymous method cannot widen this to a non-confined
type.

A2 An anonymous method cannot be native.

A3 An anonymous method cannot invoke non-anonymous meth-
ods on this.

Table 2.1: Anonymity rules.

Figure 2.3 gives an example of a problematic piece of code where a non-
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public abstract class C {
public abstract int getSecret();
public C escape() {

return this;
}

}
class Internal extends C {

public int getSecret() {
return 42;

}
public C notAnonymous() {

return escape();
}

}
public class Container {

Internal i = new Internal();
public C exposeAccidentally() {

return i.notAnonymous();
}

}

Figure 2.3: Example of hidden widening in a non-anonymous method result-
ing in a confinement breach. A client outside of the package could execute
container.exposeAccidentally().getSecret(); to obtain the secret, despite
the fact that Internal is package-scoped and there is no static widening of
Internal to C.

anonymous method allows presumably encapsulated objects to escape their con-
tainer, possibly leaking private information. The interesting thing to note here
is that for all assignments in the code the static types match exactly. In partic-
ular, the widening of the type of the presumably encapsulated object happens
in the escape method when the static type of this is C. Detecting such hidden
widenings is the purpose of the anonymity rules. Explicit (static) widenings, that
is assignments where the static types of the variables involved are different, are
covered by rules described in the next section.

An alternative approach would be to simplify the rules (as taken in [CRN03])
and to disallow confined types from extending types other than Object. Anonymity
rules are then no longer needed: the only place where hidden widening can occur
with that limitation is Object. The only violation in Object is clone(), which
is then handled with a specific rule. However, while this approach significantly
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simplifies the rules for confinement, it also severely restricts the set of classes
that can be confined. In this chapter, we focus on the approach using anonymous
methods.

2.3.2 Confinement Rules

Confinement rules are applied to all classes of a package. A class is confined if it
satisfies the five rules of Table 2.2. Rule C1 ensures that no inherited method in-
voked on a confined type will leak the this pointer. Together with the anonymity
rules this rule prevents hidden widening. Note that the rule does not preclude
a confined type from inheriting (or even declaring) non-anonymous methods, as
long as they are never called. Rule C2 prevents public classes from being confined.
This is necessary since code outside of the package must not be able to instantiate
a confined type. Rule C3 ensures that no exposed member (public or protected) is
of a confined type. This applies to all non-confined types in the package. Rule C4
prevents non-confined classes (or interfaces) from extending confined types. This
rule is primarily a design choice from the point of view that if a confined type
encapsulates internal information, that information should also not be leaked as
part of a subtype. In [ZPV06] it was shown that leaking references to confined
types from a package can be prevented without this rule. Finally, rule C5 prevents
static widening of references of confined type to non-confined types.

C1 All methods invoked on a confined type must be anonymous.

C2 A confined type cannot be public.

C3
A confined type cannot appear in the type of a public (or
protected) field or the return type of a public (or protected)
method of a non-confined type.

C4 Subtypes of a confined type must be confined.

C5 A confined type cannot be widened to a non-confined type.

Table 2.2: Confinement rules.

2.3.3 Discussion and Special Cases

Exceptions are a case of widening which is not explicitly listed in our rules.
Instead, we consider that throw widens its argument to the class Throwable,
which is declared public and thus violates rule C5.
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Our confinement rules do not forbid packages from having native code, but
rule A2 explicitly states that native methods are not anonymous. The motivation
for this design choice is that while the developer of a package may be expected
to manually inspect native code in the current package, it would be difficult to
check native code of parent classes belonging to standard libraries. Furthermore,
uses of this that violate A1 are usually not perceived as bad behavior for native
code. Essentially, we assume that native code within the enclosing package is, to
some extent, trusted. In other words, with respect to anonymity, we make the
safe choice that a native method cannot be anonymous; it can do whatever it
wants. With respect to confinement, we trust the native methods to not violate
the confinement rules. The reason for this design decision is that native code that
does not conflict with the Java type system may still violate the anonymity rules.
However, confinement violations can happen anywhere in native code, thus if we
do not want to analyze or rule out all native code, we must trust that native code
does not violate confinement. We have manually inspected some of the native
code in GNU Classpath, and we found that anonymity violations do happen.
We did not, however, find any confinement violations in the native code that we
inspected.

In Java, System.arraycopy is often used to copy elements from one array
to another. While the signature of this special native method takes arguments
of type Object and thus calls to this method would constitute a widening to a
non-confined type, this method is used frequently enough to warrant a special
treatment in Kacheck/J. The tool treats calls to System.arraycopy as a widening
from the inferred source-array type to the inferred destination array type. This
is safe if the language implements System.arraycopy correctly.

Another optimization in Kacheck/J is the treatment of static widenings of
this. Static widenings of this are covered by both rules for anonymity (A1) and
for confinement (C5). But while rule A1 will only have an impact on confinement
if the anonymous method is actually invoked (C1), rule C5 would always make
the statically widened type non-confined. While this makes no difference in many
cases, this does have an impact on some types if the code in which the widening
takes place is dead. In some sense, A1 implicitly contains a limited flow-sensitive
dead code analysis, while C5 does not. The Kacheck/J tool can be made to relax
the rule C5 to not include static widenings of this (since those would be caught
by rule A1 if the code is not dead). An example for this is shown in Figure 2.4.
If the optimization is enabled, the liveness of the dead() method determines
whether Conf is confined. This illustrates how relaxing C5 makes the analysis
more fragile in the sense that small changes in the code are more likely to change
the set of confined classes.

In a related effort, Zhao, Palsberg and Vitek [ZPV06] have shown that the
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class Conf {
public Object dead() {

return this;
}

}

Figure 2.4: Static widenings of this can be ignored. This can eliminate confine-
ment violations in dead code.

confinement rules are sound for a simple object calculus inspired by Featherweight
Java [IPW01] in which sharing is impossible. In that paper, the three anonymity
rules are consolidated into just one rule, namely “the this reference is only used
to select fields and as receiver in invocation of other anonymous methods.” That
can be done because the calculus does not have native methods or assignment
statements.

Potanin et al. [PNC04] have presented an alternative means to check package
confinement, using reduction to Java generics.

Clarke et al. have shown that minor changes to the confinement rules pre-
sented here can be used to check the architectural integrity constraints that must
be satisfied by Enterprise Java Beans applications [CRN03]. One main difference
between their rules and ours is that their uses don’t employ a notion of anony-
mous methods. Roughly speaking, we can understand their rules as the result of
removing A1–A3 from our rules and changing C1 to “All methods invoked on a
confined type must be defined in a confined type.” Clarke et al [CRN03] make a
few further restrictions on the confinement rules which are appropriate in the do-
main of Enterprise Java Beans. In contrast to our analysis, their analysis enables
different classes to appear as both confined and as unconfined in different parts
of the application (i.e., in different beans). The overall result is an analysis which
works at a different level of granularity than ours and offers confinement per
bean, rather than per package. The experimental results of Clarke, Richmond,
and Noble [CRN03] demonstrate that their analysis works well in the domain of
Java Beans.

2.4 Constraint-Based Analysis

We use a constraint-based program analysis to infer method anonymity and con-
finement. Constraint-based analyses have previously been used for a wide variety
of purposes, including type inference and flow analysis. Constraint-based anal-
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ysis proceeds, as usual, in two steps: (1) Generate a system of constraints from
program text. (2) Solve the constraint system. The solution to the constraint
system is the desired information. In our case, constraints are of the following
forms:

A ::= not-anon(methodId)

T ::= not-conf(classId)

C ::= A | T | T ⇒ A | A ⇒ A | A ⇒ T | T ⇒ T

A constraint not-anon(methodId) asserts that the method methodId is not anony-
mous; similarly, not-conf(classId) asserts that the class classId is not confined.
The remaining four forms of constraints denote logical implications. For example,
not-anon(A.m()) ⇒ not-conf(C) is read “if method m in class A is not anonymous
then class C will not be confined.”

We generate constraints from the program text in a straightforward manner.
The example of Figure 2.5 illustrates the generation of constraints. For each
syntactic construct, we have indicated in comments the associated rule from
Section 2.3. Table 2.3 details the constraints that are generated for that example.
A complete description of the constraints generated from Java bytecode is given in
Appendix A. All our constraints are ground Horn clauses. Our solution procedure
computes the set of clauses not-conf(classId) that are either immediate facts
or derivable via logical implication. This computation can be done in linear
time [DG84] in the number of constraints, which, in turn, is linear in the size of
the program.

2.4.1 Control Flow Analysis

The rule C1 poses a control flow problem as it mandates that only methods that
are actually invoked on a confined type need to be anonymous. Any conservative
control flow analysis can be used to yield a set of candidate methods. We have
chosen to perform a simple flow insensitive analysis that is practical and precise
enough for our purposes.

Methods of confined classes cannot be invoked from outside of their defining
package since confined types are by definition not public (C2) and cannot be
widened to non-confined types (C5). So, for anonymity violations that are rele-
vant to a given type, the analysis only needs to consider invocations of methods
on instances of that type and its subtypes. Subtypes must be included since
confined types may be widened to other confined types.

Our analysis performs a fixed-point iteration starting with the assumption
that all non-public classes could potentially be confined. The analysis then
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public class A {
A a;
public A m() {

a = this; (A1)
new B().t(this); (A1)
return this; (A1)

}

native void o(); (A2)
}

class B extends A {
void t(A a) {}
A p() {

return this.m(); (A3)
}
public A getD() {

return new D().p(); (C1)
}

}
public class C { (C2)

public D getD() { (C3)
return new D();

}
public D d = new D(); (C3)

}

class D extends B { (C4)
A getA() {

this.t(this); (C5)
a = new D(); (C5)
return new D(); (C5)

}
}

Figure 2.5: Example program used to illustrate constraint generation.
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Case Constraint Explanation

(A1)
not-conf(A)
⇒ not-anon(A.m())

this widened to A

(A2) not-anon(A.o()) o is native

(A3)
not-anon(A.m())
⇒ not-anon(B.p())

B.p() calls m() with this as re-
ceiver

(C1)
not-anon(D.p())
⇒ not-conf(D)

p() invoked on a D-object

(C2) not-conf(C) class C declared to be public

(C3) not-conf(C) ⇒ not-conf(D)
public method C.getD() has re-
turn type D;
public field C.d has type D

(C4) not-conf(D) ⇒ not-conf(B) D extends B
(C5) not-conf(A) ⇒ not-conf(D) D widened to A

Table 2.3: The constraints generated from the example in Figure 2.5.

records invocations of the type x.m(), where the type of x is in the current
candidate set for confinement. These invocations form the root set for the con-
trol flow analysis. Calls of the form this.m() that are reachable from this root
set are recorded in accordance with anonymity rule A3. The set of types of this
that are used for resolving virtual method calls is the static type of x, as inferred
during bytecode verification, and all subtypes of that type that are ever found
to be widened to it. Naturally, such widenings (rules A1 and C5) may be de-
tected at any time during the flow analysis, which is the reason that a fixed-point
computation is necessary. When the fixed-point computation terminates and all
invocation chains for all applicable confinement candidates have been traversed,
the remaining types for which no anonymity violations were found are declared
confined.

The analysis does not attempt to perform dead-code detection, so while the
method that includes an invocation such as x.m() may be dead, we will neverthe-
less add m to the root set. This simplifies the analysis but costs some precision.
Doing dead code detection would lead to analysis results that are much more
sensitive to changes in the source program.

2.5 Implementing Confinement Inference: Kacheck/J

Although the confinement and anonymity rules have been described as source
level constraints, we have chosen to implement Kacheck/J as a bytecode analyzer.
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The main advantage of working at the bytecode level is that there are a large
number of class files freely available to apply our tool to. The implementation
of Kacheck/J leverages the XTC static analysis framework which was developed
as part of the Ovm JVM [OVM04] and which is presented in Appendix A. In
XTC, bytecode verification is implemented using the Flyweight pattern [GHJ94].
For each of the 200 bytecode instructions defined in the Java Virtual Machine
Specification, the XTC verifier creates an Instruction object that is responsible
for computing the effect this instruction will have on an abstract state. Verifica-
tion is a simple fixed-point iteration. The verification starts with an initial state
which includes the instruction pointer, operand stack, and variables. The verifier
follows all possible flows of control within the method.

By instrumenting the transfer functions of only 9 of the 200 Instruction

objects, we can use XTC’s abstract interpretation engine to generate constraints.
The instrumentation performs some simple checks and records basic facts about
the program execution. For instance, the code for the areturn instruction checks
to see if this is used as return value, and if so, it reports that this is widened
to the return type of the method. The invoke instructions record dependencies
such as the use of this as an argument or method invocations on this. Overall,
the following changes are applied to the verifier:

• In non-static methods, local variable 0 (this) is tracked, and uses of this
are recorded.

• All static widenings are recorded; thrown exceptions are considered widened
to Throwable.

Widenings are captured by intercepting subtype checks done by the verifier.
Anonymity checks only require slight modifications to the transfer functions that
correspond to the nine instructions: a check is added to record operations on
this. See Appendix A for details. The flow analysis computes the implication
chains for each potentially confined type T , such that

(T ′ ⇒ A1) ∧ (A1 ⇒ A2) ∧ . . . (An−1 ⇒ An) ∧ (An ⇒ T )

is collapsed to
T ′ ⇒ T.

The code specific to confined types (including verbose reporting of violations) is
about 2,200 lines. The code reused from XTC (including reading and writing of
Java 5.0 class files) is about 30,000 lines of code.
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public class P {
public Object nonAnon() {

return this; (1)
}

}

class B extends P {
public Object nonAnonInd() {

return this.nonAnon(); (2)
}

}

class C extends B { (3)
}

public class X {
public Object invocation() {

return new C().nonAnonInd(); (4)
}

}

Figure 2.6: Simple example of a confinement violation.

2.5.1 Example

Figure 2.6 gives an example of a chain of constraints that results in classes being
not confined. Although the tool reorders parts of the solving process, we will in
the following explain only the final chain of constraints. Notice first that Object
is a non-confined class, so a constraint of the type C is generated by rule C2:

not-conf(Object)

The method P.nonAnon() widens this to Object. This will generate a constraint
of type C ⇒ A by rule A1:

not-conf(Object) ⇒ not-anon(P.nonAnon())

The invocation of nonAnon in nonAnonInd with this as the receiver generates a
constraint of the type A ⇒ A by rule A3:

not-anon(P.nonAnon()) ⇒ not-anon(B.nonAnonInd())
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The method nonAnonInd() is invoked on C. By rule C1 a constraint of the type
A ⇒ C is generated:

not-anon(B.nonAnonInd()) ⇒ not-conf(C)

As C extends B, a constraint of the type C ⇒ C is generated by rule C4:

not-conf(C) ⇒ not-conf(B)

Solving this constraint system will result in B and C being non-confined (and P

and X cannot be confined either because they are public).

2.5.2 Simplifying Assumptions

Kacheck/J operates under some simplifying assumptions which we detail here.

Reflection The analysis assumes that reflection is not used to circumvent lan-
guage access control. In other words, it assumes that the semantics of private,
protected and default access modifiers are respected by the reflection mechanisms.
This assumption can be violated by changing the settings of the Java Security
Manager. This may result in additional confinement breaches.

Native code Native methods are not checked by Kacheck/J and may breach
confinement. The results obtained from Kacheck/J are only valid if native meth-
ods do not violate any of the confinement rules. Furthermore, we assume that
native code does not violate the semantics of the language by ignoring access
control declarations. Manual inspection of a number of native methods indicates
that these assumptions are reasonable. We do not assume that native methods
satisfy the anonymity rules. Note, however, that during manual inspection of
various native methods, we did not find any that violate the rules for anonymous
methods.

2.5.3 Constraint Generation

This section summarizes the constraints that need to be generated by the var-
ious Java opcodes. Inference or checking of confined types essentially requires
generation of constraints according to these rules followed by a simple constraint
solving phase.

InvokeStatic
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• If this occurs in the argument list, record widening of this to the type
T of the matching argument in the current method m. This generates the
constraint: C ⇒ A where C is not-conf(T ) and A is not-anon(m).

• For each argument a of inferred type T that is an object, record the cor-
responding declared type T ′ of the parameter. This generates constraints
C ′ ⇒ C where C ′ is not-conf(T ′) and C is not-conf(T ).

Areturn, Putfield, Putstatic, Aastore

• If the variable that is returned or stored is this, record widening of this
to the declared type T ′ (the return type, type of the field or the compo-
nent type of the array). This generates a constraint C ⇒ A where C is
not-conf(T ′) and A is not-anon(m) with m being the current method.

• If the variable that is used is an object but not this and has inferred type
T , record widening to the corresponding declared type T ′. This generates
constraints C ′ ⇒ C, where C ′ is not-conf(T ′) and C is not-conf(T ).

InvokeInterface, InvokeVirtual, InvokeSpecial

• If this occurs in the argument list, record widening of this to the type
T of the matching argument in the current method m. This generates the
constraint: C ⇒ A, where C is not-conf(T ) and A is not-anon(m).

• If a call in method m is of the form this.n(), calling a method n from
method m on this, record method invocation (distinguishing between in-
vokevirtual, invokeinterface and invokespecial). This generates the con-
straint A ⇒ A′, where A is not-anon(n) and A′ is not-anon(m).

• If the call is not on this, but of the form a.n(), record an invocation on
type T where T is the inferred type of a. This generates the constraint
A ⇒ C, where A is not-anon(n) and C is not-conf(T ).

• For each argument a of inferred type T that is an object, record the cor-
responding declared type T ′ of the parameter. This generates constraints
C ′ ⇒ C, where C ′ is not-conf(T ′) and C is not-conf(T ).

Athrow
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• If the variable that is thrown is this, record widening of this to Throwable.
This generates a constraint C ⇒ A, where C is not-conf(Throwable) and
A is not-anon(m) with m being the current method. Because the condition
not-conf(Throwable) is always true, a primitive constraint A can be used
as well.

• If the thrown variable is an object, but not this, and has inferred type T ′,
record widening to Throwable. This generates a constraint C ⇒ C ′, where
C is again always true (not-conf(Throwable)) and C ′ is not-conf(T ′).

Call Propagation A call to method m on a type T must generate additional
constraints for all subtypes Si of T that are widened to T .

2.6 Analysis Results

Kacheck/J has been evaluated on a large data set. This section gives an overview
of the benchmark programs and presents the results of the analysis. The first
goal of the evaluation is to show that confinement is a common property in actual
code (Section 2.6.2). The second goal is to identify common reasons why certain
types are not confined and thereby gauge the limitations of our technique (Sec-
tion 2.6.3). Studying reasons for nonconfinement also points out possible areas
where slight modifications to the analysis would dramatically increase opportuni-
ties for confinement. We present three such modifications in sections 2.6.4, 2.6.5
and 2.6.6. Having the programmer declare types as confined using annotations
in the source code would not be practical if confinement was a fragile property
and annotations would need to be changed frequently. In order to give evidence
that confinement is a stable property which a programmer might want to declare
in the program text, Section 2.6.7 studies how confinement properties of types
change during the lifetime of a particular application. Finally, in order for con-
finement to be useful in practice we will demonstrate that checking or inferring
confinement scales and can be done quickly. Section 2.6.8 shows that Kacheck/J
can rapidly analyze huge benchmarks.

2.6.1 The Purdue Benchmark Suite

The Purdue Benchmark Suite (Table 2.4) consists of 33 Java programs and li-
braries of varying size, purpose and origin. The entire suite contains 46,165 classes
(or 115MB of bytecode) and 1,771 packages. To the best of our knowledge the
PBS is the largest such collection of Java programs. Most of the benchmarks are
freely available.
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Figure 2.7: Benchmark characteristics: program sizes.
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Figure 2.7 gives an overview of the sizes, in number of classes, for each program
or library that is part of the PBS. Appendix B provides additional data about the
benchmarks. Our largest benchmarks, over 2,000 classes each, are Forte, JDK
1.2.2, JDK 1.3, Ozone, Voyager and JTOpen. Ozone and Forte are applications,
while the others are libraries. The number of package-scoped classes is indicated
in light gray for each application. This number is an upper bound for the number
of confined classes; public classes cannot be confined.
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Figure 2.8: Benchmark characteristics: member encapsulation.

Figure 2.8 relates the proportion of package-scoped members to package-
scoped classes. Package-scoped members are fields and methods that are declared
to have either private or default access. Most coding disciplines encourage the
use of package-scoped methods and package-scoped classes. Not surprisingly, pro-
grams that were designed with reuse in mind, such as libraries and frameworks,
are better-written than one-shot applications. For instance, the Aglet workbench
and JTOpen, both libraries, exhibit high degrees of encapsulation. Forte is note-
worthy because, although it is an application, it has over 50% package-scoped
classes and members. Compilers and optimizers written in an object-oriented
style, such as Bloat, Toba and Soot, have high numbers of package-scoped classes
because of the many classes used to represent syntactic elements or individual
bytecode instructions. At the other extreme, we have applications such as Jax
and Kawa which have almost no package-scoped classes. It is also worth not-
ing the increase in encapsulation between different versions of the JDK. From
JDK1.1.8 to JDK1.3.1, the absolute number of classes tripled, yet the percentage
of package-scoped classes doubled. The reason for this is largely that most of
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Name Description

Aglets Mobile agent toolkit ag
AlgebraDB Relational database db
Bloat Purdue bytecode optimizer bl
Denim Design tool de
Forte Integrated dev. environment fo
GFC Graphic foundation classes gf
GJ Java compiler gj
HyperJ IBM composition framework hj
JAX Packaging tool ja
JDK 1.1.8 Library code (Sun) j1
JDK 1.2.2 Library code (Sun) j2
JDK 1.3.0 Library code (IBM) j3
JDK 1.3.1 Library code (Sun) j4
JavaSeal Mobile agent system js
Jalapeno 1.1 Java JIT compiler jp
JPython Python implementation jy
JTB Purdue Java tree builder jb
JTOpen IBM toolbox for Java jt
Kawa Scheme compiler kw
OVM Java virtual machine o4
Ozone ODBMS oz
Rhino Javascript interpreter rh
SableCC Java to HTML translator sc
Satin Toolkit from Berkeley sa
Schroeder Audio editor sh
Soot Bytecode optimizer framework so
Symjpack Symbolic math package sy
Tomcat Java servlet reference impl. tc
Toba Bytecode-to-C translator to
Voyager Distributed object system vy
Web Server Java Web Server ws
Xerces XML parser xe
Zeus Java/XML data binding ze

Table 2.4: The Purdue Benchmark Suite (PBS v1.0).
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Figure 2.9: Percentage of confined types for various benchmarks.

the JDK1.1.8 code implements the simple, public core classes of the Java run-
time (java.*), whereas JDK1.3.1 has substantial amounts of code that the main
application does not interface with directly.

Coding style has an impact on confinement. While the relation between
package-scoped classes and confined types is obvious, there is a more subtle
connection between package-scoped members and confined types: public and
protected methods can return potentially confined types. So it is reasonable to
expect that programs with low proportions of package-scoped members will also
have comparatively fewer confined types.

2.6.2 Confined Types

Running Kacheck/J over the PBS yields 3,804 confined classes – 24% of the
package-scoped classes and 8% of all classes are confined. Figure 2.9 shows con-
fined classes in terms of percentage of all classes. The numbers are broken down
per program, with confined inner classes in light gray. Raw numbers are given in
Table 2.6.

There are 6 programs where more than 40% of the package-scoped types are
confined (db, gf, jy, jb, jp, o4). It is interesting to note that these programs
have very little in common: they are a mix of libraries (gf), frameworks (o4)
and applications (db, jy, jb, jp). Their ratios of package-scoped classes and
their sizes vary widely. Indeed, manual inspection of the programs indicates that
programming style is essential to confinement. For example, in early versions
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Classes
Benchmark

All Public Inner
Pkgs Opcodes

Aglets 410 193 133 31 107846
AlgebraDB 161 130 9 9 51218
Bloat 282 150 127 20 84212
Denim 949 684 271 84 288140
Forte 6535 3053 3769 231 1123362
GFC 153 143 8 22 58003
GJ 338 202 189 14 105323
HyperJ 1007 862 70 29 211269
JAX 255 255 0 21 97932
JDK 1.1.8 1704 1423 29 90 917132
JDK 1.2.2 4338 2655 1365 133 958619
JDK 1.3.0 5438 3326 1780 177 1180406
JDK 1.3.1 7037 4569 2043 213 2010305
JPython 214 134 35 11 103094
JTB 158 150 1 8 48900
JTOpen 3022 1439 557 75 1048704
Jalapeno 1.1 994 730 132 29 255436
JavaSeal 75 56 19 18 34933
Kawa 443 438 100 13 68733
OVM 835 416 590 41 111161
Ozone 2442 1705 490 122 447984
Rhino 95 67 1 8 51752
SableCC 342 290 47 10 45621
Satin 938 559 455 70 194985
Schroeder 108 103 7 13 41422
Soot 721 302 79 9 65137
Symjpack 194 125 0 14 73465
Toba 762 327 79 14 98993
Tomcat 1271 916 221 105 286368
Voyager 5667 4430 1305 312 996077
Web Server 1024 787 52 76 370664
Xerces 622 508 125 45 233919
Zeus 604 517 74 42 180437

Total 49259 31741 14163 2120 11987191

Table 2.5: Statistics for the benchmarks.
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Figure 2.10: Impact of package-scoping on confinement.

of Ovm and Kacheck/J, unit tests were systematically stored in sub-packages
of the current package. Some methods and classes were declared public only
to allow testing of the code. This, in turn, prevented many classes from being
confined. The large number of confined inner classes in Ovm (o4) comes from the
objects representing bytecode instructions nested in an instruction set class. For
Jalapeno, the high confinement ratio of 16% (155 classes out of 994) is partially
the result of the single package structure of the program.

Predictably, programs with very few package-scoped classes (e.g. ja, kw, sh,
gf) end up with few confined classes. Figure 2.10 shows the relationship between
package-scoped classes and confined classes. Notice that the fraction of package-
scoped classes varies considerably from benchmark to benchmark. For instance,
libraries like Aglets (ag) which have very high ratios of package-scoped members
and classes still perform quite poorly with only 13 classes (3%) being confined
out of 410. Why does this happen? To answer that question, we start with a
discussion of confinement violations.

2.6.3 Confinement Violations

It is difficult to quantify confinement violations in terms of categories based on
the constraints. This is mainly because many of the constraints work in concert.
For example, widening one class to another (C5) may violate confinement because
the second class is not confined due to the fact that a non-anonymous method
(A1) is invoked (C1) on it. And the reason that the aforementioned method
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is not anonymous could be that a third class is public (C2). Notice that the
confinement violation for the original class involves four different constraints.
Rather than trying to quantify confinement violations, this section attempts to
describe the causes for non-confinement based on a few characteristic examples.

Most confinement breaches are caused by a small number of widely used pro-
gramming idioms. For any violation Kacheck/J returns a textual representation
of the implication chain that caused the violation. We give examples of the main
causes for classes not being confined.

2.6.3.1 Anonymity Violations

The three primary anonymity violations in the entire JDK come from methods in
the AWT library which register the current object for notification. The method
addImpl from Figure 2.11 is representative.

protected void addImpl(Component cp, Object cn, int i) {
synchronized ( getTreeLock() ) { ...

e = new ContainerEvent(this, COMPONENT ADDED, comp);
...

}
}

Figure 2.11: Example of event handler violating anonymity. The addImpl method
passes this to the constructor of the event that it is creating. Since the event
expects a first argument of type Object (the source of the event), this widens
this to Object, which is an anonymity violation.

2.6.3.2 Widening to superclass

Widening to a superclass is among the most frequent kind of confinement breach.
For instance, Kacheck/J signals the following widening in the Aglet benchmark:

com/ibm/aglets/tahiti/SecurityPermissionEditor:
- illegal widening to:

- com/ibm/aglets/tahiti/PermissionEditor
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The PermissionEditor class is an abstract superclass of the non-public Security-
PermissionEditor. PermissionEditor is the part of the interface that is ex-
ported outside the package.

2.6.3.3 Widening in Containers

A large number of violations comes from the use of container classes in Java.
Kacheck/J works with bytecode, not source code. At the bytecode level of Java,
generic types are absent. As a result, data structures such as vectors and hashta-
bles always take arguments of type Object; thus, any use of a container will entail
widening to the most generic super-type. One might implement a Kacheck/J-like
tool at the source level which handles generic types in a non-trivial way. We leave
that for future work; inspiration might come from the paper by Zhao, Palsberg,
and Vitek [ZPV06], which presented rules for handling confinement of generic
types. For instance, Kacheck/J reports that NativeLibrary, an inner class of
ClassLoader, is not confined.

java/lang/ClassLoader$NativeLibrary:
Illegal Widening to java/lang/Object

The error occurs because an instance of NativeLibrary is stored in a vector:

systemNativeLibraries.addElement(lib);

As such, this violation may indicate a security problem. The internals of class
loaders should really be encapsulated. Inspection of the code reveals that the
Vector in which the object is stored is private.

private static Vector systemNativeLibraries = new Vector();

After further inspection, it is obvious that the vector does not escape from its
defining class. But this requires inspection of the source code and only remains
true only until the next patch is applied to the class. This example shows the
usefulness of tools such as Kacheck/J as they can direct the attention of software
engineers towards potential security breaches or software defects.
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2.6.3.4 Anonymous Inner Classes

This violation occurs frequently when inner classes are used to implement call-
backs. For example, in Aglets, the MouseListener class is public. Thus, the
following code violates confinement of the anonymous inner class.

mlistener = new MouseAdapter() {
public void mouseEntered(MouseEvent e) { ... } };

Similar situations occur with package-scoped classes that implement public
interfaces. They are package-scoped to protect their members, but are exported
outside of the package.

2.6.3.5 Summary

Even though confinement violations are often the result of chains of events, there
are two rules which by themselves eliminate most opportunities for confinement
and thus deserve further consideration. The confinement rules whose violations
are the cause of the largest number of non-confined types overall are C2 (class
is public) and C5 (instance widened to non-confined type). The dramatic effect
of these rules is shown in the following sections, where small modifications are
made which limit the scope of these rules and result in a significant increase in
the number of confined types. In Section 2.6.4, widening of confined types is
discounted whenever it occurs in conjunction with containers (eliminating many
common applications of rule C5). In Section 2.6.5, the access modifiers are in-
ferred, making many classes and methods package-scoped which were previously
public. Both variations result in a sharp increase in the number of confined types.

2.6.4 Confinement with Generics

In Java, vectors, hashtables, and other containers are pervasive. Every time an
object is stored in a container, its type is widened to Object, leading to a widen-
ing violation for the object’s class. If Java supported proper parametric polymor-
phism (on the bytecode level), the large majority of container-related violations
would disappear (existing applications rarely use containers with heterogeneous
contents).

In order to attempt to assess the impact of generics without rewriting all of
the programs in the PBS, we modified Kacheck/J to ignore widening violations
linked to containers. This was done by ignoring all widenings to Object that
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Figure 2.12: Percentage of generic-confined types for various benchmarks.

occur in calls to methods of java.util classes. Figure 2.12 gives the resulting
percentages of confined classes without generic violations; we call these classes
Generic-Confined (GC). The light gray bars show the original number of confined
classes. The dark grey bars show the effect of adding genericity. The number of
confined types increases from 3804 (8%) to 4862 (10%) over all programs in the
PBS. These results should be interpreted with caution, as they might represent
an overestimate of potential gains; this is due to the fact that we do not guarantee
that the container instances are package-scoped.

2.6.5 Inferring Access Modifiers

Some of the benchmarks have an extraordinarily low number of confined classes
compared to the others. Inspection of the access modifiers of classes in these
benchmarks makes the reason for this lack of confined classes immediately clear.
For example, in Kawa, out of 443 classes, only 5 (1%) are package-scoped. Simi-
larly, many benchmarks contain methods and/or fields that are declared as public
and thus prevent certain types from being confined. This raises the question of
whether or not the access modes are the tightest possible, or whether they are
more permissive than necessary. To address this question we infer the tightest
access modes and then use the inferred modes for confinement checking. This
analysis is performed by the Java Access Modifier Inference Tool (JAMIT), which
is also available on our webpage.

JAMIT infers the tightest legal access modes by looking at all accesses to
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Figure 2.13: Percentages of confinable types for various benchmarks.

a given member or type. It then determines what the most restrictive access
modifier would be that will permit all accesses according to Java’s visibility rules.
The analysis takes subtyping into account; subtypes can view protected members,
and overriding methods can only relax access modifiers. More importantly, in
order to preserve overriding the access modifier in the parent may need to be
relaxed from private to package-scoped (if all overriding subtypes reside in the
same package) or protected.

Figure 2.13 shows the result of running Kacheck/J on code for which access
modifiers were strengthened using JAMIT. Classes that become confined with
modifier inference are called confinable (CA). With mode inference, the number
of confinable classes jumps from 3804 (8%) to 12,880 (26.1%) for the entire PBS.
Furthermore, if we combine confinable and generics, we obtain 14,591 (29.6%)
generic-confinable classes.

Figure 2.14 relates the results of this new analysis to the original number
of package-scoped classes. It is quite telling to see that Jax and Kawa, which
were applications with the lowest numbers of confined classes, suddenly consist
of about 40% confinable classes. Of course, using this option on library code may
yield an overestimate of the potential gains, as some classes that are never used
from within the library can be made package-scoped, even though client code
requires access to these classes. Nevertheless, the results give a good indication
of the potential gains.
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Benchmark Conf Confinable GenConf GenConfinable

Aglets 13 60 15 66
AlgebraDB 20 81 24 97
Bloat 10 29 17 39
Denim 65 187 71 211
Forte 306 1149 437 1346
GFC 5 58 5 58
GJ 27 51 27 52
HyperJ 32 193 38 212
JAX 0 99 0 104
JDK 1.1.8 71 712 96 744
JDK 1.2.2 527 1062 603 1173
JDK 1.3.0 581 1297 685 1476
JDK 1.3.1 756 2126 891 2344
JPython 40 90 45 107
JTB 4 8 4 8
JTOpen 438 1049 467 1113
Jalapeno 1.1 155 543 159 549
JavaSeal 1 14 2 17
Kawa 1 177 1 177
OVM 119 243 302 428
Ozone 93 754 221 920
Rhino 11 28 15 33
SableCC 3 24 5 28
Satin 48 206 52 218
Schroeder 0 6 1 7
Soot 45 90 47 92
Symjpack 8 53 10 89
Toba 53 102 55 104
Tomcat 65 377 109 448
Voyager 208 1268 295 1442
Web Server 51 255 72 301
Xerces 22 221 47 279
Zeus 20 237 38 278

Total 3804 12880 4862 14591

Table 2.6: Number of confined and confinable classes.
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Figure 2.14: Confinable types and package-scoping.

2.6.6 Hierarchical Packages

Our last experiment involves changing the semantics of the Java package mecha-
nism. Currently, Java has a flat package namespace; that is, even though package
names can be nested, there is no semantics in this nesting. This creates a dilemma
between data abstraction and modularity. Good design practice suggests that
applications be split into packages according to functional characteristics of the
code. On the other hand, creating packages forces certain classes to become
public even if those classes should not be used by clients of the program. From
a confinement perspective, we could say more packages result in fewer confined
classes. One extreme is Jalapeno, which is structured as a single package. This
diminishes the usefulness of the confinement property.

To evaluate the impact of the package structure on confinement, we modified
Kacheck/J to use a hierarchical package model. The general idea is to extend
package-access to neighbor packages. We introduce a definition of scope that
we call n-package-scoped. n-package-scoped limits access to classes in packages
that are less than n nodes in the tree of package names away from the defining
package. For example, the class java.util.HashtableEntry would be visible for
java.lang.System for n = 2. The unnamed package is defined to have distance
∞ from all other packages, making a n-package-scoped class a.A invisible for b.B
regardless of the choice of n.

Figure 2.15 shows the cumulative improvements yielded by increasing the
proximity threshold n. With n = 9 most programs are treated as a single package,
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Figure 2.15: Confinement with hierarchical packages.

increasing the number of confined types from 3,804 to 7,495. The largest increase
in confined classes comes from the Voyager benchmark, where the number of
confined classes increases from 208 to 1021.

2.6.7 Evolution of Confinement

For the working software engineer, it may be of interest to know whether con-
finement is preserved when software evolves. If a class is confined in one software
version, it would be helpful to know whether the class will also likely be confined
in the next version. If the answer is yes, then confinement can be viewed as a
meaningful, fundamental property of a type, not just a coincidence of the arrange-
ment of the code. To shed light on this issue, we present a study of the confined
types in 14 versions of TomCat, ranging from version 3.0 to an early snapshot
of 5.0. The results are unambiguous. Even with dramatic changes to the code
base that involve adding and removing hundreds or thousands of classes, only a
few existing classes suddenly become confined or stop being confined. Almost all
confined classes stay confined (or are removed from the code base), and almost
all non-confined classes stay non-confined (or are removed).

Figure 2.16 shows the differences in the numbers of confined types between
versions. The upward arrows indicate the number of types that are new in a
particular version of the code. The top of the upward arrows is anchored at the
number of confined types for the specific version. The dashed arrows that go
down diagonally from that point indicate the number of types that used to be
confined and that have been removed from the codebase. The fact that in almost
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Figure 2.16: Number of confined types in different versions of the TomCat bench-
mark. The top of the solid arrows marks the number of confined types in each
version. The dashed arrows refer to the number of confined types that were al-
ready present and confined in the previous version of the code. The bars at the
bottom represent the number of types that change confinement (become confined
or are no longer confined) and exist in both the current and the previous version
of the code.

all places both arrows meet in exactly the same point shows that it is rare that
confined types become non-confined and vice versa. The height of the bars at the
bottom also illustrates this; the height of the bar is the number of types that are
live, were live in the previous version and changed from confined to non-confined
or vice versa. The graph shows that while the overall changes to the code are
quite significant, the number of types that change their confinement property is
marginal (with a total of 6 changes from version 3.0 to 5.0; the total number of
confined types in the different versions in between ranges from 46 to 104 with an
average of 68). This stability of the confinement property over time supports the
thesis that confinement is be a reasonable annotation for a type.
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Figure 2.17: Running times for the analysis in ms (log-log scale).

2.6.8 Runtime Performance

All benchmarks were performed on a Pentium III 800 with 256 MB of RAM
running Linux 2.2.19 with IBM JDK 1.3. Except for the JDK tests (j1, j2, j3,
j4), all running times include loading and analyzing required parts of the Sun JDK
1.3.1 libraries. The longest running time is that of JDK 1.3.1, which consists of
7,037 classes and is analyzed in 41 seconds. On average, Kacheck/J needs 7.5
milliseconds per class. Figure 2.17 summarizes the cost of confinement checking;
detailed timings are in Table 2.7.

2.7 Containers and Language Extensions

2.7.1 Coding for Confinement

Our results clearly point to containers as one source of confinement violations.
We considered using generic extensions of Java to increase confinement; unfor-
tunately, the homogeneous translation strategies adopted by Java implies that
at the bytecode level, code written with generics is translated back to code that
uses Object and casts. One might be able to uncover patterns of bytecode com-
piled from generics and use those to improve the analysis; however, Kacheck/J
makes no attempt to do this and thus cannot verify that classes stored in generic
containers remain confined. Heterogeneous translation strategies would have the
drawback of causing code duplication. Fortunately, it is possible to achieve the de-
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Time (ms)
Benchmark

real user sys

Aglets 4979 4540 160
AlgebraDB 3009 2860 70
Bloat 3623 3530 90
Denim 9463 8020 300
Forte 37565 29870 1380
GFC 3284 3070 90
GJ 4245 3960 60
HyperJ 6711 6160 220
JAX 3790 3580 100
JDK 1.1.8 13103 11750 450
JDK 1.2.2 23463 19270 750
JDK 1.3.0 29336 25760 760
JDK 1.3.1 41304 39730 850
JPython 4107 3890 90
JTB 3009 2810 80
JTOpen 23950 21720 800
Jalapeno 1.1 6770 6270 230
JavaSeal 2685 2490 50
Kawa 3910 3440 180
OVM 6072 5270 200
Ozone 13245 11190 480
Rhino 3201 2920 70
SableCC 3470 3130 110
Satin 7955 6310 270
Schroeder 3270 2730 90
Soot 5622 5190 250
Symjpack 3559 3270 100
Toba 6020 5550 270
Tomcat 8918 7790 330
Voyager 34082 25960 1090
Web Server 9308 8060 250
Xerces 6038 5560 220
Zeus 5640 4960 150

Total 347567 303330 10670

Table 2.7: Time required for the analysis.
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public interface Entry {
boolean equal( Entry e);
int hashCode();

}

public class Hashtable {
public void put( Entry e) { ... }
public Entry get( Entry e) { ... }

}

class MyEntry implements Entry {
ConfinedKey key;
ConfinedValue val;
public boolean equal( Entry e) { ... }
public int hashCode() { ... }

}

Figure 2.18: Example Hashtable interface.

sired result using some coding techniques; the basic concept is to use the adapter
pattern to wrap an unconfined object around each confined object that must be
stored in a container.

A confined implementation of a hashtable could provide an interface Entry

with two methods equal(Entry e) and hashCode() (Figure 2.18). In the pack-
age that contains the confined class C, the programmer would define an imple-
mentation MyEntry of Entry with a package-scoped constructor that takes the
key and value (where, for example, the value has the type of the confined class)
as well as package-scoped accessor methods. The Hashtable itself would only be
able to access the public methods defined in Entry.

The cost of this change would be the creation of the extra Entry object
that might not be required by other implementations of Hashtable. On the
other hand, to access a key-value pair, this implementation only requires one cast
(Entry to the MyEntry to access key and value), where the default implementation
requires a cast on key and value. For other containers, the tradeoffs may be more
significant.

Zhao, Palsberg and Vitek [ZPV06] suggested an alternative that involves ex-
tending confinement to generic types and annotating bytecode with confinement
assertions. In addition to the existing rules presented so far, they require the
rules given in Table 2.8. The combined rules C5 and C6 correspond to the sub-
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C6 A generic type or type variable cannot be widened to a type
containing a different set of type variables.

C7 A confined type cannot replace a public type variable in the
instantiation of a generic type.

C8 Overriding must preserve anonymity of methods.

Table 2.8: Alternative confinement rules

typing partial order that prevents reference widening for Generic ConfinedFJ.
C7 corresponds to the extra requirement in the definition of well-formed generic
types. Unlike in the base system, C8 is necessary as we are not certain which
method may be called before a generic class is instantiated.

2.7.2 Improved Language Support

Java can be extended to support confined types in several ways. Such extensions
can be more or less intrusive on the syntax and semantics. We will consider two
approaches:

1. explicit annotations for confined classes and anonymous methods, and

2. explicit annotations for confined classes but not for anonymous methods.

Using the metadata facilities of Java 5, it is easy to add such annotations
to Java code. Figure 2.19 shows how to specify the Confined and Anonymous

annotations. In order to allow for running a static checker on the bytecode, the
confinement property is preserved for the class files. The annotations are not
needed at runtime. The rule that subclasses of confined types should also be
confined is made explicit by the inherited annotation.

2.7.2.1 Explicit annotations of classes and methods

In Bokowski and Vitek’s original proposal for confined types [VB01], both con-
fined classes and anonymous methods had explicit modifiers, in the following
style:

@Confined class C extends B {
@Anonymous int m() {

return this.n();
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@java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.CLASS)
@java.lang.annotation.Inherited
public @interface Anonymous {}
@java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.CLASS)
@java.lang.annotation.Inherited
public @interface Confined {}

Figure 2.19: Defining annotations for confinement and anonymous methods in
Java 5. The presented code defines two annotations (@Anonymous and @Confined)
which according to the given retention policy, will be compiled into the .class

files, but which will not be available for introspection at runtime. The inher-
ited declaration ensures that the annotations are automatically applied to all
subtypes.

}
}

The constraints of Bokowski and Vitek are stricter than the constraints presented
in this chapter. In particular, Bokowski and Vitek require that the anonymity of
a method is preserved in all subclasses, and that the static receiver of a virtual
call must be anonymous. In contrast, the constraints checked by Kacheck/J only
require the unique dynamic targets to be anonymous. Thus, the more modular
checking of Bokowski and Vitek results in fewer confinement opportunities when
compared to Kacheck/J.

The explicit annotation @Anonymous for anonymous methods simplifies check-
ing the confinement constraint C1. That rule can be checked by (1) ensuring that
every method invoked on a confined type is declared as @Anonymous and (2) by
checking the constraints given by Bokowski and Vitek [VB01] for anonymous
methods. With @Anonymous annotations determining confined types no longer
requires a complex data flow analysis to determine whether or not a method is
anonymous. As a result, programmers only have to look at one statement at a
time to reason about confinement. While this simplifies reasoning for the pro-
grammer, it also requires additional work in the form of @Anonymous annotations
on many methods.
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2.7.2.2 Explicit annotations of classes, but not of methods

There are many more anonymous methods than confined classes. Thus, the
burden on the programmer to annotate code can be lightened considerably by
only requiring explicit annotation of classes. Moreover, the resulting inference of
anonymous methods can be done according to the rules presented in this chap-
ter. This inference is scalable and more precise than annotations for anonymous
methods. Annotating existing code with a @Confined modifier can be done au-
tomatically with the results from Kacheck/J.

The potential issue that without @Anonymous annotations reasoning about
confinement requires constraint solving can be addressed with appropriate tool
support. Kacheck/J can be used to report confinement violations with the chains
of method calls that resulted in the violation. Consequently, the fact that avoiding
@Anonymous annotations requires additional constraint solving is hardly an issue
for developers, especially since analysis performance is also not an issue (see
Table 2.7). Hence having only @Confined annotations is clearly the best choice,
resulting in less work for the programmer as well as giving better precision.

The latest version of Kacheck/J for Java 5 allows both automatically anno-
tating bytecode with @Confined metadata attributes (for use by other analyses
that need confinement information) as well as checking that all types that are
annotated to be @Confined in the source are actually confined (for verification
of confinement assertions provided by the programmer).

2.8 Refactoring for Confinement

In this section, we detail how Kacheck/J can aid the process of first discovering
that a class is not confined, and then refactoring the program such that the class
can become confined.

2.8.1 The Example Program

We will use an example which stems from the Freenet application [CSW00,
CMH02]. The example was found by inspecting the Freenet source code and
discovering that class DoublyLinkedListImpl has an inner class which probably
should be confined. For clarity, we will work with a severely condensed version
of class DoublyLinkedListImpl and two of its clients. We condensed the code
mainly by removing methods and code sections irrelevant to our quest to make
a class confined.

Our example program is shown in Figures 2.20, 2.21, 2.22 and 2.23. The ex-
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package freenet.support;

public interface DoublyLinkedList {
public interface Item {

Item getNext();
Item setNext(Item i);
Item getPrev();
Item setPrev(Item i);

}
int size();
java.util.Enumeration elements();
void push(Item i);

}

Figure 2.20: Doubly-linked list interface.

ample program contains a rudimentary interface DoublyLinkedList (Figure 2.20)
and an implementation DoublyLinkedListImpl of doubly-linked lists (Figure 2.21).
The example program also consists of two pieces of client code, called Intervalled-

Sum (Figure 2.22) and LoadStats (Figure 2.23) which use doubly-linked lists.
Notice that class DoublyLinkedListImpl has an inner class ItemImpl (which
was called Item in the Freenet source code). Class ItemImpl is used to represent
the state of objects of class DoublyLinkedListImpl. If we want to encapsulate
the state of objects of class DoublyLinkedListImpl, then class ItemImpl should
be confined.

The Freenet code was written by many different authors. The multiple au-
thorship may explain the two inconsistent uses of class DoublyLinkedListImpl:
one client re-implements the Item interface from scratch, whereas another client
extends the ItemImpl code. The Freenet code contains more than just these two
uses of DoublyLinkedList; the two clients in Figure 2.22 and 2.23 are simple yet
representative samples.

2.8.2 Refactoring: Remove Simple Confinement Violations

In Figure 2.21, the class ItemImpl is public and therefore it is not confined by
definition. However, confining ItemImpl is probably a good idea since its state
is the internal representation of the DoublyLinkedList. Having clients outside
of the package manipulate ItemImpl objects might easily break invariants of the
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public class DoublyLinkedListImpl implements DoublyLinkedList {
protected int size;
protected Item head, tail;
public int size() { return size; }
public java.util.Enumeration elements() {

return new java.util.Enumeration() {
protected Item next = head;
public boolean hasMoreElements() {

return next != null;
}
public Object nextElement() {

if (next == null) throw new java.util.NoSuchElementException();
Item result = next;
next = next.getNext();
return result;

}
};

}
public void push(Item j) {

// ...
++size;

}
public static class ItemImpl implements Item {

private Item next, prev;
public Item getNext() { return next; }
public Item setNext(Item i) {

Item old = next; next = i; return old;
}
public Item getPrev() { return prev; }
public Item setPrev(Item i) {

Item old = prev; prev = i; return old;
}

}
}

Figure 2.21: Doubly-linked list implementation.
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package freenet.support;

import freenet.support.DoublyLinkedList.Item;

public class IntervalledSum {
private final DoublyLinkedList l = new DoublyLinkedListImpl();
public void report(double d) {

l.push(new Report(d));
}
static class Report implements Item {

double value;
private Item prev, next;
Report(double value) { this.value = value; }
public Item getNext() { return next; }
public Item setNext(Item i) {

Item r = next; next = i; return r;
}
public Item getPrev() { return prev; }
public Item setPrev(Item i) {

Item r = prev; prev = i; return i;
}

}
}

Figure 2.22: Doubly-linked list client code.
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package freenet.node;

import freenet.support.*;

public class LoadStats {
private final DoublyLinkedListImpl lru = new DoublyLinkedListImpl();
private final java.util.Map table = new java.util.HashMap();
public void storeTraffic(byte[] n, long r) {

LoadEntry le = new LoadEntry(n, r);
table.put(le.fn, le);
lru.push(le);

}
class LoadEntry extends DoublyLinkedListImpl.ItemImpl {

private final Object fn;
private final long qph;
private LoadEntry(byte[] b, long qph) {

this.fn = b;
this.qph = qph;

}
}

}

Figure 2.23: Code for another doubly-linked list client.
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DoublyLinkedList implementation (such as the size of the list or the head and
tail fields).

In order to confine ItemImpl, we must remove all violations of the confinement
rules. Let us first consider rule C4, which requires that subtypes of a confined
type be confined. This clearly conflicts with the subclassing of ItemImpl by
LoadEntry. This problem can be solved using the ”Replace Inheritance with
Delegation” refactoring pattern [FBB99]. Instead of extending Item, a field value

is added to the Item class. We use generics in order to give the field an appropriate
type. Using this design also removes the code duplication in Report, which
no longer needs to implement Item. Since ItemImpl is now going to be the
only implementation of the Item interface, the split between implementation and
interfaces is quite useless, so in order to simplify the code, we remove the interfaces
and eliminate the Impl from the names of the classes of the implementation.
Finally, the access modifier of Item (formerly ItemImpl) is changed from public to
default (in order to satisfy confinement rule C2). The result of the first refactoring
is the program in Figures 2.24 and 2.25.

2.8.3 Refactoring: Remove Widening Violations

If we run Kacheck/J on the program in Figure 2.24, we will get the result that
class Item is still not confined. The problem is that the method nextElement

widens Item to Object (upon return). We can refactor the program in Figure 2.24
to remove the violation.

The result of the second refactoring is the program in Figure 2.26. As a
result of the refactoring, Item is confined and clients can no longer easily break
invariants of the DoublyLinkedList container.

2.8.4 Refactoring: Summary

In our experience, the biggest hurdle in refactoring code for confinement is to find
candidates where such refactoring would truly improve the code. The primary
obstacle in Java is Java’s containers; this obstacle could theoretically be addressed
by checking confinement at the source level. Nevertheless, in practice, many
classes can easily be confined by flattening the hierarchy and possibly wrapping
references to instances in other classes. However, while it is often easy to achieve
confinement, refactoring code blindly simply to maximize confinement may result
in unnatural data structures with too many layers of abstraction.
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package freenet.support;

public class DoublyLinkedList<T> {
private int size;
private Item<T> head, tail;
public int size() { return size; }
public java.util.Enumeration elements() {

return new java.util.Enumeration() {
protected Item next = head;
public boolean hasMoreElements() {

return next != null;
}
public Object nextElement() {

if (next == null)
throw new java.util.NoSuchElementException();

Item result = next;
next = next.next;
return result;

}
};

}
public void push(T j) {

// ...
++size;

}
static class Item<T> {

Item next, prev;
public final T value;
Item(T val) { this.value = val; }

}
}

Figure 2.24: The implementation after the first refactoring.
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package freenet.support;

import freenet.support.DoublyLinkedList;

public class IntervalledSum {
private final DoublyLinkedList<Report> l

= new DoublyLinkedList<Report>();
public void report(double d) {

l.push(new Report(d));
}
static class Report {

double value;
Report(double value) { this.value = value; }

}
}

package freenet.node;

import freenet.support.*;

public class LoadStats {
private final DoublyLinkedList<LoadEntry> lru

= new DoublyLinkedList<LoadEntry>();
private final java.util.Map table

= new java.util.HashMap();
public void storeTraffic(byte[] nr, long rph) {

LoadEntry le = new LoadEntry(nr, rph);
table.put(le.fn, le);
lru.push(le);

}
class LoadEntry {

private final Object fn;
private final long qph;
private LoadEntry(byte[] b, long qph) {

this.fn = b;
this.qph = qph;

}
}

}

Figure 2.25: The client code after the first refactoring.
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package freenet.support;

public class DoublyLinkedList<T> {
private int size;
private Item<T> head, tail;
public int size() { return size; }
public java.util.Enumeration<T> elements() {

return new java.util.Enumeration<T>() {
protected Item next = head;
public boolean hasMoreElements() {

return next != null;
}
public T nextElement() {

if (next == null)
throw new java.util.NoSuchElementException();

Item<T> result = next;
next = next.next;
return result.value;

}
};

}
public void push(T j) {

// ...
++size;

}
static class Item<T> {

Item next, prev;
public final T value;
Item(T val) { this.value = val; }

}
}

Figure 2.26: The implementation code after the second refactoring.
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2.9 Related Work

The the pervasiveness of aliasing in object-oriented programming languages re-
sults in a diverse set of programming problems that relate to aliasing. Conse-
quently, there can hardly be only one design for controlling aliasing that solves
all problems. Depending on the problem, solutions to controlling aliasing range
from disallowing aliases [Wad90], restricting aliases to unique external aliases
(but allowing an arbitrary amount of aliasing inside of the component) [CW03b,
CW03a, Hog91, Alm97] to completely disallowing external aliases while allowing
arbitrary aliasing inside of the component, as presented in this chapter. Other
designs do not restrict aliasing in general, but try to control the way aliases can
be used [NPV98, KM95, BNR01, BDF04, Mul01]. This chapter has described
a particular way to control aliasing using confined types. Many alternative de-
signs for controlling aliasing have been explored in numerous papers in recent
years [Alm97, Alm99, CPN98, DLN96, GTZ98, Hog91, HLW92, KM95, NPV98].
These approaches differ widely in which operations with references are allowed
and which aliasing patterns are permitted – as well as the complexity of the con-
straints that are imposed on the programmer. This section discusses the most
relevant related work in more detail.

Bokowski and Vitek [BV99] introduced the notion of confined types. In
their paper, confined types are explicitly declared. Their paper discussed an
implementation of a source-level confinement checker based on Bokowski’s Cof-
feeStrainer [Bok99]. The main difference between that work and the present
chapter lies in the definition of anonymity. In both cases, anonymity rules are
used to detect the confinement breaches from hidden widening of confined types
to public types that can occur with inherited methods (rule C1). However, the
rules given by Bokowski and Vitek are much stronger than strictly necessary.

Consider the example of Figure 2.27. Notice that class Parent is public, and
therefore cannot be confined. Intra-procedural analysis would not reveal that
the expression new NotConf().violation() will widen NotConfined to Parent.
Thus, Bokowski and Vitek chose to rely on explicit anonymity declarations and
added an additional anonymity constraint:

A4 Anonymity declarations must be preserved when overriding
methods.

So, once a method is declared anonymous, all overriding definitions of that
method have to abide by the constraints. When inferring anonymity, the rule
A4 is not necessary. The goal of A4 was to ensure that anonymity of a method
is independent from the result of method lookup. If anonymity of methods is
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public class Parent {
protected Parent nonAnonymousMethod() {

return this; // violation of A1
}

}

class NotConf extends Parent {
Parent violation() {

return nonAnonymousMethod(); // hidden widening
}

}

Figure 2.27: Confinement violation C1.

public class A { // A is not confined
Object m() {

// m() is anonymous in relation to C but not in relation to B
return null;

}
public Object n() {

return new C().m();
}

}

class B extends A { // B is not confined
Object m() { // m() is not anonymous

return this;
}

}

class C extends A { } // C is confined

Figure 2.28: Anonymity need not be preserved in all subtypes.
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class Parent {
protected Parent anonymousMethod() {

return this; // not a violation of A1
}

}

class Confined extends Parent {
Parent noViolation() {

return anonymousMethod(); // widening, but no escape
}

}

Figure 2.29: Two confined classes.

inferred, dynamic binding can be taken into account. Figure 2.28 shows a confined
class C that extends a class A. The method A.m() meets all anonymity criteria
except for rule A4. The violation of that rule occurs in class B, because B extends
A and redefines m() with an implementation that returns this. The key point to
notice here is that the anonymity violation cannot occur if the dynamic type of
this is A. We say the method A.m() is anonymous in relation to C, but not in
relation to B.

Another difference between the old and the new anonymity rules is that we
allow widening of the this reference to other confined types. The old rules forbid
returning this or using this as an argument completely. The new rules allow
such cases if the type of the return value or the argument is again a confined type.
An example is shown in Figure 2.29, which is a minimal variation of Figure 2.27
(Parent is no longer public). In this case, the new rules would allow both classes
to be confined.

Noble, Vitek, and Potter [NPV98] presented flexible alias protection as a
means to control potential aliasing amongst components of an aggregate object
(or owner). Aliasing-mode declarations specify constraints on the sharing of ref-
erences. The mode rep protects representation objects from exposure. In essence,
rep objects belong to a single owner object, and the model guarantees that all
paths that lead to a representation object go through that object’s owner. The
mode arg marks argument objects which do not belong to the current owner, and
therefore may be aliased from the outside. Argument objects can have different
roles, and the model guarantees that an owner cannot introduce aliasing between
roles.

Hogg’s Islands [Hog91] and Almeida’s Balloons [Alm97, Alm99] have similar
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aims. An Island or Balloon is an owner object that protects its internal represen-
tation from aliasing. The main difference from [NPV98] is that both proposals
strive for full encapsulation; that is, all objects reachable from an owner are pro-
tected from aliasing. This is equivalent to declaring everything inside an Island or
Balloon as rep. This is restrictive, since it prevents many common programming
styles; it is not possible to mix protected and unprotected objects as is done with
flexible alias protection and confined types. Hogg’s proposal extends Smalltalk-
80 with sharing annotations, but it has neither been implemented nor formally
validated. Almeida presented an abstract interpretation algorithm to decide if a
class meets his balloon invariants, but it has also so far not been implemented.
Balloon types are similar to confined types in that they only require an analysis
of the code of the balloon type and not of the whole program.

Boyland, Noble and Retert [BNR01] introduced capabilities as a uniform sys-
tem to describe restrictions imposed on references. Their system can model many
of the different modifiers used to address the aliasing problem such as immutable,
unique, readonly or borrowed. They also model a notion of anonymous references,
which is different from the one used in this chapter. Their system of access rights
cannot be used to model confined types, mainly because it lacks support for
modeling package-scoped access.

Kent and Maung [KM95] proposed an informal extension of the Eiffel pro-
gramming language with ownership annotations that are tracked and monitored
at runtime. Barnett et al. [BDF04] used a simple notion of ownership as the
basis for an approach to specifying and checking properties stated as pre- and
post-conditions for methods and object invariants; in their system the check-
ing of ownership is itself a proof obligation. Additionally, Müller [Mul01] used
ownership in support of verification, but in this case, checked by a type system.

In the field of static program analysis, a number of techniques have been
developed. Static escape analyses such as the ones proposed by Blanchet [Bla99,
Bla03] and others [BH99, Deu95] provide much more precise results than our
technique, but come at a higher analysis cost. They often require whole program
analyses, and are sensitive to small changes in the source code.

Clarke, Potter, and Noble [Cla01, CPN98] formalized representation contain-
ment by means of ownership types. Their seminal paper has sparked much in-
terest and many papers have explored ownership types since then. Ownership
types enforce the rule that all paths from the root of an object system must pass
through an object’s owner. The paper of Clarke, Potter, and Noble [CPN98]
allowed just three annotations, rep, norep, and owner for specifying owner-
ship, while later papers have introduced additional or alternative annotations
[AKC02, CW03b, LM04, MP99]. Ownership types are inherently more flexible
than confined types, while experiments with inferring ownership types (for exam-
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ple using the approach of Aldrich, Kostadinov, and Chambers [AKC02]) indicate
that confined types lead to more scalable inference. Ownership types have been
used as the basis for specifying a variety of properties via types, such as the
absence of data races and deadlocks [BLR02, BSB03].

Most of the approaches mentioned above use operational semantics to reason
about alias protection and ownership. Banerjee and Naumann [BN02] used de-
notational semantics to prove a representation-independence theorem – that is,
a result about whether a class can safely be replaced by another class, indepen-
dently of the program in which the class occurs. They use a syntactic notion of
confinement (as we do) in which the protection domain is an instance rather than
a package. Their notion of confinement is more restrictive than ours and it leads
to a powerful theorem about classes.
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CHAPTER 3

Memory Safety through Region Types

Proper handling of memory has been a challenge for programmers and program-
ming languages since the earliest days of computing. In the last few decades,
language systems featuring automatic memory management have become main-
stream. Using a combination of techniques including garbage collection, type sys-
tems and dynamic checks, modern languages prevent programmers from access-
ing unallocated or deallocated parts of memory, a guarantee which is commonly
called memory safety. While memory safety can significantly improve program-
mer productivity by eliminating a large class of programming errors, memory
safety comes at a price in terms of performance. Unlike types, garbage collection
and dynamic checks cost significant amounts of execution time and memory.

Ensuring memory safety will become an even bigger challenge for the next
generation of hardware. Given that processor clock rates are unlikely to increase
significantly in the future, performance improvements from larger numbers of
transistors will have to be obtained by increasing parallelism. In addition to
instruction-level parallelism, existing systems make use of multi-core and multi-
processor designs. The extreme case involves clusters for high performance com-
puting (HPC) consisting of tens of thousands of processors. The cost of accessing
data in these parallel and distributed systems which feature a complex memory
hierarchy is non-uniform. Accesses to the same location in the global memory
may vary by as much as five orders of magnitude depending on the execution
core performing the access. Consequently, the notion of a single shared memory
with uniform access is inappropriate for these systems. Language systems that
are to perform well on this new hardware and guarantee memory safety will not
only have to perform parallel, distributed garbage collection, but will also have
to ensure data locality for memory accesses.

Current object-oriented language facilities for concurrent and distributed pro-
gramming fail to address these requirements of modern and next-generation par-
allel machines (SMPs and clusters). Given the likelihood that the majority of
desktop systems in the future will be multi-core SMP designs, there is a need for
new language systems that simplify the development and deployment of compu-
tations spanning multiple nodes. In order to be able to give a sufficiently simple
and adequate cost model to programmers, a new language should require that
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basic read and write operations are local with respect to the place of execution.
If all basic read and write operations are guaranteed to be local by the language,
programmers will continue to be able to reason about the performance of their
algorithms with respect to memory accesses.

This chapter describes a type system for such new languages that will help
the compiler statically reason about the locality of memory accesses. Specifically,
we will use types to eliminate the additional dynamic checks that are commonly
used to ensure memory safety (including access locality) of array accesses. The
type system specifically includes the possibility that the elements of the arrays
can be distributed among the nodes of the system. Ensuring locality of access to
objects is a simple extension of the presented formalism.

Dynamic checks to ensure memory safety of array accesses are of particular in-
terest because they not only reduce performance for common operations but also
represent programming errors that are only partially prevented by the language.
Instead of giving the programmer compile-time guarantees that array accesses
are safe, these checks may still fail at run-time.

Our work is heavily influenced by X10 [ESS04, ESS05, CDE05]. X10 is an
experimental new memory-safe language for high performance computing (HPC)
currently under development at IBM in collaboration with academic partners.
The primary design goals for X10 are programmer productivity and performance.
One reason that X10 requires applications to be memory safe – an unusual prop-
erty for HPC languages – is the desire to ensure programmer productivity by
eliminating the entire category of difficult-to-find errors due to memory corrup-
tion. Performance is facilitated in X10 with a design that ensures data locality.
X10 uses the model of a partitioned global address space. The language features
the abstract notion of a place to denote the location at which computations are
executed. Each partition of the global address space is associated with a partic-
ular place, and X10 mandates that all accesses to mutable data must take place
at the current node, or, in X10 terminology, be place-local. Furthermore, X10
features language constructs for explicit parallel and distributed computations.
These language constructs reduce the complexity of developing HPC applica-
tions by replacing complex libraries, such as MPI [SLG99], that are traditionally
used to manage parallelism and data distributions. Using language constructs
instead of libraries also theoretically enables a tighter integration between the
language system and data distribution mechanisms. Naturally, supporting paral-
lel distributed computations requires support for distributed data structures – for
arrays, in particular. In X10, arrays can be scattered over multiple places. X10’s
requirement that all accesses to mutable data must be place-local includes dis-
tributed arrays. Consequently, accesses to X10 arrays must not only be in-bounds
(X10 is memory-safe), but must also be executed locally (X10 is place-safe) at
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the respective place associated with the index by the distribution of the array.

X10 is different from earlier HPC languages in that it requires the programmer
to write code that ensures data locality and enables programmers to ensure data
locality by providing constructs to programatically change the place of execution
(this is called place-shifting in X10 terminology). Having a general place-shifting
mechanism is good news for application programmers, since it affords them a
great deal of flexibility. However, it does make it more difficult for the language
system to generate fast, safe code for these general distributed parallel computa-
tions.

A central problem in this context is to statically check that memory accesses
are local in the presence of distributed arrays and place-shifting computations.
This chapter shows how to solve this problem using a new type system which
employs dependent types over a particular vocabulary of constraints. There is a
variety of constraint systems that can be chosen for this purpose; for the core lan-
guage presented in this chapter, we chose a small operational algebra for illustra-
tion purposes which is sufficient to cover several fundamental examples. Changes
to the constraint system would impact the complexity of the type checker, but
do not change the core ideas necessary for the type soundness proof.

If, instead of using a type system, X10’s requirements for memory safety and
place safety were addressed using the traditional approach of generating dynamic
safety checks, performance would be impacted significantly. Because array access
operations are among the most frequent operations in scientific applications, their
performance is critical; this makes elimination of the safety checks for array
accesses important. Experiments show that simple bounds checks in languages
like Java can cause performance hits of up to a factor of two. Dynamic checks
would be even more costly in X10, since arrays are allowed to be sparse and
distributed. The type system approach presented in this chapter proves programs
to be memory-safe and place-safe in the absence of such checks. Compared with
using traditional static analyses to eliminate some of these checks, this approach
improves programmer productivity by moving detection of safety violations from
runtime to compile time and ensuring that performance is consistently good.

The results of this chapter are the establishment of an applied dependently-
typed lambda calculus [AH05] that can be used to establish locality of access for
distributed arrays in a computation with place-shifting operations. Our results
substantially generalize the pioneering work of Pfenning and Xi [XP98, XP99]
on dependently typed programming languages (by applying them to a clustered
setting and extending the constraint domain to include regions) and the work of
Liblit and Aiken [LA00] (by covering place-shifting operations). The type system
integrates dependent types with a new class of constraints over points, regions of
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points, and places. For this system, we have proven type soundness and settled
the complexity of the key decision problems. The key operation during type
checking is constraint entailment; type checking is co-NP-complete. The chapter
illustrates this type system with various examples.

We have implemented the type system in an experimental compiler for X10
called XTC-X10. The implementation extends the standard object-oriented type
system of X10 with the dependent types of the core language presented in this
chapter. We have measured how many dynamic checks can be eliminated with
this extension as a result of the static proof for several programs. The chapter
presents encouraging experimental results that show that the type system can be
used to effectively eliminate dynamic checks and statically ensure memory safety
and locality of access, resulting in a substantial reduction in dynamic checks.
This shows that use of the type system is a practical approach to eliminating
checks for place safety and memory safety.

Chapter overview This chapter is structured as follows. Section 3.1 will give
a brief introduction to X10, covering the features relevant to the type system
extension presented in particular. Section 3.2 will then give an overview of the
basic ideas behind the type system. Section 3.3 presents various examples to
illustrate the core of the type system. A core language that is useful for formaliz-
ing the type rules is presented in Section 3.4, followed by a type soundness proof
in Section 3.5. Extensions of the basic region algebra used in the core language
are presented in Section 3.6. Implementation details are described in Section 3.7.
Section 3.8 gives experimental results for the prototype implementation. Related
work is discussed in Section 3.9

3.1 Background: X10

This section gives a condensed version of the description of the X10 language
as it relates to the type system presented in this chapter. The formulations in
this section are simplified from the original description of X10 in [CDE05]. The
simplifications were made to focus the discussion on the relevant features of the
language with respect to the type system.

3.1.1 Overview

X10 starts with a state-of-the-art object-oriented programming model and type
system. To address non-uniformities in memory access, X10 introduces a notion
of places. A place is a repository for data and the activities that operate on
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Figure 3.1: Overview of X10 Places and Activities, simplified from [CDE05].

the data. Parallel computation is enabled using asynchronous operations called
activities. A simple high-level notion of shared-memory interaction is provided
in the form of conditional atomic sections which are inspired by the conditional
critical regions of Hoare [Hoa74] and Brinch Hansen [Han72]. Activities can be
coordinated across multiple places with X10’s clocks, which are generalization
of SIMD barriers. X10 permits multi-dimensional arrays to be distributed over
multiple places. The shape of arrays is specified using regions, a concept from
the language ZPL [CCD04].

The next sections will detail X10 constructs which are important for the type
system presented in this chapter.

3.1.2 Places and Activities

Figure 3.1 contains a schematic overview of places and activities in the X10 pro-
gramming model. An X10 computation acts on data objects through the execution
of asynchronous lightweight threads called activities. A central new concept in
X10 is that of a place. A place can be thought of as a collection of resident
(non-migrating) activities and mutable data objects. X10 has a partitioned global
address space (PGAS) that spans all the places in the program. An object in
the PGAS is allocated at a specified place, but may be referenced by activities
at other places. X10 supports a globally asynchronous and locally synchronous
model for data access, which enables an activity to synchronously read and write
data items in the (local) place where the activity is running but requires that
all accesses to remote data be performed asynchronously. Though an activity
executes at the same place throughout its lifetime, it may dynamically spawn
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activities in both the current and remote places. A remote location can be writ-
ten into only by asynchronously spawning an activity to run at that location and
perform the write operation. Asynchronous activities are not limited to a single
read or write operation – any X10 program is initiated by spawning of and then
waiting for termination of an asynchronous activity.

3.1.2.1 Activity spawning

An X10 computation is initiated as a single activity from the command line. This
activity is the root activity for the entire computation.

An asynchronous activity is created by a statement async (P) S where P is a
place expression and S is a statement. Such a statement is executed by spawning
an activity at the place designated by P to execute statement S. Statement S

may reference variables in lexically enclosing scopes. An activity A executes the
statement async (P) S by launching a new activity B at the designated place.
Multiple activities launched by a single activity at another place are not ordered
in any way. They are added to the pool of activities at the target place and will
be executed in sequence or in parallel based on the local scheduler’s decisions. If
the programmer wishes to sequence their execution, he must use X10 constructs
such as clocks and finish to obtain the desired effect.

For example, the X10 statement,

async (A[99]) { A[99] = k }

creates a new activity (assignment of k to A[99]) at the place containing element
A[99] of a global distributed array A. The values of local variables such as k are
passed as implicit parameters to this activity.

3.1.2.2 Objects

In X10, objects are of two kinds: scalar and aggregate. A scalar object has a
statically fixed set of fields, each of which has a distinct name. Such an object
is located at a single place and stays at that place throughout its lifetime. An
aggregate object has many fields (the number may only be known after the ob-
ject has been created), is uniformly accessed through an index (e.g. a point), and
may be distributed across many places. The distribution of an aggregate object
remains unchanged throughout the program’s execution. X10 assumes an under-
lying garbage collector will dispose of (scalar and aggregate) objects and reclaim
the memory associated with them once it can be determined that these objects
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are no longer accessible from the current state of the computation. There are no
operations in the language to allow a programmer to explicitly release memory.

3.1.3 Arrays, Regions and Distributions

A point is an n-tuple of integers. n, in this context, is called the rank of the point.
Points are used in array index expressions to select a particular array element.
When used as an argument for accessing an array, a point is also often called an
index.

A region is a set of points. For instance, the region [0,1:200,100] specifies
a collection of two-dimensional points (i,j) with i ranging from 0 to 200 and
j ranging from 1 to 100. In X10, operations are provided to construct regions
from other regions and to iterate over regions. Standard set operations, such as
union, intersection and set difference are available for regions. An X10 array is
a function from a region to a base type (which may itself be an array type).

A distribution is a map from a region to a subset of places. For example, a
distribution that maps all of the points from region r to place p can be specified
as d = r * p;. The domain of a distribution is a region. That region can be
accessed using the reg field of the distribution. In X10, regions and distributions
are values. A primitive set of distributions is provided, together with operations
on distributions. For example, programmers will use the blocked function to
obtain a distribution that partitions the points of a region evenly among all of
the places available:

region r = ...;
distribution d = distribution.blocked(r);

The distribution of an array specifies at which place it is legal to access a
particular element of the array. A distribution must be provided when creat-
ing an X10 array. X10 allows array constructors to iterate over the underlying
distribution and specify a value at each item in the underlying region. Such a
constructor may spawn activities at multiple places.

3.1.4 Foreach and Ateach

X10 features k-dimensional versions of iteration operations, for and foreach.

for (p : r) { S }
foreach (p : r) { S }
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The expression r is of type region and p is a fresh variable of type point that
is available in the body S of the iteration. An activity executes a for statement
by enumerating the points in the region in canonical order. The activity executes
the body of the loop with the formal parameter bound to the given point. If
the body terminates successfully, the activity continues with the next iteration,
terminating successfully when all points have been visited. An activity executes a
foreach statement in a similar fashion except that separate async activities are
launched in parallel in the local place for each point in the region. The statement
terminates when all the activities have been spawned.

In an ateach statement, the expression is intended to be of type distribution.
This statement differs from foreach only in that each activity is spawned at the
place specified by the distribution for the point. That is, ateach(p : d) S may
be thought of as standing for:

foreach (p : d)
async (d[p]) { S }

3.1.5 Examples

The init function given below initializes all of the elements of an Array of
integers to 1. The finish keyword is used to ensure that the asynchronous
communication is terminated before the next iteration of the for loop. The access
to a.dist[p] returns the place at which the element of the array a corresponding
to point p is stored. This code is memory safe because its construction ensures
that all accesses are in-bounds and place-local.

void init(Array<int> a) {
for (p : a.dist.reg) {

finish async(a.dist[p]) {
a[p] = 1;

}
}

}

The type system presented in this chapter can be used to statically check that
code is memory safe. The init function type checks in our extended type system
without modifications.
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An example of a function that is generally not memory safe is the following
copy function (here given in X10 without region type annotations):

void copy(Array<int> a, Array<int> b) {
finish ateach (h : distribution.unique()) {

for (p : a.dist % here) {
a[p] = b[p];

}
}

}

The copy function takes two arrays a and b and copies the elements of b into
the array a. The function uses the built-in distribution.unique() function to
obtain a bijective distribution that contains exactly one one-dimensional point
per place in the X10 runtime which is then mapped to the respective place. Using
the ateach statement, the main computation is then executed in parallel at each
of these places. The % here operation on the distribution of the array ensures
that each of the distributed and parallel executions of the sequential for loop
only iterates over those points of the distribution that are mapped to the current
place of execution.

The copy function assumes that the two arrays a and b have the same dimen-
sionality, the same underlying region and the same distribution. Otherwise, the
accesses to b[p] might be non-local, out-of-bounds or even using a point of the
wrong rank. These assumptions are not explicit in the source code. The extended
type system presented in this chapter, in contrast, requires the programmer to
use types to declare these implicit assumptions. These type annotations could
be used to document the limitations of the method and allow the language sys-
tem to statically guarantee memory safety. Traditional language implementations
would instead have to generate dynamic checks to ensure memory safety. Such
dynamic checks result in runtime errors and a loss of performance, both of which
are eliminated by the type system presented in this chapter.

Additional examples in X10 syntax using the type system extension presented
in this chapter can be found in Section B.1.

3.2 Dependent Types for Regions

As the description of X10 illustrates, high performance computing (HPC) lan-
guages contain a rich language for arrays which are a dominant data-structure
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in the HPC space. Languages like ZPL [CCL00, Cha01, CS01, DCS02], Tita-
nium [UCB05], and X10 provide the programmer with a rich algebra of region
operators to manipulate arrays. A programmer can use regions to specify com-
putations on dense or sparse multidimensional and hierarchical arrays. While
convenient, regions do not eliminate the risk of array bounds violations. Until
now, language implementations have resorted to checking array accesses dynam-
ically or to warning the programmer that bounds violations lead to undefined
behavior. In contrast, for performance and productivity, we prefer that array
computations be statically checked to be safe.

The type system presented in this chapter enables the programmer to use
concise type annotations to provide useful documentation that allows the compiler
to eliminate all safety checks, resulting in faster, statically-checked code. The type
system uses the operations of the region algebra as a high-level abstraction which
it can exploit for its reasoning. Code type-checks if accesses are performed in a
context in which the index can be statically established to be in the region over
which the array is defined. X10’s region-based iterators such as for and foreach

often provide such a context. For instance in the statement for (x : r) s it
is the case that within s one may assume that x lies in the region r.

Operations on region values are mapped to corresponding operations on re-
gion types. The mapping is defined such that subset relations for region values
correspond to subtyping of their respective types. Establishing that an index
is in-bounds for a particular array is equivalent to establishing that the region
over which the index may range is a subset of the region over which the array
is defined. A subtyping relationship between the respective region types implies
the desired subset relationship and can thus be used to statically prove the safety
of the access.

Furthermore, because our type system needs to take data locality into ac-
count, the type system supports the notion of distributions: functions from array
indices to places. Distributions are used to determine how data stored in arrays
is distributed among the places of the computation. The core language features
various operations on distributions that are used to ensure locality of access.

Using the new type system requires programmers to write code in such a way
that regions and region operations are written explicitly instead of the traditional
integer arithmetic. However, this is a small price to pay; in our experience, refac-
toring programs to use regions often results in code that is easier to understand
and more generic.

The next section describes a core language – with formal syntax, semantics
and type rules – that is sufficient to illustrate the main issues, including the
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required kinds of constraints, interesting type rules and essential operations.1

The semantics of our core language is such that a locality or bounds violation
results in the semantics getting stuck. The main contribution of this chapter is a
type system which guarantees statically that such violations cannot occur. Thus,
our type system enables us to statically verify that code will be safe and fast (in
the sense of only accessing local data).

3.3 Example Programs

We will present our core language and type system via six example programs.
This section describes the example programs in the syntax of the core language,
Section B.1 in Appendix B gives the same example programs using X10 syntax.
The first five example programs all type check, while the sixth program (shift)
does not. We use functions of the form λ•x.e which run at the place where
they are defined. Our core language also has functions λx.e which run at the
place where they are called. Similarly, we use dependent expressions lam•α.e for
which the body will be evaluated at the place where the dependent expression
was defined. Additionally, our core language has dependent expressions lam x.e
which are evaluated at the place they are called.

The function init shown in Figure 3.2 initializes all points in an array to 1.
The function init takes two arguments, namely a region α and an array over
region α. The use of the dependent type α makes init polymorphic: init can
initialize any array without the need for any bounds checking. The expression
a.reg has type reg α and p which ranges over a.reg has type pt (σ, α), where α
is the important part and σ can be ignored here. At the time of the assignment
to a[p], we have that the type of p matches the type of the region of a. For
a point p in a region r we use r[@p] to denote the place at which the element
corresponding to index p is stored for arrays over region r. This occurs in init

in the loop body, which uses at(a.reg[@p]) { a[p]=1 } to do the computation
of a[p]=1 at the place of a[p]. This is a common idiom in the benchmarks we
have studied.

The function partialinit (shown in Figure 3.3) allows partial initialization
of an array. It takes two extra arguments, namely a place type variable γ and
a place value h of the singleton place type pl γ. The body of partialinit

initializes those points in the argument array which can be found at the place
h. In our core language, every region comes with a predefined mapping, called

1While the core language is rather large for such a formalization, it is still simplified in that
it does not include objects, subtyping and many additional region operators, all of which are
handled by our implementation.
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let init = lam•α : region.λ•a:int[α].
for (p in a.reg) {

at(a.reg[@p]) { a[p]=1 } }
in init<reg 0:9>(new int[0:9])

init: Πα : region. int[α] → int

Figure 3.2: Example programs: init.

distribution, of points to places. The expression a.reg % h denotes those points
in a.reg which are mapped to the place h by the distribution of a.reg. The for
loop iterates only over points in a.reg % h, and since the for loop is wrapped
in at(h) { ...}, each access a[p] will happen at the place of a[p]. The type of
a.reg is reg α and the type of h is pl γ. As a result, the type of a.reg % h

is α %t γ, which illustrates that we use a type operator to mirror the expression
operator. The variable p then gets the type pt (β, α %t γ), where β is a fresh
variable that denotes the type-level identity of p. When we type check the access
a[p], the region check determines that the region of p, namely α, is a subset of
the region of a, which is also α. For a[p], the place check determines that the
current place of execution is the same as the place of a[p]. The place of execution
is given by the enclosing at(h) expression, and we have that h has type pl γ.
The type of the place of a[p] is given by the type expression α[@t(β, α %t γ)],
which says that the place is that of a point in α which has its data located at
place γ. So, we can use the type equivalence α[@t(β, α %t γ)] ≡ γ to conclude
that the place of execution is indeed the same as the place of the data a[p]. Note
the use of < and > to indicate dependent application in contrast to the use of
parenthesis for normal function applications.

let partialinit = lam•γ:place.λ•h:pl γ.lam•α:region.λ•a:int[α].
at(h) { for (p in a.reg % h) { a[p]=1 } }

in partialinit <P>(P)<reg 0:9>(new int[0:9])

partialinit: Πγ:place.pl γ
→ (Πα:region.int[α] → int)

Figure 3.3: Example programs: partialinit.

The function copy (Figure 3.4) takes two arrays a and b, both with region
α. The body of copy copies elements from b to a. The body of copy uses the
construct forallplaces h { ...} which iterates over all places available to the
program. For each place, the code copies elements that reside at that place. No-
tice that since a and b have the same region, they also have the same distribution,
so for a given point p in that region, both a[p] and b[p] will be at the same
place.
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let copy = lam•α:region.λ•a:int[α].λ•b:int[α].
forallplaces h { at(h) {

for (p in (a.reg % h)) { a[p] = b[p] } } }
in copy<reg 0:7>(new int[0:7])(new int[0:7])

copy: Πα:region.int[α] → (int[α] → int)

Figure 3.4: Example programs: copy.

The function expand (Figure 3.5 takes an array a and region x, where x must
be a superset of the region of a, and creates and returns a new array b over
the region x. The function expand partially initializes the new array b with
values from a at overlapping points. expand is interesting in that it highlights
the importance of keeping upper and lower bounds for the region of arrays during
type checking. Notice that argument β comes with the constraint α ⊆t β, which
means that the region α must be a subset of the region β. The subscript t
is used to indicate that this is a relationship defined on the type level. The
call partialinit <P>(P)<reg 0:9>(new int[0:9])<reg 1:8>(reg 1:8) is a
good example of the kind of reasoning that the programmer has to do when
programming directly in the core language; the call satisfies the constraint β ⊆t α
because [1 : 8] ⊆ [0 : 9].

let expand = lam•α:region.λ•a:int[α].
lam•β:region (α ⊆t β).λ•x:reg β.

let b = new int[x]

in { forallplaces h { at(h) {
for (p in a.reg ∩s (b.reg % h)) {

b[p] = at (a.reg[@p]) { a[p] } } } } ; b }
in expand<reg 3:7>(new int[3:7])

<reg 0:10>(int[0:10])

expand: Πα:region.int[α]
→ (Πβ:region(α ⊆t β).reg β → int[β])

Figure 3.5: Example programs: expand.

The function shiftleft (Figure 3.6 takes an argument a with region α and
shifts all elements one position to the left, while leaving the rightmost element
unchanged. In more detail, shiftleft first creates an inner region of α shifting
all elements of α by one to the right (α + 1) and then intersecting the result
with α. If α is simply an interval, this effectively removes the first element from
α. Then shiftleft proceeds with doing a[p-1] = a[p] for each point p in the
inner region. The inner region has type reg ((α + 1) ∩t α). The expression p-1

is always within the region of a because p-1 has type pt (((α + 1)∩t α)− 1) and
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therefore also, via subtyping, the type pt α (because +1 and −1 cancel each
other out). Similarly, the expression p is always within the region of a because
p has type pt (α + 1) ∩t α) and therefore also, again via subtyping, the type
pt α.

let shiftleft = lam•α:region.λ•a:int[α].
let inner = (a.reg + 1) ∩s a.reg

in { for (p in inner) { at(a.reg[@p-1]) {
a[p-1] = at(a.reg[@p]) { a[p] } } } }

in shiftleft<reg 3:7>(new int[3:7])

shiftleft: Πα:region.int[α] → int

Figure 3.6: Example programs: shiftleft.

The program shift (Figure 3.7) is a small variation of shiftleft that con-
tains a bug which would result in an array bounds violation – and that conse-
quently does not type check. The problem with shift is that the array access
a[p+1] will be out of bounds when p reaches the end of the array.

let shift = lam•α:region.λ•a:int[α].
let inner = (a.reg + 1) ∩s a.reg

in { for (p in inner) {
at(a.reg[@p+1]) {

a[p+1] = at(a.reg[@p]) { a[p] } } } }
in ...

Figure 3.7: Example programs: shift.

3.4 The Core Language

We now present the syntax, semantics, and type system of our core language.
In Section 3.5, we prove type soundness using the standard technique of Niel-
son [Nie89] and others that was popularized by Wright and Felleisen [WF94].

The core language models the features of X10 that are most relevant for our
type system extension. Specifically, the semantics capture the flat, distributed
memory model of X10. The language includes X10’s distributed arrays and the
most interesting operations from X10’s region algebra. In order to be able to give
simple, deterministic semantics to the core language, X10’s asynchronous remote
computations are modeled as synchronous remote computations. Objects and
synchronization constructs are not included in the core language in order to keep
the definition concise. Other languages that feature regions are likely to contain
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(Kind) k ::= point ϕ | region ϕ | place

(Type) t ::= int | pt (σ, r) | reg r | t[r]
| pl π | t → t | Πα : k.t

(Region) r ::= α | R | r ∪t r | r ∩t r
| r +t c | r %t π

(Point) σ ::= α | p | σ ++tc
(Place) π ::= α | P | r[@t(σ, r)] | unknown
(Constraint) ϕ ::= r ⊆t r | σ ∈t r | ϕ ∧ ϕ

(Value) v ::= c | p | R | l | P | λx : t.e
| lam α : k.e

(ValOrVar) y ::= v | x
(Expression) e ::= y | e1 e2 | e1<e2>

| λ•x : t.e | lam•α : k.e
| new t[e] | y1[y2] | y1[y2] = e
| e.reg | y1[@sy2]
| e1 ∪s e2 | e1 ∩s e2 | e +s c
| e ++sc | y1 % y2

| for (x in e1){e2}
| forallplaces x{e}
| e1; e2 | at(y){e}

(Dep Val) w ::= p | R | P

Figure 3.8: Syntax of the core language.

a similar core language – possibly without the locality constraints for memory
accesses in the operational semantics. Relaxing the type rules to match such a
simplification of the operational semantics is straightforward.

3.4.1 Syntax

Figure 3.8 gives the syntax for the core language. We use c to range over integer
constants, p to range over point constants, R to range over region constants (such
as [1:4], which denotes {1, 2, 3, 4}), l to range over array labels drawn from a set
Label, P to range over place constants, x to range over variable names, and α to
range over type-variable names. In our core language, points are integers, and we
will occasionally write a point constant as c. For shifting a region by a constant
we use the notation {c1, . . . , cn}+ c = {c1 + c, . . . , cn + c}.

The language has seven data types, namely integers, points, regions, arrays,
places, functions, and dependently-typed functions. We have deliberately avoided
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having distributions as values, in an effort to keep the size of the language man-
ageable. We assume a function distribute which maps a region and a point in
that region to a place. When we create an array over a region R, the array will be
distributed according to the function distribute. We make no assumptions about
distribute.

The types are defined in terms of three forms of expressions which, given
an interpretation of the variables, evaluate to sets of points (regions), points,
and places, respectively. Specifically, if ρ is a mapping from region variables to
regions, point variables to points, and place variables to places, then the meaning
of the expressions is given as follows:

αρ = ρ(α)

Rρ = R

(r1 ∪t r2)ρ = r1ρ ∪ r2ρ

(r1 ∩t r2)ρ = r1ρ ∩ r2ρ

(r +t c)ρ = rρ + c

(r %t π)ρ = { p ∈ rρ | distribute(rρ, p) = πρ }
pρ = p

(r ++tc)ρ = rρ + c

Pρ = P

(r1[@t(σ, r2)])ρ = distribute(r1ρ, σρ).

The expression r %t π evaluates to a subset of r which contains those points
which are mapped to π by distribute. The expression r[@t(σ, r)] evaluates to the
place of the point σ according the distribution given by distribute.

The type of a point is a pair (σ, r) where σ is a type-level identity of the point
and r is a region that contains the point. The type of a region is a singleton type
consisting of that region itself. A dependently-typed function lam α : k.e has its
argument constrained by the kind k; its type is Πα : k.t.

The expression language contains syntax for creating and calling functions, for
creating, accessing, and updating arrays, for computing with regions, for iterating
over regions, for iterating over all places, and for shifting the place of execution.
The expression e.reg returns the region of an array. The expression e++sc adds
a constant c to the point to which e evaluates. The expression e +s c adds a
constant to each of the points in the region to which e evaluates.

We need the set operators to work both on types, expressions, and actual sets.
In order to avoid confusion, we give each operator on types the subscript t, on
expressions the subscript s, and on sets no subscript at all.
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In the example programs earlier in the chapter, we used the syntactic sugar
let x = e in { e′ } in order to represent (λ•x.e′)e. We also used a few other
constructs such as p+1 which are not part of the core language but which could
be added easily. We will use true to denote the tautology ∅ ⊆t ∅.

3.4.2 Semantics

We specify the semantics of the core language using small-step operational se-
mantics (see Figures 3.9, 3.10 and 3.11). We use H to range over heaps:

H ∈ Label→ Point→ (Value× Place)

A heap maps labels to array representations. An array representation maps each
point in the region of the array to its value and its place. Both uses of → above
denote a space of partial functions. We will use the notation (v, P ) for elements
of (Value× Place), and we will use the operators .1 and .2 to extract the first
and second element of a pair, respectively. We use D(H) to denote the domain
of a partial function H.

A state in the semantics is a pair (H, e). We say that (H, e) can take a step
at place P if we have H ′, e′ such that P ` (H, e) ; (H ′, e′) using the rules below.
We say that (H, e) is stuck at place P if e is not a value and (H, e) cannot take
a step at place P . We say that (H, e) can go wrong at place P if we have H ′, e′

such that P ` (H, e) ;∗ (H ′, e′) and (H ′, e′) is stuck at place P .

We assume that the programmer (externally to the program text) provides a
function default which maps a closed type t to a value for each type t used as an
element type of an array in the program. The function default must have the
property that Ψ; ϕ; Γ ` default(t) : t for a Ψ that contains suitable definitions
of the labels used in default(t), and for any ϕ and Γ. The idea is that we will
use default(t) as the initial value at all points in an array with element type
t. While we can easily define examples of such a function default, we will not
show a specific one, simply because all we need to know about it is the property
Ψ; ϕ; Γ ` default(t) : t.

We also assume a list places of the places available during the execution of
the program. The only thing a program can do with places is to iterate over the
places using the forallplaces construct.

In order to specify the execution order for the for loop construct, Rule (3.29)
uses a function order({c1, . . . , cn}) = 〈c1, . . . , cn〉, where c1 < . . . < cn.

The following rules define a call-by-value semantics and are mostly standard.
The key rules (3.11) and (3.13) both have the side condition that l ∈ D(H) and
p ∈ D(H(l)) and P = H(l)(p).2. The condition p ∈ D(H(l)) is the array-bounds
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P ` (H, e1) ; (H ′, e′1)

P ` (H, e1 e2) ; (H ′, e′1 e2)
(3.1)

P ` (H, e2) ; (H ′, e′2)

P ` (H, v e2) ; (H ′, v e′2)
(3.2)

P ` (H, (λx : t.e)v) ; (H, e[x := v]) (3.3)

P ` (H, e1) ; (H ′, e′1)

P ` (H, e1<e2>) ; (H ′, e′1<e2>)
(3.4)

P ` (H, e2) ; (H ′, e′2)

P ` (H, v<e2>) ; (H ′, v<e′2>)
(3.5)

P ` (H, (lam α : k.e)<w>) ; (H, e[α := w]) (3.6)

P ` (H, λ•x : t.e) ; (H, λx : t.at(P){e}) (3.7)

P ` (H, lam•α : k.e) ; (H, lam α : k.at(P){e}) (3.8)

P ` (H, e) ; (H ′, e′)

P ` (H,new t[e]) ; (H ′,new t[e′])
(3.9)

P ` (H,new t[R]) ; (H[l 7→ λp ∈ R.(default(t), distribute(R, p))], l)
where l is fresh

(3.10)

P ` (H, l[p]) ; (H, H(l)(p).1)
if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2

(3.11)

P ` (H, e) ; (H ′, e′)

P ` (H, v1[v2] = e) ; (H ′, v1[v2] = e′)
(3.12)

P ` (H, l[p] = v) ; (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]], v)
if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2

(3.13)

P ` (H, e) ; (H ′, e′)

P ` (H, e.reg) ; (H ′, e′.reg)
(3.14)

P ` (H, l.reg) ; (H,D(H(l))) if l ∈ D(H) (3.15)

P ` (H, l[@sp]) ; (H, H(l)(p).2)
if l ∈ D(H) and p ∈ D(H(l))

(3.16)

Figure 3.9: Semantics of the core language (part 1).

check; p must be in the region of the array. The condition P = H(l)(p).2 is
the place check; the place of execution must equal the place of the data to be
accessed. If the side condition is not met, then the semantics will get stuck.

Notice that in Rule (3.19) we evaluate the syntactic expression R1 ∪s R2 to
the value R1 ∪R2.
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P ` (H, e1) ; (H ′, e′1)

P ` (H, e1 ∪s e2) ; (H ′, e′1 ∪s e2)
(3.17)

P ` (H, e2) ; (H ′, e′2)

P ` (H, v ∪s e2) ; (H ′, v ∪s e′2)
(3.18)

P ` (H, R1 ∪s R2) ; (H, R1 ∪R2) (3.19)

P ` (H, e1) ; (H ′, e′1)

P ` (H, e1 ∩s e2) ; (H ′, e′1 ∩s e2)
(3.20)

P ` (H, e2) ; (H ′, e′2)

P ` (H, v ∩s e2) ; (H ′, v ∩s e′2)
(3.21)

P ` (H, R1 ∩s R2) ; (H, R1 ∩R2) (3.22)

P ` (H, e) ; (H ′, e′)

P ` (H, e +s c) ; (H ′, e′ +s c)
(3.23)

P ` (H, d +s c) ; (H, d + c) (3.24)

P ` (H, e) ; (H ′, e′)

P ` (H, e ++sc) ; (H ′, e′ ++sc)
(3.25)

P ` (H, p ++sc) ; (H, p + c) (3.26)

P ` (H, R % P ′]) ; (H, R′)
where R′ = { p ∈ R | distribute(R, p) = P ′ } (3.27)

P ` (H, e1) ; (H ′, e′1)

P ` (H, for (x in e1){e2}) ; (H ′, for (x in e′1){e2})
(3.28)

P ` (H, for (x in R){e}) ;

(H, ((lam•α : point(α ∈t R).λ•x : (α, R).e)<c1>)c1; . . . ;
((lam•α : point(α ∈t R).λ•x : (α, R).e)<cn>)cn; 0)
where order(R) = 〈c1, . . . , cn〉

(3.29)

Figure 3.10: Semantics of the core language (part 2).

Rule (3.29) unrolls the for loop and replaces the loop variable with an appro-
priate point in each copy of the body of the loop. Similarly, Rule (3.30) unrolls
the loop and replaces the loop variables with an appropriate place in each copy
of the body of the loop. The unrolling is specified the way it is to enable the
type checker to assign a type variable as first/only part of the type of the loop
variable and at the same time achieve that each iteration is executed using the
exact value bound to the loop variable.

Rule (3.7) and Rule (3.8) express that the body of λ• or lam• must execute
at the place of the definition. Effectively, each of those rules creates a closure
consisting of the function and the current place of execution.
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P ` (H, forallplaces x{e}) ;

(H, ((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ;
((lam•α : place.λ•x : pl α.e)<Pn>)Pn; 0)
where places = 〈P1, . . . , Pn〉

(3.30)

P ` (H, e1) ; (H ′, e′1)

P ` (H, e1; e2) ; (H, e′1; e2)
(3.31)

P ` (H, v; e) ; (H, e) (3.32)

P ′ ` (H, e) ; (H ′, e′)

P ` (H, at(P ′){e}) ; (H, at(P ′){e′})
(3.33)

P ` (H, at(P ′){v}) ; (H, v) (3.34)

Figure 3.11: Semantics of the core language (part 3).

3.4.3 Heap Types

We use Ψ to range over maps from array labels to types of the form t[R]. We
use the judgment |= H : Ψ which holds if (1) D(H) = D(Ψ) and (2) if for each
l ∈ D(H) we let t[R] = Ψ(l), then D(H(l)) = R and for each p ∈ D(H(l))
we have (i) Ψ; ϕ; Γ; here ` H (l)(p).1 : t and (ii) distribute(R, p) = H(l)(p).2.
We write Ψ � Ψ′ if D(Ψ) ⊆ D(Ψ′) and Ψ, Ψ′ agree on their common domain.
Informally, |= H : Ψ says that Ψ maps the label l of each array in the heap H to
an array type t[R] and the type of each element of the array is t.

3.4.4 Type Equivalence

We define type equivalence via the judgments ϕ ` t ≡ t′, ϕ ` r ≡ r′, ϕ ` σ ≡ σ′,
and ϕ ` π ≡ π′, which hold if they can be derived using the rules in Figures 3.12
and 3.13. The first three rules use a meta-variable q which ranges over t, r, σ, π.
The type equivalence rules simply state trivial identities that follow immediately
from the operational semantics.

3.4.5 Satisfiability and Entailment

We use ρ to range over mappings from variables to sets. We say that ρ satisfies
a constraint ϕ if for all r1 ⊆t r2 in ϕ we have r1ρ ⊆ r2ρ and for all σ ∈t r in ϕ we
have σρ ∈ rρ. We say that a constraint ϕ is satisfiable if there exists a satisfying
assignment for ϕ.

We say that a constraint is valid if all variable assignments satisfy the con-
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ϕ ` q ≡ q (3.35)

ϕ ` q1 ≡ q2

ϕ ` q2 ≡ q1

(3.36)

ϕ ` q1 ≡ q2 ϕ ` q2 ≡ q3

ϕ ` q1 ≡ q3

(3.37)

ϕ ` σ ≡ σ′ ϕ ` r ≡ r′

ϕ ` pt (σ, r) ≡ pt (σ′, r′)
(3.38)

ϕ ` r ≡ r′

ϕ ` reg r ≡ reg r′
(3.39)

ϕ ` π ≡ π′

ϕ ` pl π ≡ pl π′
(3.40)

ϕ ` t1 ≡ t′1 ϕ ` t2 ≡ t′2
ϕ ` t1 → t2 ≡ t′1 → t2

(3.41)

ϕ ` t ≡ t′

ϕ ` Πα : k.t ≡ Πα : k.t′
(3.42)

ϕ ` R1 ∪t R2 ≡ R1 ∪R2 (3.43)

ϕ ` r1 ≡ r′1 ϕ ` r2 ≡ r′2
ϕ ` r1 ∪t r2 ≡ r′1 ∪t r′2

(3.44)

ϕ ` R1 ∩t R2 ≡ R1 ∩R2 (3.45)

ϕ ` r1 ≡ r′1 ϕ ` r2 ≡ r′2
ϕ ` r1 ∩t r2 ≡ r′1 ∩t r′2

(3.46)

ϕ ` R +t c ≡ R + c (3.47)

ϕ ` r ≡ r′

ϕ ` r +t c ≡ r′ +t c
(3.48)

ϕ ` R %t P ≡ { p ∈ R | distribute(R, p) = P } (3.49)

ϕ ` r ≡ r′ ϕ ` π ≡ π′

ϕ ` r %t π ≡ r′ %t π′
(3.50)

ϕ ` p ++tc ≡ p + c (3.51)

ϕ ` σ ≡ σ′

ϕ ` σ ++tc ≡ σ′ ++tc
(3.52)

Figure 3.12: Equivalence rules (1).
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ϕ |= p ∈t r ϕ |= r ⊆t R

ϕ ` R[@t(p, r)] ≡ distribute(R, p)
(3.53)

ϕ ` r1 ≡ r′1 ϕ ` σ ≡ σ′ ϕ ` r2 ≡ r′2
ϕ ` r1[@t(σ, r2)] ≡ r′1[@t(σ′, r′2)]

(3.54)

ϕ |= σ ∈t r %t π

ϕ ` r[@t(σ, r %t π)] = π
(3.55)

Figure 3.13: Equivalence rules (2).

straint. We say that ϕ entails ϕ′ if the implication ϕ ⇒ ϕ′ is valid, and write
ϕ |= ϕ′.

The satisfiability problem is this: given a constraint ϕ, is ϕ satisfiable? The
entailment problem is as follows: given two constraints ϕ, ϕ′, is ϕ |= ϕ′ true?

For our notion of constraints, the satisfiability problem is NP-complete. To
understand this, first note that already for the fragment of region constraints
with just variables, constants, union, and intersection, the satisfiability problem
is NP-hard [AKV93]. Second, to show that the satisfiability problem is in NP
we must first argue that we only need to consider sets of polynomial size; we can
then guess a satisfying assignment and check that assignment in polynomial time.
Let us first flatten the constraint by, for each subexpression e, replacing e with
a variable α and adding an extra conjunct α = e. In the flattened constraint,
let n be the number of variables in the constraint, let u be the largest integer
mentioned in any region constant in the constraint, and let k be the largest c used
in any e+s +s or e++s++s expression in the constraint. In any solution, an upper
bound on the largest integer is n× u× k. To understand this, notice that either
the constraint system is not satisfiable or else the biggest integer we can construct
is by a sequence of +k operations, each involving a different variable. Similarly,
we have a lower bound on the smallest integer used in any solution. So, for each
region variable can guess a set of polynomial size, for each point variable we can
guess a point in a set of polynomial size, and for each place variable we can guess
a place in the list places. We can then check that assignment in polynomial time.

For our notion of set constraints, the entailment problem is co-NP-complete.
To demonstrate, first note that ϕ |= ϕ′ if and only if ϕ∧¬ϕ′ is unsatisfiable. For
the fragment of cases where ϕ′ = false we have that the entailment problem is
the question of given ϕ, is ϕ unsatisfiable, which is co-NP-complete. So, the full
entailment problem is co-NP-hard. Second, note that the entailment problem is
in co-NP; we can easily collect the set of all points mentioned in the constraints,
then guess an assignment, and finally check that the assignment is not a satisfying
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assignment, in polynomial time.

The complexity of deciding type equivalence is dominated by the time to
check constraint entailment. Given that all other aspects of type checking for
our core language are in polynomial time, we conclude that type checking is co-
NP-complete. In a later section, our experimental results show that the problem
instances for entailment are small for our benchmarks and thus type checking is
fast.

Ψ; ϕ; Γ; here ` c : int (3.56)

Ψ; ϕ; Γ; here ` p : pt (p,R) (where p ∈ R) (3.57)

Ψ; ϕ; Γ; here ` R : reg R (3.58)

Ψ; ϕ; Γ; here ` l : Ψ(l) (3.59)

Ψ; ϕ; Γ; here ` P : pl P (3.60)

Ψ; ϕ; Γ[x : t1]; unknown ` e : t2
Ψ; ϕ; Γ; here ` λx : t1 .e : t1 → t2

(3.61)

Ψ; ϕ ∧ constraint(k); Γ; unknown ` e : t

Ψ; ϕ; Γ; here ` lam α : k .e : Πα : k .t
(3.62)

Ψ; ϕ; Γ; here ` x : Γ (x ) (3.63)

Ψ; ϕ; Γ; here ` e1 : t1 → t2 Ψ ; ϕ;Γ ; here ` e2 : t1
Ψ; ϕ; Γ; here ` e1 e2 : t2

(3.64)

Ψ; ϕ; Γ; here ` e1 : Πα : k .t1 Ψ ; ϕ;Γ ; here ` e2 : t2
` t2 : k � W ϕ |= (constraint(k))[α := W ]

Ψ; ϕ; Γ; here ` e1<e2> : t1 [α := W ]
(3.65)

Ψ; ϕ; Γ[x : t1]; here ` e : t2 here 6= unknown

Ψ; ϕ; Γ; here ` λ•x : t1 .e : t1 → t2
(3.66)

Ψ; ϕ ∧ constraint(k); Γ; here ` e : t here 6= unknown

Ψ; ϕ; Γ; here ` lam•α : k .e : Πα : k .t
(3.67)

Ψ; ϕ; Γ; here ` e : reg r

Ψ; ϕ; Γ; here ` new t [e] : t [r ]
(3.68)

Ψ; ϕ; Γ; here ` y1 : t [r1 ] Ψ ; ϕ;Γ ; here ` y2 : pt (σ, r2 )
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` here ≡ r1 [@t(σ, r2 )]

Ψ; ϕ; Γ; here ` y1 [y2 ] : t
(3.69)

Figure 3.14: Type rules (part 1).

A type judgment is of the form Ψ; ϕ; Γ; here ` e : t , which holds if it is
derivable using the following rules. The type here is the type of the current place
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Ψ; ϕ; Γ; here ` y1 : t [r1 ] Ψ ; ϕ;Γ ; here ` y2 : pt (σ, r2 )
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

ϕ ` here ≡ r1 [@t(σ, r2 )] Ψ ; ϕ;Γ ; here ` e : t

Ψ; ϕ; Γ; here ` y1 [y2 ] = e : t
(3.70)

Ψ; ϕ; Γ; here ` e : t [r ]

Ψ; ϕ; Γ; here ` e.reg : reg r
(3.71)

Ψ; ϕ; Γ; here ` y1 : t [r1 ] Ψ ; ϕ;Γ ; here ` y2 : pt (σ, r2 )
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

Ψ; ϕ; Γ; here ` y1 [@sy2 ] : pl r1 [@t(σ, r2 )]
(3.72)

Ψ; ϕ; Γ; here ` e1 : reg r1 Ψ ; ϕ;Γ ; here ` e2 : reg r2

Ψ; ϕ; Γ; here ` e1 ∪s e2 : reg r1 ∪t r2

(3.73)

Ψ; ϕ; Γ; here ` e1 : reg r1 Ψ ; ϕ;Γ ; here ` e2 : reg r2

Ψ; ϕ; Γ; here ` e1 ∩s e2 : reg r1 ∩t r2

(3.74)

Ψ; ϕ; Γ; here ` e : reg r

Ψ; ϕ; Γ; here ` e +s c : reg r +t c
(3.75)

Ψ; ϕ; Γ; here ` e : pt (σ, r)

Ψ; ϕ; Γ; here ` e ++sc : pt (σ ++tc, r +t c)
(3.76)

Ψ; ϕ; Γ; here ` y1 : reg r Ψ ; ϕ;Γ ; here ` y2 : pl π

Ψ; ϕ; Γ; here ` y1 % y2 : reg r %t π
(3.77)

Ψ; ϕ; Γ; here ` e1 : reg r here 6= unknown
Ψ; ϕ ∧ (α ∈t r); Γ[x : pt (α, r)]; here ` e2 : t

Ψ; ϕ; Γ; here ` for (x in e1 ){e2} : int
(where α is fresh)(3.78)

Ψ; ϕ; Γ[x : pl α]; here ` e : t here 6= unknown

Ψ; ϕ; Γ; here ` forallplaces x{e} : int
(where α is fresh)(3.79)

Ψ; ϕ; Γ; here ` e1 : t1 Ψ ; ϕ;Γ ; here ` e2 : t2
Ψ; ϕ; Γ; here ` e1 ; e2 : t2

(3.80)

Ψ; ϕ; Γ; here ` y : pl π Ψ ; ϕ;Γ ; π ` e : t

Ψ; ϕ; Γ; here ` at(y){e} : t
(3.81)

Ψ; ϕ; Γ; here ` e : t ϕ ` t ≡ t ′

Ψ; ϕ; Γ; here ` e : t ′
(3.82)

Figure 3.15: Type rules (part 2).

of execution. Notice that the use of entailment is a condition in rules such as
Rule (3.65). Rule (3.78) is a key type rule which says that to type check a loop
for (x in e1){e2}, we check that e1 has a type reg r, and then assign x the type
pt (α, r) while checking e2, where α is fresh. The type rules for array lookup,
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Rule (3.69), and array update, Rule (3.70), ensure that (1) the point is in bounds
by requiring that the type of the point is a region which is a subset of the region
of the array, and (2) the place of execution equals the location of the array data
by requiring that the type here is equivalent to the type of the place of the data.

Figures 3.14 and 3.15 give the rules for extracting constraints. We use W
to range over regions r and variables α of kind place. In the type rules, the
meaning of constraint is the following:

constraint(point ϕ) = ϕ (3.83)

constraint(region ϕ) = ϕ (3.84)

constraint(place) = true (3.85)

The rules for kind checking are:

` pt (σ, r) : point ϕ � σ (3.86)

` reg r : region ϕ � r (3.87)

` pl π : place � π. (3.88)

3.5 Proof of Type Soundness

Lemma 1 (Substitution) If Ψ; ϕ; Γ[x : t1]; here ` e : t2 and Ψ; ϕ; Γ; here `
v : t1 , then Ψ; ϕ; Γ; here ` e[x := v ] : t2 .

Proof. By induction on the structure of the derivation of
Ψ; ϕ; Γ[x : t1]; here ` e : t2 . 2

Lemma 2 (Dependent Substitution) If Ψ; ϕ; Γ; here ` e : t , then

Ψ; ϕ[α := W ]; Γ; here[α := W ] ` e[α := W ] : t [α := W ].

Proof. By induction on the structure of the derivation of

Ψ; ϕ; Γ; here ` e : t . 2

Lemma 3 (Weakening) If Ψ; ϕ; Γ; here ` e : t and ϕ′ |= ϕ, then Ψ; ϕ′; Γ; here `
e : t .

Proof. By induction on the structure of the derivation of

Ψ; ϕ; Γ; here ` e : t . 2
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Lemma 4 (Indifference) If Ψ; ϕ; Γ; here ` v : t , then Ψ; ϕ; Γ; here ′ ` v : t .

Proof. Immediate from the seven type rules for values. 2

Lemma 5 (Canonical Forms) • If Ψ; ϕ; Γ; here ` v : int, then v is of the
form c.

• If Ψ; ϕ; Γ; here ` v : pt (σ, r), then v is of the form p.

• If Ψ; ϕ; Γ; here ` v : reg r , then v is of the form R.

• If Ψ; ϕ; Γ; here ` v : t [r ], then v is of the form l, and l ∈ D(Ψ).

• If Ψ; ϕ; Γ; here ` v : pl α, then v is of the form P .

• If Ψ; ϕ; Γ; here ` v : t1 → t2 , then v is of the form λx : t.e.

• If Ψ; ϕ; Γ; here ` v : Πα : k .t , then v is of the form lam α : k.e.

Proof. From an examination of the type rules we have that each form of type
is the type of exactly one form of value, namely the one given in the lemma. 2

Theorem 3.5.1 (Type Preservation) For a place P , let Q ∈ {P, unknown}.
If Ψ; ϕ; Γ; Q ` e : t, |= H : Ψ, and P ` (H, e) ; (H ′, e′), then we have Ψ′, t′

such that Ψ � Ψ′, Ψ′; ϕ; Γ; Q ` e′ : t′, |= H ′ : Ψ′, and ϕ ` t ≡ t′.

Proof. We proceed by induction on the structure of the derivation of Ψ; ϕ; Γ; Q `
e : t. There are now twenty-five subcases depending on which one of the type
rules was the last one used in the derivation of Ψ; ϕ; Γ; Q ` e : t.

In eight of those cases, e is a either a value or a variable x, and hence (H, e)
cannot take a step. We will now consider each of the remaining seventeen cases.

• Rule (3.64): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : t1 → t2 Ψ; ϕ; Γ; Q ` e2 : t1
Ψ; ϕ; Γ; Q ` e1 e2 : t2

We now have three subcases depending on which rule was used to make
(H, e1 e2) take a step.

If Rule (3.1), that is,

P ` (H, e1) ; (H ′, e′1)

P ` (H, e1 e2) ; (H ′, e′1 e2)
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was used to take a step, then we have from the induction hypothesis that
we have Ψ′ such that Ψ � Ψ′, Ψ′; ϕ; Γ; Q ` e′1 : t1 → t2, and |= H ′ : Ψ′.
From Ψ � Ψ′ and Ψ; ϕ; Γ; Q ` e2 : t1 we have Ψ′; ϕ; Γ; Q ` e2 : t1. From
Ψ′; ϕ; Γ; Q ` e′1 : t1 → t2 and Ψ′; ϕ; Γ; Q ` e2 : t1, and Rule (3.64), we
conclude Ψ′; ϕ; Γ; Q ` e′1 e2 : t2.

If Rule (3.2), that is,

P ` (H, e2) ; (H ′, e′2)

P ` (H, v e2) ; (H ′, v e′2)

was used to take a step, then we have from the induction hypothesis that
we have Ψ′ such that Ψ � Ψ′, Ψ′; ϕ; Γ; Q ` e′2 : t1, and |= H ′ : Ψ′. From
Ψ � Ψ′ and Ψ; ϕ; Γ; Q ` e1 : t1 → t2 we have Ψ′; ϕ; Γ; Q ` e1 : t1 → t2.
From Ψ′; ϕ; Γ; Q ` e1 : t1 → t2 and Ψ′; ϕ; Γ; Q ` e′2 : t1, and Rule (3.64),
we conclude Ψ′; ϕ; Γ; Q ` e1 e′2 : t2.

If Rule (3.3), that is,

P ` (H, (λx : t.e)v) ; (H, e[x := v])

was used to take a step, then we have from Rule (3.61) that Ψ; ϕ; Γ[x :
t1]; Q ` e : t2, so we pick Ψ′ = Ψ and we have from Lemma 1 that
Ψ; ϕ; Γ; Q ` e[x := v] : t2.

• Rule (3.65): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : Πα : k.t1 Ψ; ϕ; Γ; Q ` e2 : t2
` t2 : k � W ϕ |= (constraint(k))[α := W ]

Ψ; ϕ; Γ; Q ` e1<e2> : t1[α := W ]

We now have three subcases depending on which rule was used to make
(H, e1<e2>) take a step.

If Rule (3.4) or Rule (3.5) was used to take a step, then the proof is similar
to that given above for the case of function application (Rule (3.1)); we
omit the details.

If Rule (3.6), that is,

P ` (H, (lam α : k.e)<w>) ; (H, e[α := w])

was used to take a step, then we have from Rule (3.62) that

Ψ; ϕ ∧ constraint(k); Γ; unknown ` e : t .
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We pick Ψ′ = Ψ. We pick α such that α does not occur free in ϕ. Let
ϕ′ = constraint(k). From Ψ; ϕ ∧ ϕ′; Γ; Q ` e : t and Lemma 2, we have
Ψ; (ϕ ∧ ϕ′)[α := W ]; Γ; Q ` e[α := W ] : t[α := W ], which is the same as
Ψ; ϕ ∧ (ϕ′[α := W ]); Γ; Q ` e[α := W ] : t[α := W ]. From Ψ; ϕ ∧ (ϕ′[α :=
W ]); Γ; Q ` e[α := W ] : t[α := W ], ϕ |= ϕ′[α := W ], and Lemma 3, we
have Ψ; ϕ; Γ; Q ` e[α := W ] : t[α := W ].

• Rule (3.66): the derivation is of the form:

Ψ; ϕ; Γ[x : t1]; Q ` e : t2 Q 6= unknown

Ψ; ϕ; Γ; Q ` λ•x : t1.e : t1 → t2

If Rule (3.7), that is,

P ` (H, λ•x : t1.e) ; (H, λx : t1.at(P){e})

was used to take a step, then from Q ∈ {P, unknown} and Q 6= unknown, we
have Q = P . From Rule (3.60) we have Ψ; ϕ; Γ[x : t1]; unknown ` P : pl P .
From Ψ; ϕ; Γ[x : t1]; unknown ` P : pl P and Ψ; ϕ; Γ[x : t1]; P ` e :
t2 and Rule (3.81), we have Ψ; ϕ; Γ[x : t1]; unknown ` at(P){e} : t2 .
From Ψ; ϕ; Γ[x : t1]; unknown ` at(P){e} : t2 and Rule (3.61) we have
Ψ; ϕ; Γ; Q ` λx : t1.at(P){e} : t1 → t2.

• Rule (3.67): the derivation is of the form:

Ψ; ϕ ∧ constraint(k); Γ; here ` e : t here 6= unknown

Ψ; ϕ; Γ; here ` lam•α : k .e : Πα : k .t

If Rule (3.8), that is,

P ` (H, lam•α : k.e) ; (H, lam α : k.at(P){e})

was used to take a step, then we can prove that Ψ; ϕ; Γ; here ` lam α :
k .at(P){e} : Πα : k .t in a manner similar to the previous case of
Rule (3.66); we omit the details.

• Rule (3.68): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e : reg r

Ψ; ϕ; Γ; Q ` new t[e] : t[r]

We now have two subcases depending on which rule was used to make
(H,new t[e]) take a step.

If Rule (3.9) was used to take a step, then the proof is similar to that given
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above for the case of function application (Rule (3.1)); we omit the details.

If Rule (3.10), that is,

P ` (H, new t[R]) ;

(H[l 7→ λp ∈ R.(default(t), distribute(R, p))], l)

where l is fresh

was used to take a step, then we have e = R, so from Rule (3.58) we have
r = R. We define Ψ′ to be an extension of Ψ[l 7→ t[R]] such that Ψ � Ψ′

and Ψ′ contains suitable definitions for the labels used in default(t); we
omit the details. Let H ′ be an extension of

H[l 7→ λp ∈ R.(default(t), distribute(R, p))]

such that H ′ contains suitable definitions for the labels used in default(t);
we omit the details. From Rule (3.59) we have Ψ′; ϕ; Γ; Q ` l : Ψ′(l). We
finally need to show |= H ′ : Ψ′. From the construction of Ψ′ and H ′ we
have that they extend the domains of Ψ and H, respectively, with the same
labels. From |= H : Ψ we have D(H) = D(Ψ), so we conclude D(H ′) =
D(Ψ′). Moreover, we have R = D(λp ∈ R.(default(t), distribute(R, p)))
and we have Ψ′; ϕ; Γ; Q ` default(t) : t. Finally, for each p ∈ R we have
H(l)(p).2 = distribute(R, p).

• Rule (3.69): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y1 : t[r1] Ψ; ϕ; Γ; Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` Q ≡ r1[@t(σ, r2)]

Ψ; ϕ; Γ; Q ` y1[y2] : t

If Rule (3.11), that is,

P ` (H, l[p]) ; (H, H(l)(p).1)
if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2

was used to take a step, then we have y1 = l and y2 = p. From Ψ; ϕ; Γ; Q `
l : t[r1] and Rule (3.59) we have that r1 = R and Ψ(l) = t[R]. We pick
Ψ′ = Ψ and from |= H : Ψ we have Ψ; ϕ; Γ; Q ` H(l)(p).1 : t.
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• Rule (3.70): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y1 : t[r1] Ψ; ϕ; Γ; Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

ϕ ` Q ≡ r1[@t(σ, r2)] Ψ; ϕ; Γ; Q ` e : t

Ψ; ϕ; Γ; Q ` y1[y2] = e : t

We now have two subcases depending on which rule was used to make
(H, y1[y2] = e3) take a step.

If Rule (3.12) was used to take a step, then the proof is similar to that
given above for the case of function application and Rule (3.1); we omit the
details.

If Rule (3.13), that is,

P ` (H, l[p] = v) ; (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]], v)
if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2

was used to take a step, then we have y1 = l, y2 = p, e = v. From
Ψ; ϕ; Γ; Q ` l : t[r1] and Rule (3.59) we have that r1 = R and Ψ(l) = t[R].
We have Ψ; ϕ; Γ; Q ` v : t so we need to prove |= H[l 7→ (H(l))[p 7→
(v, H(l)(p).2)]] : Ψ. From l ∈ D(H) we have D(H[l 7→ (H(l))[p 7→ v]]) =
D(H). Notice that H(l)(p).2 = H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]](l)(p).2.
The remaining thing to prove is

Ψ; ϕ; Γ; Q ` (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]])(l)(p).1 : t.

We have (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]])(l)(p).1 = v and we have
Ψ; ϕ; Γ; Q ` v : t.

• Rule (3.71): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e : t[r]

Ψ; ϕ; Γ; Q ` e.reg : reg r

We now have two subcases depending on which rule was used to make
(H, e.reg) take a step.

If Rule (3.14) was used to take a step, then the proof is similar to that
given above for the case of function application and Rule (3.1); we omit the
details.

If Rule (3.15), that is,

P ` (H, l.reg) ; (H,D(H(l))) if l ∈ D(H)
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was used to take a step, then we have from Ψ; ϕ; Γ; Q ` l : t[r] and
Rule (3.59) that Ψ(l) = t[r]. Moreover we have that r is of the form R.
From |= H : Ψ and Ψ(l) = t[R], we have D(H(l)) = R. We pick Ψ′ = Ψ
and from Rule (3.58) we conclude Ψ; ϕ; Γ; Q ` D(H(l)) : reg R.

• Rule (3.72): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y1 : t[r1] Ψ; ϕ; Γ; Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

Ψ; ϕ; Γ; Q ` y1[@sy2] : pl r1[@t(σ, r2)]

If Rule (3.16), that is,

P ` (H, l[@sp]) ; (H, H(l)(p).2) if l ∈ D(H) and p ∈ D(H(l))

was used to take a step, then we have y1 = l and y2 = p. From Ψ; ϕ; Γ; Q `
l : t[r1] and Rule (3.59) we have that r1 = R and Ψ(l) = t[R]. From
Ψ; ϕ; Γ; Q ` p : pt (σ, r2) and Rule (3.57) we have that σ = p. We
have H ′ = H and we pick Ψ′ = Ψ. From |= H : Ψ we have H(l)(p).2 =
distribute(R, p) and D(H(l)) = R. From Rule (3.60) we have that we
must show H(l)(p).2 ≡ r1[@t(σ, r2)]. We have r1[@t(σ, r2)] = R[@t(p, r2)].
We have H(l)(p).2 = distribute(R, p). We also have ϕ |= r2 ⊆t R and
ϕ ` p ∈t r2 so from Rule (3.53) we have ϕ ` R[@t(p, r2)] ≡ distribute(R, p).
We conclude H(l)(p).2 = distribute(R, p) ≡ R[@t(p, r2)] = r1[@t(σ, r2)], as
desired.

• Rule (3.73): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : reg r1 Ψ; ϕ; Γ; Q ` e2 : reg r2

Ψ; ϕ; Γ; Q ` e1 ∪s e2 : reg r1 ∪t r2

We now have three subcases depending on which rule was used to make
(H, e1 ∪s e2) take a step.

If Rule (3.17) or Rule (3.18) was used to take a step, then the proof is similar
to that given above for the case of function application and Rule (3.1); we
omit the details.

If Rule (3.19), that is,

P ` (H, R1 ∪s R2) ; (H, R1 ∪R2)

was used to take a step, then we have from Rule (3.58) that we must show
ϕ ` R1 ∪t R2 ≡ R1 ∪R2, which is Rule (3.43).
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• Rule (3.74): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : reg r1 Ψ; ϕ; Γ; Q ` e2 : reg r2

Ψ; ϕ; Γ; Q ` e1 ∩s e2 : reg r1 ∩t r2

We now have three subcases depending on which rule was used to make
(H, e1 ∩s e2) take a step.

If Rule (3.20) or Rule (3.21) was used to take a step, then the proof is similar
to that given above for the case of function application and Rule (3.1); we
omit the details.

If Rule (3.22), that is,

P ` (H, R1 ∩s R2) ; (H, R1 ∩R2)

was used to take a step, then we have from Rule (3.58) that we must show
ϕ ` R1 ∩t R2 ≡ R1 ∩R2, which is Rule (3.45).

• Rule (3.75): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e : reg r

Ψ; ϕ; Γ; Q ` e +s c : reg r +t c

We now have two subcases depending on which rule was used to make
(H, e +s c) take a step.

If Rule (3.23) was used to take a step, then the proof is similar to that
given above for the case of function application and Rule (3.1); we omit the
details.

If Rule (3.24), that is,

P ` (H, R +s c) ; (H, R + c)

was used to take a step, then we have from Rule (3.58) that we must show
ϕ ` R +t c ≡ R + c, which is Rule (3.47).

• Rule (3.76): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e : pt (σ, r)

Ψ; ϕ; Γ; Q ` e ++sc : pt (σ ++tc, r +t c)

We now have two subcases depending on which rule was used to make
(H, e ++sc) take a step.

If Rule (3.25) was used to take a step, then the proof is similar to that
given above for the case of function application and Rule (3.1); we omit the
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details.

If Rule (3.26), that is,

P ` (H, p ++sc) ; (H, p + c)

was used to take a step, then we have from Rule (3.57) that we must show
ϕ ` p ++tc ≡ p + c, which is Rule (3.51).

• Rule (3.77): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y1 : reg r Ψ; ϕ; Γ; Q ` y2 : pl π

Ψ; ϕ; Γ; Q ` y1 % y2 : reg r %t π

If Rule (3.27), that is,

P ` (H, R % P ′]) ; (H, R′)

where R′ = { p ∈ R | distribute(R, p) = P ′ }

was used to take a step, then we have from Rule (3.58) that we must show
ϕ ` r % π ≡ R′, which is Rule (3.49).

• Rule (3.78): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : reg r Q 6= unknown
Ψ; ϕ ∧ (α ∈t r); Γ[x : pt (α, r)]; Q ` e2 : t

Ψ; ϕ; Γ; Q ` for (x in e1){e2} : int
(where α is fresh)

We now have two subcases depending on which rule was used to make
(H, for (x in e1){e2}) take a step.

If Rule (3.28) was used to take a step, then the proof is similar to that
given above for the case of function application and Rule (3.1); we omit the
details.

If Rule (3.29), that is,

P ` (H, for (x in R){e2}) ;

(H, ((lam•α : point(α ∈t R).λ•x : (α, R).e2)<c1>)c1; . . . ;

((lam•α : point(α ∈t R).λ•x : (α, R).e2)<cn>)cn; 0)

where order(R) = 〈c1, . . . , cn〉

was used to take a step, then we have r = R. From Ψ; ϕ; Γ[x : pt (α, R)]; Q `
e2 : t, Q 6= unknown and Rule (3.66) we have Ψ; ϕ; Γ; Q ` λ•x : (α, R).e2 :
pt (α, R) → t.

101



From Ψ; ϕ; Γ; Q ` λ•x : (α, R).e2 : pt (α, R) → t and Rule (3.67) we have

Ψ; ϕ; Γ; Q ` lam•α.λ•x : (α, R).e2 : Πα : point(α ∈t R).pt (α, R) → t.
(3.89)

From Rule (3.57) and the definition of order(R) we have Ψ; ϕ; Γ; Q ` ci :
pt (ci, R). From Ψ; ϕ; Γ; Q ` ci : pt (ci, R) and (3.89) and ` (ci, R) :
point(α ∈t R) � ci and ϕ |= constraint(point)[α := ci] and Rule (3.65) we
have

Ψ; ϕ; Γ; Q ` (lam•α.λ•x : (α, R).e2)<ci> : pt (ci, R) → t[α := ci]. (3.90)

From (3.90) and Ψ; ϕ; Γ; Q ` ci : pt (ci, R) and Rule (3.64) we have
Ψ; ϕ; Γ; Q ` ((lam•α.λ•x : (α, R).e2)<ci>)ci : t[α := ci]. From Rule (3.80)
and Rule (3.56) we conclude

Ψ; ϕ; Γ; Q ` ((lam•α.λ•x : (α, R).e2)<c1>)c1; . . . ;

((lam•α.λ•x : (α, R).e2)<cn>)cn; 0 : int.

• Rule (3.79): the derivation is of the form:

Ψ; ϕ; Γ[x : pl α]; Q ` e : t Q 6= unknown

Ψ; ϕ; Γ; Q ` forallplaces x{e} : int
(where α is fresh)

If Rule (3.30), that is,

P ` (H, forallplaces x{e}) ;

(H, ((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ;

((lam•α : place.λ•x : pl α.e)<Pn>)Pn; 0)

where places = 〈P1, . . . , Pn〉

was used to take a step, then we can prove that Ψ; ϕ; Γ; here ` ((lam•α :
place.λ•x : pl α.e)<P1>)P1 ; . . . ; ((lam•α : place.λ•x : pl α.e)<Pn>)Pn ; 0 ) :
int in a fashion similar to the case for for-loops and Rule (3.78) and
Rule(3.29); we omit the details.

• Rule (3.80): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : t1 Ψ; ϕ; Γ; Q ` e2 : t2
Ψ; ϕ; Γ; Q ` e1; e2 : t2

We now have two subcases depending on which rule was used to make
(H, e1; e2) take a step.
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If Rule (3.31) was used to take a step, then the proof is similar to that
given above for the case of function application and Rule (3.1); we omit the
details.

If Rule (3.32), that is,

P ` (H, v; e) ; (H, e)

was used to take a step, then we pick Ψ′ = Ψ and we have Ψ; ϕ; Γ; Q ` e : t2.

• Rule (3.81): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y : pl π Ψ; ϕ; Γ; π ` e : t

Ψ; ϕ; Γ; Q ` at(y){e} : t

We now have two subcases depending on which rule was used to make
(H, at(x){e}) take a step.

If Rule (3.33), that is,

P ′ ` (H, e) ; (H ′, e′)

P ` (H, at(P ′){e}) ; (H, at(P ′){e′})

was used to take a step, then we have that y = P ′. From Rule (3.60) we
have that π = P ′. So, we can apply the induction hypothesis to Ψ; ϕ; Γ; π `
e : t and get that Ψ; ϕ; Γ; π ` e′ : t. From Rule (3.81) we conclude that
Ψ; ϕ; Γ; Q ` at(y){e′} : t.

If Rule (3.34), that is,

P ` (H, at(P ′){v}) ; (H, v)

was used to take a step, then we have H ′ = H and we pick Ψ′ = Ψ.
We also have e = v. From Ψ; ϕ; Γ; π ` v : t and Lemma 4, we have
Ψ; ϕ; Γ; here ` v : t .

• Rule (3.82): the derivation is of the form

Ψ; ϕ; Γ; here ` e : t ϕ ` t ≡ t ′

Ψ; ϕ; Γ; here ` e : t ′

From the induction hypothesis we have Ψ′, t′′ such that Ψ�Ψ′, Ψ′; ϕ; Γ; Q `
e′ : t′′, |= H ′ : Ψ′, and ϕ ` t ≡ t′′. From ϕ ` t ≡ t′ and ϕ ` t ≡ t′′ and
Rule (3.37) and Rule (3.36), we have ϕ ` t′ ≡ t′′. From Rule (3.82) we
conclude that Ψ; ϕ; Γ; here ` e ′ : t ′.

2
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Theorem 3.5.2 (Progress) For a place P , let Q ∈ {P, unknown}. If Ψ; true; ∅; Q `
e : t and |= H : Ψ, then (H, e) is not stuck at place P .

Proof. We proceed by induction on the structure of the derivation of

Ψ; true; ∅; Q ` e : t. (3.91)

There are now twenty-five subcases depending on which one of the type rules was
the last one used in the derivation of Ψ; true; ∅; Q ` e : t.

In seven of those cases, the derivation is of the form: Ψ; true; ∅; Q ` v : t.
where v is a value, hence (H, v) is not stuck at place P . The derivation cannot
be of the form: Ψ; true; ∅; Q ` x : t because Rule (3.63) cannot apply. We will
now consider each of the remaining seventeen cases.

• Rule (3.64): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : t1 → t2 Ψ; true; ∅; Q ` e2 : t1
Ψ; true; ∅; Q ` e1 e2 : t2

From the induction hypothesis, we have that (H, e1), (H, e2) are not stuck
at place P . If (H, e1) can take a step at place P , then (H, e1 e2) can take
also a step at place P using Rule (3.1). If e1 is a value and (H, e2) can
take a step at place P , then also (H, e1 e2) can take a step at place P using
Rule (3.2). If e1, e2 are both values, then we have from Lemma 5 that e1 is
of the form λx : t.e, so (H, e1 e2) can take a step at place P using Rule (3.3).

• Rule (3.65): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : Πα : k.t1 Ψ; true; ∅; Q ` e2 : t2
` t2 : k � W true |= (constraint(k))[α := W ]

Ψ; true; ∅; Q ` e1<e2> : t1[α := W ]

From the induction hypothesis, we have that (H, e1) is not stuck at place
P . If (H, e1) can take a step at place P , then (H, e1<e2>) can also take
a step at place P using Rule (3.4). If e1 is a value and (H, e2) can take
a step at place P , then (H, e1<e2>) can take also a step at place P using
Rule (3.5). If e1, e2 are both values, then we have from Lemma 5 that e1

is of the form lam α : k.e, and we have from ` t2 : k � W and Lemma 5
that e2 is of the form w, so (H, e1<e2>) can take a step using Rule (3.6).

• Rule (3.66): the derivation is of the form:

Ψ; true; ∅[x : t1]; Q ` e : t2 Q 6= unknown

Ψ; true; ∅; Q ` λ•x : t1.e : t1 → t2
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From Rule (3.7) we have that λ•x : t1.e can take a step.

• Rule (3.67): the derivation is of the form:

Ψ; ϕ ∧ constraint(k); Γ; Q ` e : t Q 6= unknown

Ψ; ϕ; Γ; Q ` lam•α : k.e : Πα : k.t

From Rule (3.8) we have that lam•α : k.e can take a step.

• Rule (3.68): the derivation is of the form:

Ψ; true; ∅; Q ` e : reg r

Ψ; true; ∅; Q ` new t[e] : t[r]

From the induction hypothesis we have that (H, e) is not stuck at place P .
If (H, e) can take a step at place P , then (H,new t[e]) can also take a step
at place P using Rule (3.9). If e is a value, then we have from Lemma 5
that e is of the form R, so (H,new t[e]) can take a step using Rule (3.10).

• Rule (3.69): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : t[r1] Ψ; true; ∅; Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` Q ≡ r1[@t(σ, r2)]

Ψ; true; ∅; Q ` y1[y2] : t

We have that y1, y2 must be values and we have from Lemma 5 that y1

is of the form l, l ∈ D(Ψ) and y2 is of the form p. Further we have that
Q = P since unknown is not equivalent to anything other than itself. Let
t[R] denote Ψ(l). From l ∈ D(Ψ) and |= H : Ψ, we have that l ∈ D(H) and
R = D(H(l)). We have r1 = R. From the type rule for point constants, we
have that r2 is of the form R′ and that p ∈ R′. We have true |= R′ ⊆t R.
From true |= R′ ⊆t R, we have R′ ⊆ R, hence p ∈ R′ ⊆ R. From H |= Ψ
we have distribute(R, p) = H(l)(p).2. From Rule (3.57) we have σ = p. We
conclude P = r1[@t(σ, r2)] = distribute(R, p) = H(l)(p).2. So, (H, e1[e2])
can take a step using Rule (3.11).

• Rule (3.70): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : t[r1] Ψ; true; ∅; Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 true |= σ ∈t r2

true ` Q ≡ r1[@t(σ, r2)] Ψ; true; ∅; Q ` e : t

Ψ; true; ∅; Q ` y1[y2] = e : t

We have that y1, y2 must be values and we have from Lemma 5 that y1 is of
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the form l, l ∈ D(Ψ) and y2 is of the form p. Further we have that Q = P ,
since unknown is not equivalent to anything other than itself. From the
induction hypothesis we have that (H, e) is not stuck at place P . If (H, e)
can take a step at place P , then (H, y1[y2] = e) can also take a step at
place P using Rule (3.12). Suppose now that e is a value. The proof that
y1[y2] = e can take a step at place P using Rule (3.13) is similar to that
given above for the case of array lookup (Rule (3.69)), because Rule (3.11)
has the same side condition; we omit the details.

• Rule (3.71): the derivation is of the form:

Ψ; true; ∅; Q ` e : t[r]

Ψ; true; ∅; Q ` e.reg : reg r

From the induction hypothesis we have that (H, e) is not stuck. If (H, e) can
take a step at place P , then (H, e.reg) can also take a step using Rule (3.14).
If e is a value, then (H, e.reg) can take a step using Rule (3.15).

• Rule (3.72): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : t[r1] Ψ; true; ∅; Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 true |= σ ∈t r2

Ψ; true; ∅; Q ` y1[@sy2] : pl r1[@t(σ, r2)]

We have that y1, y2 must be values and we have from Lemma 5 that y1 is
of the form l, l ∈ D(Ψ) and y2 is of the form p. The proof that y1[@sy2]
can take a step at place P using Rule (3.16) is similar to that given above
for the case of array lookup and update (Rules (3.69) and (3.70)), because
Rules (3.11)and (3.13) have merely a stronger side condition; we omit the
details.

• Rule (3.73): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : reg r1 Ψ; true; ∅; Q ` e2 : reg r2

Ψ; true; ∅; Q ` e1 ∪s e2 : reg r1 ∪t r2

From the induction hypothesis we have that (H, e1), (H, e2) are not stuck
at place P . If (H, e1) can take a step at place P , then (H, e1 ∪s e2) can also
take a step at place P using Rule (3.17). If e1 is a value and (H, e2) can
take a step at place P , then (H, e1 ∪s e2) can also take a step at place P
using Rule (3.18). If e1, e2 are both values, then we have from Lemma 5
that e1 is of the form R1 and that e2 is of the form R2, so (H, e1 ∪s e2) can
take a step at place P using Rule (3.19).
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• Rule (3.74): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : reg r1 Ψ; true; ∅; Q ` e2 : reg r2

Ψ; true; ∅; Q ` e1 ∩s e2 : reg r1 ∩t r2

From the induction hypothesis we have that (H, e1), (H, e2) are not stuck
at place P . If (H, e1) can take a step at place P , then (H, e1 ∩s e2) can also
take a step at place P using Rule (3.20). If e1 is a value and (H, e2) can
take a step at place P , then (H, e1 ∩s e2) can also take a step at place P
using Rule (3.21). If e1, e2 are both values, then we have from Lemma 5
that e1 is of the form R1 and that e2 is of the form R2, so (H, e1 ∩s e2) can
take a step at place P using Rule (3.22).

• Rule (3.75): the derivation is of the form:

Ψ; true; ∅; Q ` e : reg r

Ψ; true; ∅; Q ` e +s c : reg r +t c

From the induction hypothesis we have that (H, e) is not stuck at place P .
If (H, e) can take a step at place P , then (H, e +s c) can also take a step
at place P using Rule (3.23). If e is a value, then we have from Lemma 5
that e is of the form R, so (H, e +s c) can take a step at place P using
Rule (3.24).

• Rule (3.76): the derivation is of the form:

Ψ; true; ∅; Q ` e : pt (σ, r)

Ψ; true; ∅; Q ` e ++sc : pt (σ ++tc, r +t c)

From the induction hypothesis we have that (H, e) is not stuck at place P .
If (H, e) can take a step at place P , then (H, e ++sc) can also take a step
at place P using Rule (3.25). If e is a value, then we have from Lemma 5
that e is of the form p, so (H, e ++sc) can take a step at place P using
Rule (3.26).

• Rule (3.77): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : reg r Ψ; true; ∅; Q ` y2 : pl π

Ψ; true; ∅; Q ` y1 % y2 : reg r %t π

We have that y1, y2 must be values and we have from Lemma 5 that y1 is
of the form R and y2 is of the form P ′. So, (H, y1 % y2) can take a step at
place P using Rule (3.27).
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• Rule (3.78): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : reg r Q 6= unknown
Ψ; (α ∈t r); ∅[x : pt (α, r)]; Q ` e2 : t

Ψ; true; ∅; Q ` for (x in e1){e2} : int
(where α is fresh)

From the induction hypothesis we have that (H, e1) is not stuck at place
P . If (H, e1) can take a step at place P , then (H, for (x in e1){e2}) can
also take a step at place P using Rule (3.28). If e1 is a value, then we have
from Lemma 5 that e1 is of the form R, so (H, for (x in e1){e2}) can take
a step at place P using Rule (3.29).

• Rule (3.79): the derivation is of the form:

Ψ; ϕ; Γ[x : pl α]; Q ` e : t Q 6= unknown

Ψ; ϕ; Γ; Q ` forallplaces x{e} : int
(where α is fresh)

We have that forallplaces x{e} can take a step using Rule (3.30).

• Rule (3.80): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : t1 Ψ; true; ∅; Q ` e2 : t2
Ψ; true; ∅; Q ` e1; e2 : t2

From the induction hypothesis we have that (H, e1) is not stuck at place P .
If (H, e1) can take a step at place P , then (H, e1; e2) can also take a step at
place P using Rule (3.31). If e1 is a value, then (H, e1; e2) can take a step
at place P using Rule (3.32).

• Rule (3.81): the derivation is of the form:

Ψ; true; ∅; Q ` y : pl π Ψ; true; ∅; π ` e : t

Ψ; true; ∅; Q ` at(y){e} : t

We have that y must be a value and we have from Lemma 5 that y must be of
the form P ′. From the induction hypothesis we have that (H, e) is not stuck
at place P ′. If (H, e) can take a step at place P ′, then (H, at(y){e}) can
take a step at place P using Rule (3.33). If e is a value, then (H, at(y){e})
can take a step at place P using Rule (3.34).

• Rule (3.82): the derivation is of the form

Ψ; true; ∅; Q ` e : t true ` t ≡ t′

Ψ; true; ∅; Q ` e : t′
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From the induction hypothesis we have that e is not stuck at place P .

2

Corollary 3.5.3 (Type Soundness) For a place P , let Q ∈ {P, unknown}. If
Ψ; true; ∅; Q ` e : t and |= H : Ψ, then (H, e) cannot go wrong at place P .

Proof. Suppose (H, e) can go wrong at place P , that is, we have H ′, e′ such
that P ` (H, e) ;n (H ′, e′) and (H ′, e′) is stuck at place P . From Theorem 3.5.1,
Rule (3.37), and induction on n, we have Ψ′, t′ such that Ψ′; true; ∅; Q ` e′ : t′,
|= H ′ : Ψ′, and true |= t ≡ t′. From Theorem 3.5.2 we have that (H ′, e′) is not
stuck at place P , a contradiction. 2

3.6 Extended Region Algebra

The discussions in Section 3.4 focused on a simple core algebra of region oper-
ations based on the fundamental set operations union (∪), intersection (∩) and
shifting. However, additional set operators are required in practice for many
benchmarks (see Section 3.8). This section discusses various extensions of the
region algebra. The type-theoretic proofs given in previous sections continue to
work for any region algebra. Specifically, subtyping will be decidable if constraint
entailment for the respective region algebra is decidable.

This section gives a formal definition of the various region operators that are
used in the implementation. Many of the region operators were inspired by ZPL;
however, the notation and aspects such as distributions and places are different.
Some ZPL operators, such as bitmasks, are not listed – our implementation does
not support them and the existing benchmarks do not require them.

3.6.1 Points

Definition 1 (Point and Rank) A point p is an n + 1-tuple of integers p =
i0, . . . , in. We say that n + 1 is the rank of p. Points can never have rank zero.

Definition 2 (Point Order) Suppose p1 = i0, . . . , in and p2 = j0, . . . , jn. Then
≤ is defined lexicographically:

p1 ≤ p2 := i0 ≤ j0 ∨ ((i0 = j0) ∧ (i1 ≤ j1 ∨ . . . ∧ in = jn)) (3.92)
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Definition 3 (Point Addition and Subtraction) Suppose p1 = i0, . . . , in and
p2 = j0, . . . , jn. Point addition and subtraction are defined pairwise (just like vec-
tor addition and subtraction):

p1 ± p2 := i1 ± j1, . . . , in ± jn. (3.93)

3.6.2 Regions

Definition 4 (Region) A region is a finite set of points r = {p1, . . . , pn} where
all points pi must have the same rank. The rank of a region is the rank of all of its
points. We distinguish between empty regions by rank. In other words, the empty
region of rank 1 is different from the empty region of rank 2. We use r1 ⊆ r2 to
indicate that r1 is a subset of r2.

2

Definition 5 (Region Construction) The region constructor [ , ] : point ×
point → region such that for all points p1, p2 where the ranks of p1 and p2 must
be identical:

[p1 : p2] := {p : p1 ≤ p ∧ p ≤ p2} (3.94)

Definition 6 (Region Union, Intersection and Difference) Union, intersec-
tion and difference on regions are defined to be the usual union and intersection
on sets. These operations are only defined if the ranks of the regions are identi-
cal. Since we cannot use ∪, ∩ and \ in the X10 source language we use different
symbols to represent these canonical operations:

r1|r2 : = {p : p ∈ r1 ∨ p ∈ r2} (3.95)

r1&r2 : = {p : p ∈ r1 ∧ p ∈ r2} (3.96)

r1 − r2 : = {p : p ∈ r1 ∧ p /∈ r2} (3.97)

Definition 7 (Region Move) The region move operation + : region×point →
region is defined by

r + p1 := {p : p− p1 ∈ r} (3.98)

where the rank of p1 and r must be identical.

3.6.3 Places

A place represents an execution unit in the hardware. An X10 virtual machine
(XVM) provides a fixed, finite set of places E ; however, this number is not known

2In X10 source, ⊆ is expressed using <=. The canonical meaning by extension is given to
the <, >, >=, == and != operations.
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for type checking. The type equality rules identify type expressions that are
guaranteed to represent the same place. Note that there can be more place
expressions than the actual number of places in the XVM. However, given that
the source code is finite, there can still only be a finite number of place expressions.

3.6.4 Distributions

A distribution d is a mapping from points of identical rank to places, d : p → e.
The rank of a distribution is defined to be the rank of the underlying regions.
Distributions are used to represent distributed arrays.

Definition 8 (Distribution Construction) The distribution constructor ∗ :
region× place → distribution is an operation such that:

r ∗ e := d :r → E
p 7→ e.

Definition 9 (Distribution Restriction) The restriction operation on distri-
butions % : distribution× place → region is defined as

d%e := {p : d(p) ≡ e}.

Definition 10 (Distribution Union and Intersection) For d1 : r1 → E and
d2 : r2 → E where the ranks of d1 and d2 must be identical and∧

e1∈E
e2 6=e1

d1%e1 & d2%e2 ⊆ ∅, (3.99)

define

d1|d2 := d :r1|r2 → E (3.100)

p 7→

{
d1(p) , if p ∈ r1

d2(p) , if p ∈ r2 − r1

(3.101)

d1&d2 := d :r1&r2 → E (3.102)

p 7→ d1(p). (3.103)

Lemma 6 (Commutativity)

d1|d2 = d2|d1 (3.104)

d1&d2 = d2&d1 (3.105)

(3.106)
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Proof. Implied by (3.99). 2

Note that in (3.99) it would be sufficient to require e2 6≡ e1, however this
would make it impossible to statically decide that the given union or intersection
operation is sound.

Definition 11 (Subset Relation for Distributions) Let d1 : r1 → E and d2 :
r2 → E. We say that d1 ⊆ d2 if r1 ⊆ r2 and equation (3.99) holds.

Definition 12 (Distribution Access) In X10, the source-level array element
access operation [ ] : distribution× point → place corresponds to evaluating the
distribution function; that is

d[p] := d(p). (3.107)

Definition 13 (Region of Distribution) Let d : r → E. The region-of opera-
tion on distributions .reg : distribution → region is then defined as

d.reg := r.

3.6.5 Additional Point Operations

Definition 14 (Point Multiplication) Suppose p = i0, . . . , in and c ∈ Z. Then

p ∗ c := i1 ∗ c, . . . , in ∗ c. (3.108)

Definition 15 (Point Projection) Suppose p = i0, . . . , in. Then for k ∈ [0 : n]

p[k] := ik. (3.109)

For k1, . . . , km with kl ∈ [0 : n], we define

p[k1, . . . , km] := ik1 , . . . , ikm . (3.110)

Note that while m ≥ 1 is required, m > n is allowed.

3.6.6 Additional Region Operations

Definition 16 (Region Multiplication) ∗ : region × region → region is
defined as

r1∗r2 := {i1, . . . , in, in+1, . . . , in+m : i1, . . . , in ∈ r1∧in+1, . . . , in+m ∈ r2} (3.111)
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Definition 17 (Region Projection) [ , . . . , ] : region× Nm
0 → region is de-

fined as
r[k1, . . . , km] := {p[k1, . . . , km] : p ∈ r}. (3.112)

3.6.7 Additional Distribution Operations

Definition 18 (Distribution Move) The distribution move operation + :
distribution× point → distribution is defined by

d0 + p0 := d : d.reg + p0 → E
p 7→ d0(p− p0).

where the ranks of d0 and p0 must be identical.

Definition 19 (Distribution Multiplication) ∗ : region× distribution →
distribution is defined as

r ∗ d0 := d : (r ∗ d0.reg) → E
(pr, pd0) 7→ d0(pd0) where pr ∈ r ∧ pd0 ∈ d0.reg

∗ : distribution× region → distribution is defined as

d0 ∗ r := d : (d0.reg ∗ r) → E
(pd0 , pr) 7→ d0(pd0) where pd0 ∈ d0.reg ∧ pr ∈ r

In other words, the multiplication of a region and a distribution results in a dis-
tribution over the points in the products of the respective regions. The resulting
distribution maps a point in the product region to the same place to which part
of the point was mapped to by the original distribution used in the product.

Distribution multiplication as defined here is associative, but not commuta-
tive. Distributions can only be multiplied with regions, not with other distribu-
tions.

Definition 20 (Built-in Distributions) X10 provides various built-in distri-
bution constructors. As far as the type system is concerned, the semantics of
these constructors are all identical. For example, the semantics of the block

constructor is given by:
block(r) := d : r → E . (3.113)
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3.7 Implemented Design Features

We have implemented the presented type system in XTC-X10, a prototype im-
plementation of an X10 variant that is publicly available on my webpage3. The
implementation is able to type check all of the example programs from Section 3.3.
Our prototype has some syntactic differences in comparison with IBM’s reference
implementation of X10, mainly because we add additional features such as region
types, operator overloading, first-order functions and parametric types (generics).
This section discusses various implementation and language design choices that
relate to the type system. Additional details about the implementation can be
found in Section A.3 in the Appendix.

3.7.1 Rank

The core language presented in Section 3.4 does not consider array dimensions.
However, it is in general important for the type system to capture the rank of
a point, region, distribution or array. The region algebra defined in Section 3.6
specifically requires all points in a region to have the same rank. Capturing the
rank as part of the dependent type information is important for various reasons,
as detailed below.

Knowing the rank enables the type system to statically verify the safety of
the projection operations and accesses to the various point dimensions as integers
using X10’s exploded syntax (see [CDE05]). The code generator can exploit
knowledge about the rank when reserving memory for points and generating for

loops.

Rank expressions are limited to constant (positive) integers. The various re-
gion operations described in Section 3.6 require only addition and multiplication
with a constant. This ensures that deciding rank and rank equality is simple
and decidable (the relevant constraint expressions stay within Pressburger Arith-
metic). Note that adding the rank of a region to the facts tracked by the region
type system does not prevent code from being parametric over arrays of different
dimensionality. Figure 3.16 shows an example of code that safely operates on
arrays of ranks n and 2 · n. A simple change of the type of the second parameter
to Array<int#1> could be used to specialize the code for the case that n = 1.

3http://grothoff.org/christian/xtc/x10/
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void compact(Array<int;small.reg*small.reg> big, Array<int> small) {
for (p : small.reg)

for (q : small.reg)
small[p] += big[p * q];

}

Figure 3.16: The big array here has rank 2n where n is the rank of small. The
p∗q operation produces an n+n dimensional point by concatenation of the points
p and q.

class Array<T> {

nonexcepting T get(point<:this.dist % here> p);

@warn(slow)
nonexcepting T get(point<:this.dist.reg> p);

@warn(very slow)
T get(point p);

}

Figure 3.17: Use of overloading with region types.

3.7.2 Overloading

Dependently typed function arguments result in additional possibilities for over-
loading of methods. A particularly nice way of using overloading with dependent
types is shown in Figure 3.17.

The class defines three get methods to access elements of the Array. The
first method requires the type system to guarantee that the index is in bounds
and that the access will be local. This is the array access as described in the core
language. The second method requires the index to be in bounds but allows the
element to be non-local. Internally, the implementation will do a remote access;
consequently, the method is annotated with metadata warning the programmer
that calling this method will result in “slow” code. A development environment
might use such annotations to warn the programmer at the call site, for example
using syntax highlighting. Finally, the third variant is unsafe – it does not even
require the index to be in-bounds. Assuming that this variant internally checks for
the index to be in-bounds and otherwise throws an exception, it is annotated to be
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“very slow” and to possibly throw an exception (since it lacks the nonexcepting

modifier).

Using this style of overloading enables programmers to draft code without
worrying about locality or memory safety. However, it will be obvious where
memory safety may be violated and where performance is lost due to lack of
locality. If performance becomes important, the code can then later be improved
by changing types and constructions appropriately. This way, overloading can
help focus programmer activity on critical sections of the code and thus improve
programmer productivity.

Note that methods that are used to determine the dependent type of an ob-
ject must not rely on dependent overloading – this could result in undecidable
situations. For the compiler implementation, this means that an additional com-
pilation stage is required. After first computing the class hierarchy, the compiler
has to compute the signatures of members but disregard dependent type infor-
mation at this stage. Then, in a separate stage specific to compilers supporting
dependent typing, members with dependent type information are computed, –
possibly using the members without dependent type information. Use of mem-
bers that have the same signature without dependent types will not be possible at
this stage because the use would be obviously ambiguous. Once the dependently
typed member signatures have been computed, the last stage, code generation,
can proceed as usual.

3.7.3 Defaults

The XTC-X10 implementation differs from IBM’s X10 v0.4 in a few respects
centering around what we believe to be an important language design principle,
the API change rule. The rule can be phrased as follows:

“Unless the programmer specifically says otherwise, any API should
be as restrictive to clients as possible.”

The reasoning here is that as code evolves, it is always easy to make an API
more permissive; on the other hand, it is generally difficult to change an API to be
more restrictive since this breaks backwards compatibility with existing clients.
We do not want to ask programmers to think about possible useful restrictions or
limitations of their API – in general, programmers start with design requirements.

Java takes a different approach which focuses on flexibility and extensibility
– the default for classes, methods and fields is non-private and non-final. We
believe that code should not be extensible by design but become extensible by
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being extended. Consequently, lifting API limitations can be deferred until the
point where extensions require it.

Examples of the use of the API change rule in our implementation of X10
include method modifiers such as nonblocking and nonexcepting. By default,
the methods make no guarantees – they may block or throw exceptions. The
default visibility for fields and methods is private. Fields and local variables are
final by default. The modifier var is required to make them updateable. As a
result, the compiler can immediately construct dependent type information with
dependencies on most local variables (since they are guaranteed not to change).
In summary, the API change rule improves programmer productivity by making
it easier to evolve code without breaking backwards compatibility.

3.7.4 Type declarations

Writing region type expressions for all local variables is not only tedious but also
error-prone. Worse, in a design that uses overloading, it may often be impor-
tant to give a precise type for the local variable in order to achieve the desired
effect. Figure 3.18 presents a simple client that uses region (with a standard
java.util-style Iterator) and the Array class from Figure 3.17. Based on the
type declaration given for it, the Iterator’s next method will return elements
of type point. Consequently, for this code, the compiler would invoke the “very
slow” variant of get.

int m() {
Array<int> a = new Array<int>([0:4], 1);
Iterator<point> it = a.dist.reg.iterator();
var int sum = 0;
while (it.hasNext())

sum += a.get(it.next());
return sum;

}

Figure 3.18: Local variable type declarations causing trouble with overloading.

The programmer can address this problem by giving more precise types for
the Array and Iterator. Figure 3.19 gives the most precise types that are
legal for our implementation. Obviously, writing these huge type annotations
for every variable is cumbersome and likely to cause errors. While the type
checker will detect the use of an illegal type, it would accept any type that is a
parent type of the right hand side – like those types in Figure 3.18. This loss
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of type information due to imprecise local variable declarations, in particular in
combination with overloading, can be confusing to the programmer. Specifically,
the programmer might be surprised to see method resolution fail or result in
unexpected resolutions that go contrary to his reasoning in terms of the semantic
operations.

int m() {
Array<int;([0:4]*here):([0:4]*here)#1> a = new Array<int>([0:4], 1);
Iterator<point<:[0:4]#1>> it = a.dist.reg.iterator();
var int sum = 0;
while (it.hasNext())

sum += a.get(it.next());
return sum;

}

Figure 3.19: Local variable type declarations can be tedious.

A simple solution to this dilemma is to allow the programmer to simply not
declare types for final local variables (this is another important reason why local
variables should be final by default). In this case, the compiler can simply infer
the most specific type, which is usually what the programmer wants anyway.
In our implementation, programmers can use a “.” instead of a type for local
variables and have the compiler automatically “fill in the dot(s)”. The code given
in Figure 3.20 is equivalent to that of Figure 3.19 but more pleasant to read and
write.

int m() {
. a = new Array<int>([0:4], 1);
. it = a.dist.reg.iterator();
var int sum = 0;
while (it.hasNext())

sum += a.get(it.next());
return sum;

}

Figure 3.20: Local variable type declarations – not always necessary.
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3.7.5 Decision Procedure for Subtyping

This section describes the implementation of the decision procedure for deciding
subtyping relationships between region types in XTC-X10. From the point of
view of the compiler, the decision procedure takes two region expressions and
determines if they are in a subset relationship (or, for places, in an equality
relationship). The details of the expression algebra are described in Section A.3.7.
If the implementation can show that the subset (or equality) relationship holds
for the two expressions, it returns true, otherwise false.

The heuristic that provides the decision procedure for region types in XTC-
X10 consists of three main components. First, the decision procedure relies on a
simplification pass which produces a simplified version of the region expressions.
For example, an integer expression 1 + 2 would be simplified to 3, or a region
expression r1 ∪ r1 would be simplified to r1. The implementation applies this
simplification pass incrementally and immediately during the construction of the
region expressions.

The heuristic also contains a function to determine whether two expressions
can be shown to be equal. This pass is important for operations that involve
integer arithmetic, such as shifting of regions by a point, as well as place oper-
ations. Equality testing is most expensive for commutative expressions, such as
union and intersection of regions and addition of integers and points.

The main function of the decision procedure is used to determine subset rela-
tionships for regions and distributions as well as less-than relationships for points
and integers. The decision procedure contains a list of rules corresponding to
the types of the terms that are being compared. A rule is specified by giving
the types of the top-level expressions that are being compared, together with
code that tries to establish that the desired relationship holds. This is gener-
ally achieved by decomposing larger terms and recursively applying the decision
procedure to the smaller terms. If a particular rule fails to establish the subset
relationship, other rules that apply to the particular types of expressions are con-
sidered. Only if none of the applicable rules can establish the relationship does
the heuristic return false.

The rules are implemented as simple methods that take two arguments of
appropriate type. The decision procedure selects applicable methods based on
the types of the arguments and invokes these methods using reflection.

The decision procedure includes rules for integer arithmetic (Pressburger),
point arithmetic and the region operations from Section 3.6. The implementation
performs both symbolic reasoning (e.g. r1 ∩ r2 ⊆ r1), arithmetic reasoning (e.g.
[0 : 5] ⊆ [0 : 7]) and combinations of the two (e.g. r1∩ [0∗5]∗p%q ⊆ [0 : 6]∩r1).
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3.8 Experiments

We have converted some of the benchmarks from the IBM reference implemen-
tation of X10 to work with XTC-X10. Since those benchmarks were originally
written for languages without regions, most of the work has been put into making
the code use regions. However, simply using regions is not enough in general –
regions must be used in ways that enable the type system to show safety of array
accesses. This sometimes requires a measure of creativity, as illustrated by the
two versions of the crypt benchmark (in Appendix B).

The current XTC-X10 prototype uses an interpreter written in Java to execute
the generated code. As a result, giving meaningful performance numbers based
on XTC-X10 is not possible at this time. However, the performance impact of
eliminating bounds checks can be estimated by crudely disabling all checks in
an existing implementation. Disabling dynamic checks in IBM’s X10 reference
implementation improves performance by a factor of 3 for some benchmarks.
Similarly, disabling bounds checks in IBM’s Java Virtual Machine can improve
the performance of benchmarks with intensive array access patterns by a factor
of up to 1.75.4

In addition to raw performance, another important metric is programmer
productivity. Using region expressions can help the programmer express complex
constructions concisely. The DSOR benchmark is a good example of this. Static
checking also benefits programmer productivity – both array bounds violations
and locality violations would otherwise have to be resolved discovering the error
and runtime and researching the code to locate bugs; with the type system, the
type checker will point out such bugs at compile time.

3.8.1 The ArrayBench Benchmark Suite

The ArrayBench Benchmark Suite consists of seven benchmark programs. This
section briefly explains the functionality of each benchmark, the style of paral-
lelism (if any) and the overall amount of communication.

The X10 language model features two levels of parallelism: parallel execution
on different places and parallel execution at the same place. Consequently, for
each benchmark program we will give three figures: PP, SP and SW. The figure
PP is the amount of place-parallelism (for a maximum of P places available)
and describes how many places compute in parallel. A value of 1 indicates that
a computation is not distributed, a value of P is used for a computation that
uses all available places in parallel. The figure SP is the amount of single-place

4Personal communication with Christopher Donawa.
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name LOC # IR PP SP SW OM OS

Series 87 2018 P 1 n/P 0 0
KMP 74 2407 1 1 m + n 0 0
Reverse 96 3659 P 1 n/P P 2 n
Crypt 250 5759 1 P n/P 0 0
Crypt-2 220 5873 1 P n/P 0 0
SOR 70 1702 1 n n 0 0
DSOR 68 1742 P n/P n n n2

Table 3.1: Size (in lines of code (LOC) and number of nodes in the intermediate
representation (# IR) of the compiler) and classification of parallelism for the
benchmarks.

parallelism, in other words, how many activities are running in parallel at the
same place. In particular, these places will be able to access the same share of
the global partitioned address space. A value of 1 indicates that there is only
one activity per place involved in the computation. Finally, the figure SW is the
amount of sequential work that each parallel activity performs. The product of
PP, SP and SW gives the total amount of work required for the benchmark (for
example, O(n2) for SOR and DSOR).

For communication, we give two figures. OM is the number of messages ex-
changed. OS is the sum of the size of these messages. The figures for communica-
tion do not include initial distribution of the computation and data (which for all
parallel benchmarks can be done with OM(P ) messages transmitting OS(n/P )
data with P being the number of places).

Table 3.1 gives some fundamental benchmark statistics. The ArrayBench
benchmarks implement the following algorithms:

Series: Calculates the first n Fourier coefficients of the function (x + 1)x

defined on the interval [0, 2]. Uses one dependent cast in source code.

KMP: Sequential implementation of Knuth-Morris-Pratt string searching al-
gorithm (with pattern of size m and string of size n). Uses six dependent casts
in source code.

Reverse: Given an array distributed across places, reverses the order of the
elements. Uses two dependent casts in source code.

Crypt: Implements the IDEA symmetric blockcipher (encrypt and decrypt)
using integer increment operations to iterate over a stream. Uses 9 dependent
casts in source code.

Crypt-2: Implements the IDEA symmetric blockcipher (encrypt and de-

121



crypt) using region iterators to iterate over a stream. Uses 3 dependent casts in
source code.

SOR: Given a 2D array, performs successive over-relaxation [PFT92] of an
n× n matrix. Uses two dependent casts in source code.

DSOR: Given a 2D array, performs distributed successive over-relaxation of
an n× n matrix. Uses no casts.

The source code for Crypt, Crypt-2 and DSOR is given in Appendix B.

3.8.2 Region and Place Casts in the Benchmarks

The region casts and place casts in the benchmarks roughly fall into three cate-
gories:

1. Required casts due to the fact that the type checker is flow insensitive.
The classical Java equivalent for this kind of type cast is of the form if (a

instanceof B) B b = (B) a; . Here, the cast itself is always guarded
by an dominating branch that yields an assertion that the cast will succeed.
These casts should be considered to be free at runtime since a reasonable
compiler should be able to completely eliminate the check. They could be
avoided entirely if the compiler was flow-sensitive to begin with; however,
such a choice is likely to result in problems with respect to programmers’
understanding of overloading resolution. In terms of language design, we
believe it is better to require the programmer to put in explicit casts even
if the control-flow already yields equivalent assertions.

2. Casts are used to cover certain corner cases that could be avoided (but
at the expense of using significantly more complex type constructions).
For example, a function may operate on arrays of arbitrary size as long
as they are not empty. Such a corner case might be covered by requiring
the programmer to supply an additional point and have the array satisfy
the condition that it must contain this point and only points larger than
it. A programmer might choose to instead obtain the minimum point of
the array using the build-in min operator and use a cast (to not-null) to
establish that the point exists. Our design allows the programmer to decide
that the simplicity of a cast might be a better choice than a complex type
construction. Typically, the cost of these casts for corner cases is minimal –
programmers are likely to use them outside of loops, and often the particular
checks themselves are also rather inexpensive. The reason for this is that if
the cast is in a critical section of the code, the programmer has the option
of using more elaborate types.
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Array<point<#1>> overlap(int m, ValueArray<int:([0:m-1])#1> pat) {
if (m <= 0)

throw new Exception(”Empty pattern!”);
. overlap = new Array<point<#1>>([0:m], 0p);
overlap[(point<:([0:m])>)0p] = -1p; // CAST #1
for (p : [1:m]) {

. prev = p - 1p;
overlap[p] = overlap[prev] + 1p;
while ( (overlap[p] > 0p) &&

(pat[prev] != pat[(point<:pat.reg>) // CAST #2
(overlap[p]-1p)]) )

overlap[p] = 1p + overlap
[(point<:pat.reg>) // CAST #3
(overlap[p]-1p)];

}
}

Figure 3.21: Overlap computation for Knuth-Morris-Pratt.

3. Casts used to produce loop invariants which the type rules are unable to
establish and that are necessary for type checking the loop or code depend-
ing on the result of the computation performed by the loop. In these cases,
the programmers must add casts to produce the necessary invariants. Nat-
urally, the compiler may still be able to use flow information to reduce the
cost of these casts; however, eliminating the check completely would require
a theorem-prover that is stronger than what our type-system can offer.

For example, function overlap (Figure 3.21) computes the partial match table
(or failure function) of the Knuth-Morris-Pratt string searching algorithm [KJP77].
The syntax is similar to Java and C++. ValueArray is an immutable array, which
means that accesses are not required to be local – only in-bounds. The language
uses “.” for the type of a local variable that the compiler is supposed to infer
from the right hand side of the assignment. The type annotation <#1> adds the
requirement that the respective point, region or array is one-dimensional. The
type annotation <:r> specifies that the respective point must be contained in the
region r.

Cast #1 (identified by comments in Figure 3.21) in overlap falls into both
category 1 and 2. The fact that m was tested to be positive in the first line of the
function establishes that 0p is in the (now non-empty) interval [0 : m]. However,
because the type checker is flow-insensitive, a cast is needed. The programmer
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name entailment checks dynamic dependent casts
total max. without types with types

number size S L S L

Series 7324 24 12 23 2 2
KMP 11705 42 150 618 124 496
Reverse 48138 46 114 240 12 48
Crypt 24898 24 2684 9980 2591 9887
Crypt-2 65316 31 2684 9980 15 15
SOR 62488 95 192 1200 2 2
DSOR 105374 115 192 1200 0 0

Table 3.2: Numbers of dynamic checks required for the benchmarks.

might have chosen to declare m to be strictly positive – a minimal and sane
restriction of the API – and avoided both the cast and the sanity check in the first
line. Capturing such corner cases with types is often possible, but programmers
are likely to use such ”dirty” casts wherever they fail to find appropriate types.

Cast #2 highlights the problem that the type-system may not always be able
to establish proper loop invariants (category 3). For the points in the overlap
array, the type-system does verify that all points are one-dimensional. However,
it cannot establish a loop invariant that would show that the assignment of the
form overlap[p] = overlap[q] + 1p never produces points with a value larger
than m + 1. Cast #3 is simply repeating the same cast as cast #2 and could thus
be considered falling into both categories 1 and 3.

3.8.3 Measurements and Assessment

Our implementation can type check and execute the benchmark programs listed
above along with the five type-safe example programs from Section 3.3. We
collected our measurements by instrumenting the implementation of our X10
variant.

Table 3.2 table shows the number of dynamic checks required for the various
benchmarks. We ran each benchmark on two input sizes (marked as “S” for small
input, and as “L” for large input).

3.8.3.1 Dependent casts

Our implementation supports dependent casts in order to allow the programmer
to execute programs for which the reasoning performed by the type system is
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insufficient to prove their safety. Such casts show the limitations of our approach
– in essence, at this point the language falls back to dynamic checks. In order to
improve performance, programmers might therefore be interested in eliminating
these dependent casts. The classification scheme described earlier details which
casts actually impact performance at runtime and which casts may be eliminated
by restructuring the application.

Using the classification scheme, the majority of the static type casts required
for the ArrayBench suite falls into the category (3), followed by casts in category
(1). Casts in category (1) are usually obvious to the programmer and have no
runtime overhead. Determining that a cast falls into category (2) or (3) is less
obvious – the reason for this is that there might be non-obvious ways to change
the structure or typing of the code which would allow the cast to be eliminated.
For ArrayBench, there is on average one such cast in 50 lines of code. Because
these casts are infrequent, the effort required from the programmer to investigate
possible restructuring of the code to eliminate such casts – should they be in
performance-critical sections of the code – is acceptable.

3.8.3.2 Compilation cost

Using the types, the type checking pass of the compiler will verify that all array
accesses are in bounds and local using a decision procedure that tries to deter-
mine subset relationships between symbolic expressions. Note that the XTC-X10
compiler allows overloading of methods based on dependent typing, resulting in
many more invocations of the decision procedure than there are static array ac-
cesses in the code. The heuristic used to determine subset relationships that is
implemented in our prototype has exponential complexity. However, the prob-
lem sizes are relatively small (up to 115 nodes in the symbolic expression tree
for ArrayBench). We expect this to continue to be true even for larger bench-
marks than the ones studied since type checking can be done per method, and
individual methods are unlikely to become extremely large. For the size of the
expressions studied in our experiments, the execution time of our heuristic is so
fast that it cannot be properly measured, especially given that the implementa-
tion is currently in Java where noise from the garbage collector and JIT compiler
interfere with measurements on that scale. The total compile time of the Array-
Bench benchmarks, including parsing and compilation of 3.000 lines of core X10
runtime libraries, is about 5s on a modern machine for a cold run of the JVM.
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3.8.3.3 Performance impact

Our prototype does not allow us to gather meaningful runtime performance data
for the generated code. XTC-X10 compiles the benchmarks into SSA-form which
is currently interpreted using a multi-threaded interpreter which is written in
Java and simulates a distributed runtime. While this does not allow us to give
specific speed-up data, it is possible to count the number of bounds and place
checks that a language without region types would have to perform and compare
it to the number of dynamic region and place casts (which are equivalent to those
bounds and place checks) in the typed language. We do not distinguish between
bounds checks and place checks because for array locality, any place check is
effectively a bounds check for place-adjusted bounds. Consequently, for some
particular checks, the distinction would often not be possible.

As expected, the typed language always outperforms the untyped language
in terms of the total number of dynamic checks required. For some benchmarks
(KMP, Crypt), the reduction that can be achieved is rather small – here, most
accesses had to be converted into casts of category (3). For other benchmarks,
only a handful of casts remain, and these are often in code that is run only once.
This is illustrated by running the benchmarks with two different input sizes. For
Series, Crypt2, SOR and DSOR, the total number of dynamic checks does not
change if the problem size is increased. The reason for this is that the casts here
deal with corner cases, such as initialization. Note that the particular problem
sizes chosen for the benchmarks are tiny – for example, the smaller version of
Crypt uses a stream of 128 bytes, SOR uses a 6x6 array, and Series computes 3
Fourier coefficients. For larger benchmark sizes, the reduction in the number of
dynamic checks will clearly be more dramatic, as shown by the respective second
dynamic values.

3.8.3.4 Style matters

The Crypt-2 benchmark deserves some further discussion. The difference be-
tween Crypt and Crypt-2 is that most casts were eliminated by replacing integer-
arithmetic that was used to walk over the stream (i++) with iterators over regions.
These iterators are equivalent to the generators of the ordered point list in the
operational semantics of the for statement in the core language. In particular,
they are guaranteed to yield only points that are inside of the region (unlike the
i++ statement which, if used in a loop, does not have an obvious bound). Permit-
ting the programmer to use the (region-typed) iterators directly instead of a for

loop allows preservation of the original structure of the code. Iterators do have
the disadvantage that there is an implicit check – as part of the iterator logic,
the iterator verifies a next element actually exists. This check is a range-check
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Language X10 Fortress Chapel Titanium CA-Fortran ZPL

Place structure flat hierarchical flat flat flat single
Access model non-value uniform uniform global/local global/local uniform

access local
Array shapes arbitrary rectangular arbitrary rectangular rectangular arbitrary
Array size finite finite finite or inf. finite finite finite
Region algebra rich none small rich none rich
Dist. algebra rich small build-ins none SPMD only n/a
Memory safety yes unknown yes optional no unknown

Table 3.3: Features of HPC languages.

that could be seen as a bounds check; however, the check of the iterator is also
similar to the bounds check performed by any for loop. The numbers given for
Crypt-2 do not include the test performed by the iterator, just as the numbers
in all benchmarks do not include tests performed for the execution of for loops.

3.9 Related Work

As already discussed in Section 3.2, many recent HPC languages feature a con-
struct similar to regions. However, the languages differ significantly in their
support of regions and use of terminology. Table 3.4 gives an overview of the ter-
minology used by various HPC languages for constructs that related to the type
system presented in this chapter. Often these developing languages use different
terms for the same or very similar abstractions. In this chapter, we have been
using the terminology used by X10. Table 3.3 compares the features of various
HPC languages with respect to arrays and memory. We say that the model of
distributed memory is uniform if from the programmers point of view there is
only one kind of memory. The model is flat if different partitions of the mem-
ory exist, but they have no structured relationship between them. The model is
hierarchical if the partitions represent a memory hierarchy with multiple levels.
Access is uniform if the the programmer does not need to distinguish between
accesses to different partitions. With global/local access, the programmer is able
to access remote memory using specific constructs. In X10, programmers cannot
directly access mutable remote memory – the computation must move. In other
words, in X10, non-value access must be local with respect to the computation.
Note that some of the listed HPC languages are still experimental. We base
our statements on the limited documentation available at this time, which often
reflects the state of early prototypes. When the language description does not
seem to use a term or if it does not seem to specify the behavior, the respective
entry in the table lists unknown. If the concept does not apply to the language,
the table lists n/a.
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Language X10 Fortress Chapel Titanium CA-Fortran ZPL
Locality Place Region locale demesnes image n/a
set of array indices region n/a domain domain n/a region
array index point index index point index index
immutable data value value unknown immutable n/a n/a
dimensionality rank unknown unknown arity rank rank

Table 3.4: HPC language terminology overview.

ZPL [CCL00, Cha01, CS01, DCS02] does not feature places or distributions;
however, its region algebra is extremely rich. For example, it contains operations
that allow the specification of a sparse region using a bitmask, as well as multi-
plication of a region with an integer to obtain a banded region. ZPL is able to
generate efficient code for these constructs in part by restricting the way regions
can be used. In particular, regions in ZPL are not first class values. Other lan-
guages, such as Titanium, feature more general regions but restrict their practical
use to rectangular shapes which are easier to implement efficiently. For X10, the
assumption is that sophisticated compiler support will enable efficient implemen-
tation of complex, ZPL-style region constructs while allowing the programmer
the flexibility of regions as first class values. How this can be achieved is still
an open research question. For this chapter, the described region algebras are
not designed around the needs of the code generator but rather for the needs of
programmers and the type system. Efficient code generation for these constructs
is left for future work.

HPC languages also widely differ in their specific support for distributed mem-
ory. Traditional research has focused on automatic data distribution [GB93,
LK02, KK98, Fea93]. In contrast, recent proposals for languages for HPC, such
as X10 [CDE05], Chapel [Inc05], and Titanium [UCB05] show a tendency to-
wards exposing the memory hierarchy of modern systems to the programmer.
Languages like X10 and Fortress [ACL05] allow or even force the programmer to
specify data distributions.

The type system presented in this chapter presents a foundation that full-
featured type systems for these languages can build upon in order to statically
check operations on distributed arrays. Our type system is inspired by that of Xi
and Pfenning [XP98, XP99]. Like Xi and Pfenning, we use dependent types to
avoid array-bounds checks. Xi and Pfenning use a decision procedure based on
Pressburger arithmetic [Pug91] in order to show the safety of array accesses. In
contrast to Xi and Pfenning’s language and type system, we study a programming
model and type system based on regions. Our type system uses types that are
parameterized over regions. Regions or region-like constructs are already present
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in the designs of many modern HPC languages, making the use of a region algebra
instead of (or more specifically, in addition to)5 Pressburger arithmetic a natural
choice.

An alternative to using types to eliminate dynamic checks is generally the use
of static analysis. Early work on using static analysis to eliminate bounds checks
investigated the use of theorem proving [SI77] to eliminate checks. This work is
related in that we use types to guide a decision procedure, a technique which is
also used in proof carrying code [Nec97]. For just-in-time compiled languages such
as Java where compile time is crucial, the ABCD algorithm [BGS00] describes a
light-weight analysis based on interval constraints that is capable of eliminating
on average 45% of the array bounds checks. However, the results range from
0 to 100% for the various individual benchmarks, which may make it hard for
programmers to write code that achieves consistently good performance. For
distributed arrays, we are not aware of any published static analyses that would
guarantee locality of access.

When speed is of utmost concern, a language designer may decide to not
require any dynamic checks altogether. For example, the reference manual for
Titanium [UCB05], a modern language for high-performance computing, defines
that operations which cause bounds violations result in the behavior of the rest
of the program being undefined. A normal continuation of a program after an
array bounds violation is clearly not possible. However, this is not the case for
non-local accesses.

An alternative to saying that program behavior is undefined for non-local
accesses is to generate code that performs a remote memory access if data is
not available locally. The type system of Liblit and Aiken [LA00] describes a
simple static analysis that enables the compiler to distinguish between accesses
that are guaranteed to be local and those that may be remote. A language sys-
tem using this design would execute programs that the type system presented in
this chapter would reject. The problem with this approach is that it makes it
more difficult for the programmer to reason about the actual cost of an access.
Compared to the work presented in this chapter, Liblit and Aiken’s type system
also ignores distributed arrays and place-shifting operations. Consequently, an
implementation using their design would frequently have to generate conservative
access code. Note that using the design presented in this chapter does not pre-
clude a language system from generating conservative access code for operations
that merely violate locality constraints. However, in our design, overloading al-
ready enables the programmer to do so explicitly, which is in our opinion a better

5For deciding region inclusions of the form [i : j] ⊆ [k : l] the decision procedure essentially
includes a Pressburger solver.
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choice since it ensures awareness of the associated cost.
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CHAPTER 4

Conclusion

This thesis described two extensions of type systems for object-oriented languages
that help programmers express additional important and common invariants of
their code. The extensions can be used to improve code modularity, obtain ad-
ditional safety guarantees and to emit better code. Experimental results demon-
strate the usefulness of the extensions. The type systems have been implemented
in the XTC-X10 framework, which is available at

http://grothoff.org/christian/xtc/.

The first extension, confined types, protects encapsulation and helps pre-
vent software defects. Confinement is an important property; it bounds aliasing
of encapsulated objects to the defining package of their class, and helps in re-
engineering object-oriented software by exposing potential software defects, or
at least making (often subtle) dependencies visible. By giving programmers the
means to easily reason about aliasing and encapsulation, confined types provide
an avenue for systematic and consistent object protection in object-oriented lan-
guages.

We have demonstrated that inferring confined types is fast and scalable and
have developed the Kacheck/J tool for inferring confinement in Java programs
and used the tool to analyze over 46,000 classes. The number of confined types
found by the analysis are surprisingly high, about 24% of all package-scoped
classes and interfaces are confined on average for the analyzed benchmarks. Fur-
thermore, we discovered that many of the confinement violations are caused by
the use of container classes and thus might be solved by extending Java with
genericity, this would increase confinement to 30%. The biggest surprise was the
number of violations due to badly chosen access modifiers. After inferring tighter
access modifiers, 45% of all package-scoped classes were confined. We expect that
these numbers will rise even further once programmers start to write code with
confinement in mind.

The second extension, region types, guarantees the safety of array accesses
and obviates the need for doing dynamic checks of such accesses. Out-of-bounds
array accesses remain a leading cause of security problems and, according to the
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National Vulnerability Database [MKG06], buffer overflows are responsible for
233 out of 863 CERT technical alerts or vulnerability notes in the years 2004
and 2005. The type system presented in Chapter 3 can guarantee that no out-
of-bounds array accesses will happen, thereby significantly reducing this set of
security risks and at the same time, reducing resource usage by eliminating costly
dynamic checks of array accesses.

In addition to addressing the array bounds problem, region types provide data
locality guarantees for distributed systems. Computations with arrays using dis-
tributed memory are fundamental to high-performance computing (HPC). Even
HPC languages that present the programmer with a flat, uniform memory model
must deal with data distribution and communication issues in their implementa-
tion. The type system presented in Chapter 3 can guarantee that all accesses to
data, including distributed arrays, are local. This can help programmers using
languages that require data locality write correct code, and allows compilers for
these languages to generate more efficient access sequences.

Even HPC languages that do not impose locality requirements on the pro-
grammer can benefit from this type system. Language systems for these lan-
guages internally still need to determine good data distributions to eliminate or
reduce communication [CM05]. While the distribution aspect of our core lan-
guage is clearly not useful for source-level type checking of these languages, the
core language does represent a potential type-system for a typed intermediate
representation to be used by compilers for those languages. Given the challenges
inherent in automatic data distribution [GB93, LK02, KK98, Fea93], another
possible application would be the use of automated algorithms to suggest data
distributions which could then be manually tuned for improved performance. The
type system might be useful to represent the results of the automatic data dis-
tribution to the programmer, as well as in describing the manual optimizations
performed by the programmer. Regardless of the level at which the language
system captures information about arrays and data distributions, a type-system
modeled around the core concepts presented in Chapter 3 can be used to give
desirable static correctness guarantees.

Future Work

Confined Types

The current type rules for confined types are specific to Java – specifically, Java
bytecode. However, relying on Java bytecode has some disadvantages, partic-
ularly when it comes to the use of generics (specifically, containers). The ho-
mogeneous translation with type erasure used by the Java compiler results in a
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significant loss of type information for a confinement checker. The estimates for
generic-confinable classes given in this thesis show that much could be gained
with a better handle on generics.

There are two possible directions for improving the situation. One approach
would be the implementation of a source-level confinement checker that analyzes
the code before type erasure. Alternatively, an implementation could analyze
code written in a language such as X10 with a compiler supporting heteroge-
neous translation of generic constructs. Integrating confined types into a new
language design might also open possibilities for handling native and reflective
code by imposing appropriate constraints as part of the specification of the run-
time system.

Region Types

The main problem for adoption of region types by the HPC community is the need
for an efficient implementation of X10 and, in particular, the region constructs.
Considering the complexity of the language, it is expected that an implementation
of X10 that is competitive with existing C, C++ and Fortran systems could take
the better part of a decade. Using type information and knowledge about region
operators should enable whole-program optimizing compilers for X10 to generate
code that is as (or possibly more) efficient than code generated by compilers
that have less knowledge about the application. Memory safety and type safety
can theoretically enable optimizations that are not possible in unsafe languages.
However, this will only matter after the costs for safety, such as garbage collection
and dynamic checks, have been amortized. By eliminating the need for some of
the dynamic checks, this thesis takes the language a step in that direction.

In future work, we plan to explicitly study richer constraint systems that can
represent the peculiarities of specific programming idioms. Our existing proto-
type already supports an extended constraint algebra beyond that used in the core
calculus. In particular, the algebra includes support for arithmetic constraints.
The extended algebra is needed in order to type check common constructs in
actual applications. The underlying principles of the type system presented in
this chapter are independent of the particular choice of constraint algebra. Con-
sequently, one major step might be a type checker that is completely parametric
in the region algebra, allowing programmers to define their own extensions. We
expect our future work on specific region algebras to evolve in step with the
power of constraint solvers, the needs of application developers, and our ability
to implement the region operators efficiently.

In addition to extending the region algebra, it might be useful to introduce
an algebra for places. For example, in X10, we know that p.prev().next() ≡ p. It
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would probably be useful if the language did not predefine-define a specific place
algebra since a place algebra should match the topology of the interconnect of
the machine, the communication pattern in the application, or a mixture of the
two. A trivial algebra that arranges the places in a cycle and features next and
prev operations is defined in the current X10 v0.4 specification. Extending the
existing decision procedure with type equivalence rules that can handle prev and
next is trivial. However, a more practical approach would be to make the type
system parametric over many place algebras. The system designer could supply a
place algebra in the form of operators defining a group (with the empty sequence
of operators being the neutral element) using an API that allows the compiler to
statically determine the shortest sequence of operations that has the same result.
Such an API could also be beneficial for compiler optimizations.
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APPENDIX A

The XTC Framework

This chapter discusses various aspects of the XTC framework and the XTC-
X10 compiler. The XTC framework is the foundation that is used to implement
both the Kacheck/J tool and the XTC-X10 compiler with the region types type-
checker.

Section A.1 introduces the Runabout [Gro03], a class frequently used in
the processing of code (ASTs and intermediate representations) throughout the
framework. The Runabout is generally used by XTC instead of the Visitor pat-
tern [GHJ94]. The resulting code is shorter and more extensible, which in turn
makes extending the various intermediate representations relatively painless.

The sections A.2 and A.3 describe the internal representations of Java byte-
code and X10 IR in XTC. The specific approach of handling of Java bytecode is
crucial for the high performance achieved by Kacheck/J. The X10 IR is the first
attempt of formalizing an IR capable of expressing X10 and the presented type
system. The description highlights some of the differences between the theory
presented in Chapter 3 and the actual implementation. X10 implementors might
also find the description enlightening since it abstracts over the still evolving X10
syntax, giving a more robust presentation of the language design.

Finally, Section A.4 documents the abstract interpretation framework used
by XTC for program analysis of both bytecode and X10 IR.

A.1 The Runabout

A fundamental problem in programming language design is making software ex-
tensible while both avoiding changes to existing code and retaining static type
safety [KFF98]. For example, a programmer may want to add functionality that
operates on a number of existing objects, or he may want to introduce a new
object to existing code. For such purposes, one strength of object-oriented pro-
gramming is that it is easy to introduce a new class to existing code. Adding
functionality to existing classes is a more difficult proposition, particularly be-
cause this typically requires access to the source code. It also may be undesirable
to add the new functionality to all subclasses when expanding an existing class.
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We call this the extensibility problem and define it as follows:

Extensibility Problem: Devise a mechanism for adding function-
ality and classes to existing code while avoiding recompilation and
retaining efficiency and static type safety.

One traditional solution to this problem is to use the Visitor pattern [GHJ94].
The Visitor pattern allows the addition of functionality in the form of visit

methods that are invoked from an accept method defined in each visitee object.
This accept method is only specific with respect to the type of an abstract visitor.
Visitors do not completely solve the extensibility problem, however. If the set of
visitee classes is changed, the type of the abstract visitor changes. Using visitors,
it is difficult to change the set of visitees, since all visitors must be adjusted to
provide a visit method matching the visitee types.

Another solution to the extensibility problem is to use multi-methods; these
allow both new functionality and new classes to be added in a flexible and concise
manner. Most existing languages do not feature multi-methods. Extending these
languages with multi-methods would require significant changes to the syntax,
compiler and possibly runtime system of the language. The Runabout is a step
toward achieving many of the benefits of multi-methods for Java without requiring
any changes to the language.

In this section we specifically address the extensibility problem for Java, giv-
ing a solution that supports changing sets of visitee types and provides both
acceptable performance (only 2-10 times slower than visitors) and the minimum
amount of programming effort. Our solution is based on an approach that was
proposed by Palsberg and Jay [PJ98] called Walkabout. Their approach takes
advantage of Java’s reflection mechanism to implement double-dispatch.

The Runabout implementation presented in this section is an extension of
the Java libraries which adds two-argument dispatch to Java. The Runabout
is itself implemented in Java (without any native methods); the code for the
Runabout is about 600 lines of code and is part of the XTC framework (but does
not depend on any other code in the framework). Like the Walkabout [PJ98],
the Runabout uses reflection to find visit methods. But instead of invoking the
visit methods with reflection, the Runabout uses dynamic code generation to
create verifying bytecode that will invoke the appropriate visit method. The
dynamically generated bytecode is type-safe and can be analyzed and optimized
by the compiler.

Generating bytecode for multi-dispatching is also the function of the Multi-
Java compiler [CLC00]. MultiJava compiles Java with multi-methods to ordinary
Java bytecode. Unlike MultiJava, the Runabout generates the invocation code
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when the application is executed, not at compile time. Thus, the Runabout does
not require changes to the compiler or the virtual machine. Contrary to previous
beliefs [PJ98], the approach using reflection to determine visit targets does not
automatically imply an extraordinary runtime overhead. In fact, for 100 million
visit invocations on 2,000 visitee classes, the Runabout is slower by less than a
factor of two compared to visitors (217s vs. 137s).

The remainder of this section is structured as follows. First, an example for
programming with runabouts is given and the semantics of the Runabout are
described in detail. In Section A.4.6 the implementation of the Runabout is
presented. More details about the Runabout can be found in [Gro03].

A.1.1 Using the Runabout

Writing runabouts is similar to writing visitors or using multi methods. In order
to demonstrate how to write code with runabouts, an example which implements
the same functionality using dedicated methods, visitors, MultiJava and the Run-
about is first presented. Next, the semantics of the visitAppropriate method
of the Runabout are described. Finally, the specific benefits and drawbacks of
each of the implementations in terms of expressiveness and restrictions imposed
on the programmer are discussed.

For our example, we are going to use a set of visitee classes Ai which implement
the common interface A. Given an array a of instances of type A, the goal is to
compute

∑
a∈A I(a) where I(a) = i if a is of type Ai.

Dedicated methods Dedicated methods can be used to solve the problem
efficiently. The problem with dedicated methods is, that for every operation that
is to be performed on the visitee classes, a method must be added to each of the
visitee classes. This spreads the code used by a particular operation over many
classes and makes it often hard to maintain. Figure A.1 shows the solution using
a dedicated method.

Visitors Figure A.2 details the code for expressing a solution with visitors.
The example uses overloading for the visit methods. Overloading is not needed
for visitors and it is used here to emphasize the similarities with MultiJava and
the Runabout. For simplification, we assume here that only one visitor is being
used and that there is thus no need for a visitor interface for the accept methods
to dispatch upon. In practice, the code would consist of multiple visitors for
multiple computations that would be performed over the visitee objects.
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interface A {
int dedicated();

}
class A0 implements A {

int dedicated() return 0;
}
class A1 implements A {

int dedicated() return 1;
}
class A2 implements A {

int dedicated() return 2;
}
long run(A[] a) {

long sum = 0;
for (int j=0;j<a.length;j++)

sum += a[j].dedicated();
return sum;

}

Figure A.1: The visitee classes with a dedicated method (dedicated).
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interface A {
void accept(Visitor v);

}
class A0 implements A {

void accept(Visitor v) { v.visit(this); }
}
class A1 implements A {

void accept(Visitor v) { v.visit(this); }
}
class A2 implements A {

void accept(Visitor v) { v.visit(this); }
}
class Visitor {

long sum = 0;
public void visit(A0 a) { sum += 0; }
public void visit(A1 a) { sum += 1; }
public void visit(A2 a) { sum += 2; }

}
long run(A[] a) {

Visitor v = new Visitor();
for (int j=0;j<a.length;j++)

a[j].accept(v);
return v.sum;

}

Figure A.2: Visitors require accept methods in the visitees.
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interface A {}
class A0 implements A {}
class A1 implements A {}
class A2 implements A {}
class MultiJavaSum {

long sum = 0;
public void visit(A a) { throw new Error(); }
public void visit(A@A0 a) { sum += 0; }
public void visit(A@A1 a) { sum += 1; }
public void visit(A@A2 a) { sum += 2; }

}
long run(A[] a) {

MultiJavaSum v = new MultiJavaSum();
for (int j=0;j<a.length;j++)

v.visit(a[j]);
return v.sum;

}

Figure A.3: MultiJava indicates multi-dispatch using minimal changes to the
syntax.

Multi-methods The implementation shown using MultiJava (Figure A.3) does
not require the accept methods. Instead, the compiler can see that multi-dispatch
is declared (@) and generates code to invoke the appropriate visit method.

Runabouts The Runabout code (Figure A.4) lies somewhere between visitors
and MultiJava. The visit methods do not require any additional syntax; all
that is required is that the class extends Runabout and that visitAppropriate
(a method provided by the parent class) is invoked instead of visit. As in
MultiJava, no accept method is required in the visitees.

A.1.2 Semantics

In order to create a Runabout, the client code must create a public subclass of
Runabout. The Runabout class provides the method visitAppropriate which
can be used for two-argument dispatch. The arguments of the two-argument
dispatch are (1) the receiver of visitAppropriate and (2) the first and only
argument of visitAppropriate. The callee of the dispatch is determined by the
lookup method.
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public class A0 {}
public class A1 {}
public class A2 {}
public class RunaboutSum extends Runabout {

long sum = 0;
public void visit(A0 a) { sum += 0; }
public void visit(A1 a) { sum += 1; }
public void visit(A2 a) { sum += 2; }

}
long run(Object[] a) {

RunaboutSum v = new RunaboutSum();
for (int j=0;j<a.length;j++)

v.visitAppropriate(a[j]);
return v.sum;

}

Figure A.4: Runabouts extend the Runabout class to inherit visitAppropriate.

visitAppropriate

The callee in the dispatch performed by visitAppropriate is either one of the
visit methods defined in or inherited by the class of the receiver or visitDefault.
The concrete selection of the visit method is performed by the lookup func-
tion, which, given a Class, returns Code to invoke one of the visit methods.
lookup(T) may only select non-static visit methods that have a return type
of void and take only a single argument of public type S where S must be a
supertype of T. lookup may return null, in which case visitDefault is invoked.
If not overridden, visitDefault throws a runtime exception to indicate that
no visit method was found. lookup may also throw runtime exceptions (for
example, to indicate ambiguities in the method resolution).

Note that visitAppropriate does not require that all visit methods have a
common base class other than Object. Thus, the Runabout does not require the
interface A that most of the other discussed implementations use to declare the
dedicated method, to declare the accept method, or as assistance to the compiler
in the form of the A@.

The fact that the Runabout does not require accept methods or a common
interface in the visitees is often beneficial when dealing with code where adding an
accept method is not possible, as with String, for example. A simple example
for this is given in Figure A.5.
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public static void main(String[] arg) {
MyRunabout mr = new MyRunabout();
mr.visitAppropriate(”Hello”);
mr.visitAppropriate(new Integer(1));
assertTrue(mr.cnt == 3);

}
public class MyRunabout extends Runabout {

int cnt = 0;
public void visit(String s) { cnt += 2; }
public void visit(Integer i) { cnt += i.intValue(); }

}

Figure A.5: Using the Runabout on any kind of visitee.

lookup

Which visit method is invoked by visitAppropriate is specified by the lookup
strategy implemented by lookup. Defining a lookup strategy is similar to defining
how a compiler (like javac) resolves method invocations for overloaded methods
[GJS96, section 15.11.2]. The main difference is that instead using of the static
type of the argument object, the dynamic type is used. As with overloading,
multiple methods may be applicable. In the case of javac, the method with the
closest matching signature is chosen, and a compile error is generated in the case
of ambiguities.

A simple example of an implementation of lookup that does not consider
interfaces is given in Figure A.6. The helper method getCodeForClass(c) tests
whether a visit method for the type c exists, and, if so, returns the Code instance
for that visit method.

The Runabout has the following lookup strategy: if visit methods for both
classes and interfaces are applicable to the given dynamic type, the visit method
for the class closest to the dynamic type is chosen; if no visit method for a
superclass of the dynamic type exists and if there is only one visit method
matching any of the interfaces implemented by the dynamic type, then that
visit method is selected; if visit methods for multiple interfaces implemented
by the dynamic type (but none for its parent classes) exist, a runtime exception
indicating the ambiguity is thrown; finally, if no applicable visit method exists
at all, null is returned, causing the invocation of visitDefault.
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protected Code lookup(Class c) {
while (c != null) {

Code co = getCodeForClass(c);
if (co != null)

return co;
c = c.getSuperclass();

}
return null;

}

Figure A.6: Example of a lookup method.

A.2 Representation of Java Code

Each IR instruction corresponds to a subclass of the Instruction class. Analyses
written for the framework use the flyweight pattern [GHJ94] to avoid the need
for multiple instances of the same instruction class. The semantic specification
of every instruction is provided in the parameterless constructor of the respective
class. Each instruction must at least implement the methods size(), which
returns the size of the instruction in bytes, and getOpcode(), which returns a
numeric instruction identifier. Further behavior is added only by subclasses for
which the behavior is meaningful.

The InstructionBuffer class maintains a notion of the current program
counter as well as the definitions of constants referenced from the bytecode
stream. Because of this design, instruction objects can retrieve and interpret their
immediate operands without any state of their own. For example, the concrete
instruction GETFIELD subclasses the abstract class FieldAccess. FieldAccess

provides a method getSelector(InstructionBuffer) to return information
about the name and type of the field being accessed. The state required by
this method is encapsulated in the instruction buffer argument. This design fol-
lows the flyweight pattern [GHJ94], allowing the InstructionSet class to hold
a single instance of each concrete instruction.

The IR specification contains approximately 3,900 lines of code and 270 in-
struction definitions which results in about 14 lines of code per definition. The
counts include abstract classes and supporting methods. Easily recognizable syn-
tactic conventions (class and constructor declarations) account for approximately
4 lines per instruction; hence, it requires about 10 lines of nontrivial code to spec-
ify an instruction. The instruction set itself corresponds to the definition given
in the Java Virtual Machine Specification [LY97].
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A.2.1 Static Analysis

XTC includes a number of classes for performing static program analysis. In
particular, the framework contains a general abstract interpretation framework
(described in more detail in Section A.4) which in particular requires clients to
provide an implementation of small step abstract semantics over the intermediate
representation for an analysis specific abstract domain.

For bytecode analysis, XTC provides a default set of abstract values that
corresponds to the set used by a Java bytecode verifier. This abstract domain
distinguishes between four basic primitive types (int, float, double, long), the null
reference, jump targets (JSR), initialized objects and uninitialized objects. XTC
also provides an implementation of the abstract semantics for bytecode for this
abstract domain. A step in this implementation corresponds to the execution of
a single basic block in the Java bytecode. This is important in order to reduce
the number of abstract states that the abstract interpretation framework has to
deal with. Each basic block is executed using runabouts that access the bytecode
using the flyweight pattern [GHJ94].

Programmers can provide alternative abstract domains or extend the provided
domain with additional distinctions. Defining new abstract values requires code
that provides tests for value equality and merging of abstract values at join points,
as well as an implementation of the operational semantics. If programmer extends
the default abstract domain, implementing the operational semantics generally
only requires overriding the visit methods for those instructions that impact
the values in the extended abstract domain.

A typical analysis uses this basic form of abstract execution and interposes
calls to analysis specific visitors that inspect the state of the abstract interpreter
for information relevant to the particular analysis. If the value abstractions
are extended to better match the different abstract domain of a given analy-
sis, visit methods of the abstract interpreter must be overridden to ensure proper
handling of the new values. Examples of existing extensions of the abstract
value set in XTC include the addition of a special value for the this reference
in Kacheck/J [GPV01] and the use of type sets for the implementation of 0-
CFA [Shi91].

The instruction specification isolates the analysis code from irrelevant changes
in the IR. Often a single visit method covers the behavior of multiple instructions
that are equivalent from the point of view of the analysis. For example, the default
abstract interpreter has generic code for instructions that merely perform basic
operations such as moves or arithmetic. Thus, instructions that fall into these
categories can be added trivially without changing the abstract interpreter.
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Example Figure A.7 gives a simple example of a visit method that overrides
the default behavior of the abstract interpreter for the NEW instruction. In the
context of 0-CFA, a NEW instruction pushes a flow set on the stack that contains
the type of the object being constructed. The visit method is located within the
body of a runabout called within the fixpoint iteration. The method starts by
querying the NEW instruction for the name of the class under construction. Since
the instruction is a flyweight object, the runabout passes the current instruction
buffer to the instruction so that it can retrieve the type name.

void visit(NEW instruction) {
TypeName type = instruction.getClassName(ibuf);
frame.push(valueFactory.makeSet(type));

}

Figure A.7: The visit method for the NEW instruction.

The valueFactory object is an abstract value factory that creates the flow set
which is then pushed onto the operand stack. The implementation of getClass-
Name in the NEW instruction class is shown in Figure A.8. The method is written
in terms of an operation on the state of the instruction buffer and an auxiliary
getCPIndex method which returns the constant pool index immediately following
the opcode of the current instruction.

TypeName getClassName(InstructionBuffer ibuf) {
int index = getCPIndex(ibuf));
return ibuf.getConstantPool().getTypeNameAt(index);

}
int getCPIndex(InstructionBuffer ibuf) {

return ibuf.getCode().getChar(ibuf.getPC() + 1);
}

Figure A.8: The NEW flyweight instruction object extracts context dependent
information from the instruction buffer.
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A.2.2 Performance

The code needed to extract information from the abstract execution is typically
small. For instance, the addition of the this pointer to the abstract value set
for our confinement checker, Kacheck/J [GPV01] is specified in 144 lines of code.
Flow sensitive types for the 0-CFA algorithm are implemented in 499 lines. The
code for constraint generation in Kacheck/J is merely 584 lines; obtaining type
set information for the 0-CFA takes 471 lines.

The use of the flyweight pattern for instructions is vital to achieving high
throughput. Kacheck/J, which can be run as a standalone application and per-
forms what amounts to a slightly extended variant of bytecode verification, has
competitive running times: the tool processes roughly 10MB per second, which
appears competitive with similar tools written in C. Figure A.9 shows the running
time of the analysis on a set of large benchmark programs. The graph plots the
number of MB of bytecode (size of class files inclusive of constant pools) in the
benchmark against the time required for the analysis proper (we did not include
the time it takes to load the bytecode and parse the constant pools).
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Figure A.9: Performance of the analysis framework for Kacheck/J on a PIII-800
running Sun JDK 1.4.1.
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A.2.3 Code Manipulation

Code manipulation is performed by Editor objects. Editors operate on instruc-
tion buffers and provide two abstractions, Cursors and Markers. Cursors are
used for inserting instructions. Markers act as symbolic jump targets. Like the
analyses, editing is typically performed by a visitor that iterates over the code
in some application-specific order. A transformation consists of a sequence of
edit operations followed by a commit. The original code remains visible until the
commit is performed.

Cursors have methods to create all of the concrete instructions. These meth-
ods often provide slightly higher-level abstractions than the actual instructions
of the IR. For example, the cursor will emit appropriate code for a branch in-
struction, selecting either a short branch or a sequence of instructions that use
a combination of short branch and long jump. Similarly, an insertion operation
like load constant will automatically choose the best instruction for the given
value (such as ICONST3 for 3, or BIPUSH(42) for 42). The required constant pool
entries are also automatically generated.

The editor uses stateful instruction objects. The reason for this is that code
generation requires context information, such as the location of a jump target,
that is not always available before a commit. Correctness of the resulting code is
not enforced. In fact, the cursor API allows the insertion of arbitrary sequences
of bytes into the instruction stream.

Complex modifications such as code motion are possible within the frame-
work, but can quickly become complicated to express since the client code is
not provided with any automated mechanisms to deal with data-flow. Moving
a single instruction such as IADD will always be difficult because the surround-
ing instructions that first prepare the operand stack and later process the result
must also be moved. For non-trivial code optimizations, the XTC framework also
provides an SSA-based IR based on [CP95].

A.3 Representation of X10 Code

The current specification for X10 only describes a source-level representation of
the language. The IBM reference implementation converts the corresponding ab-
stract syntax tree (AST) to Java source code, linking against a runtime system
implemented in Java. However, Java source and Java bytecode are not partic-
ularly suitable for analysis and optimization of X10 programs. X10 is a new
language that deviates significantly from Java; some of the original design goals
behind Java bytecode, such as fast interpretation and compactness, do not apply
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to X10. Java bytecode is rather complex with hundreds of instructions for han-
dling eight different primitive types, JSR and implicit exceptions in almost any
opcode. Furthermore, it has almost no features to express low-level optimizations
such as array bounds or null-check elimination. X10 is not intended to have any
primitive types, and the type system is designed to eliminate runtime exceptions;
this is a significant departure from Java.

What is possibly more detrimental about using Java bytecode for represent-
ing compiled X10 code is that the stack-based IR of Java bytecode is extremely
difficult to manipulate, especially for tools that are not integrated with a Java
just-in-time compiler (which may then avoid limitations of bytecode by abandon-
ing bytecode internally as soon as possible). Optimization stages for bytecode
must be careful to preserve stack semantics and are thus either limited to rela-
tively simple operations or required to first be compiled into an internal IR and
then transpiled back into bytecode – with the hope that the result can actually
be expressed in bytecode. This last concern is a rather substantial issue due to
size limitations in the bytecode. Limits on the total method size and the num-
ber of constants in a class file may not be a problem for Java source compilers,
but generated Java code, optimizers using inlining, parser generators and other
source generators are known to easily violate these bounds. For example, one de-
velopment version of the IBM parser generator for IBM’s version of X10 pushed
method sizes beyond Java’s limit. Splitting up methods and classes artificially as
a solution to this problem may not always be an option (due to class hierarchy
and visibility limitations).

Consequently, a new intermediate representation based on a variant of static
single assignment form (SSA) [CP95] was designed to be used in the XTC frame-
work for analysis and optimization of X10 code. This section describes the fun-
damental elements of this representation and tries to motivate some of the design
decisions.

The description of the IR given in this section is not complete. Some details,
such as a binary format, have not yet been implemented. Other details, such as
visibility rules and extended modifiers for methods, are omitted because they are
either identical to Java, irrelevant in relation to the thesis, or trivial.

A.3.1 Types

The following is the list of types used in the IR:

• Base types (represented in the implementation using instances of X10Type
for the concrete instance and X10TypeName for symbolic names) describe
simple source-level classes, such as Object, int or String. The package
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structure and visibility modifiers are the same as in Java, except that the
default package does not exist. Static nested classes are also allowed, the
IR has no special provisions for non-static inner classes.

• Parameterized types (represented by instances of X10InstaniatedType and
referred to symbolically using X10ParameterizedTypeNames) are used to
represent classes that are parameterized over other types or symbolic type
parameter names (such as Array<T>). Type parameters can be annotated
with a bound and a variance (covariant, invariant and contravariant). When
a symbolic type parameter is bound to a specific type, the code of the
methods of the type is replicated, replacing occurrences of the symbolic
name with the concrete type.

• Function types (X10Function and symbolically X10FunctionName) are used
to represent higher-order functions. A function type always contains a con-
structor (which initializes the closure) and a method f which represents the
code of the function. Function types are different from normal X10Types
in terms of subtyping (covariant for return type, contravariant for argu-
ments). Instances of type X10Function can be used as the receiver of an
FCALL, which is a special IR instruction for evaluation of higher-order func-
tions.

• Region types only exist symbolically in the type system (using instances of
X10RegionTypeName). The reason for this is that a dependent type (and
region types are a special form of dependent types) should have no runtime
equivalent – the concrete values of the instance give the dependent type.
For example, the region type of an integer 5 may express that the value has
dependent type “integer of value 5”. Obviously, having both the value 5 and
a type “integer of value 5” at runtime makes no sense. The runtime type of a
dependent type is the underlying base type (such as int or region) without
the constraints described by the dependent type clause. Section A.3.7 gives
details on the forms and representations of dependent constraints that can
be expressed by region types in X10 IR. Note that after type checking, an
X10 runtime may choose to completely ignore dependent type information.
In particular, region types cannot be used in IS INSTANCEOF tests in the
IR. Note that such instanceof tests are legal in X10 source code; in the
IR they are represented by simple operations on values, not types.

All TypeNames come in two variants: nullable and non-nullable. This distinc-
tion is not made for Types, since the type of a concrete instance is obviously
never nullable with the exception of the null pointer, which is modeled by a
special X10TypeName called NULL which lacks the non-nullable variant. Methods
returning void use a special X10TypeName called VOID.
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In addition to Java’s type modifiers (abstract, final, public, etc.), X10 IR
features two additional type modifiers. The modifier value is used to indicate
that all fields of the type are immutable (for function types, this means that the
variables captured in the closure of the function cannot be assigned to). The
modifier extern is used to indicate that all methods (including constructors) of
the type are not implemented in X10 but in another language (such as Java or
C). X10 IR does not allow individual methods to be marked as native.

The various types in the IR can be combined freely. For example, it is possible
to specify a function that takes a parametric type as its first argument, and where
the parametric type is a nullable basetype with a dependent constraint on its
values. For example, the types can represent the X10 code

function int(Array<nullable point<#3>> a);

as a function that returns an int (base type), takes a (non-nullable) Array (pa-
rameterized type) which must contain 3-dimensional (#3) points (region type)
or null pointers.

A.3.2 IR Elements

Code in X10 IR is represented using a graph combining data and control-flow,
inspired by Cliff Click’s design for an intermediate representation for an optimiz-
ing Java compiler [CP95]. The basic structure of the graph is a directed graph of
data dependencies. The IR can be executed directly using an interpreter; how-
ever, the primary design goal is to make transformations easy with the intent of
eventually compiling the IR to a lower-level representation that would be more
suitable for interpretation or direct execution. Consequently, direct interpreters
for the IR are likely to be rather slow. The following description of how to inter-
pret the IR should thus be seen as describing the general operational semantics
of the representation, not as the desired model of execution.

A.3.2.1 Graph structure

All nodes in the graph of a method are reachable from the unique RETURN node
of a method. There are four main categories of nodes in the graph:

• Control nodes represent the control-flow of the code.

• Heap nodes capture ordering constraints on updates to the heap.

• Value nodes represent objects and values that are used in the computa-
tion.
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• Projections represent control, heap or value nodes that are the result of
a particular operation that produced multiple results.

Example A branch (IF) is a control node. It has two inputs, another control
node (the preceding control point) and a value node (representing the boolean
condition that the branch depends on). It produces one successor for the case
that the condition is true, and another successor for the case that the condition
is false. These different results are represented using two control nodes which
are also projections. Projections always have a single input, the node for which
they represent the different “results”; in this case, that input would be the IF
node. Since executing the branch itself does not change the heap, IF has no direct
relation with heap nodes.

A.3.2.2 Execution

The basic execution model for the X10 IR is pretty much identical to the semantics
described in [CP95]. The only major difference between the two IRs are in the
specific instruction sets. Execution of each method uses a state consisting of the
current control node, the current heap node, a mapping of evaluated nodes to
instances and possibly the node that is currently being evaluated.

Execution begins with the ENTRY node as the current control node. The en-
try node projects the initial heap node and one projection per method argument.
Execution of the entry node requires binding the argument projections to the
concrete instances passed as parameters to the method call. The ENTRY node,
like all non-branching control nodes, should have exactly one control node that
uses it as its input (remember the direction of the references is “depends on”,
reaching control of one other node in the graph should depend on entering the
method). Control continues with that node. Control nodes (like, for example,
a branch) may depend on nodes representing values. If control reaches such a
value, the respective value tree is evaluated. The mapping of evaluated nodes to
instances is considered to avoid re-evaluations.

Nodes may also depend on a particular state of the heap. If a particular heap
state is desired and that heap state is not the current heap state, the interpreter
must consider two possibilities. Either the current heap state is a predecessor to
the desired heap state, in which case there must exist a sequence of operations
on the heap that will result in the desired heap state. If the current heap state is
a successor of the desired heap state, the desired computation has already been
performed and the desired value (if any) should be taken from the mapping of
evaluated nodes. Note that one of the effects of evaluating a node that changes
the heap is to advance the current heap state to the successor state (which is

151



usually a projection of the node changing the heap).

REGION nodes are control nodes that are used to represent control-flow joins.
The ordered inputs to a REGION are n control predecessors. They depend on a
list of PHI nodes, which must be evaluated when the REGION node is reached.
Evaluating a PHI node requires evaluating its k-th input, where k is the index
of the control predecessor that was executed before reaching the REGION. PHI
nodes can be either value nodes or heap nodes. Interpretation of a method ends
upon reaching the RETURN control node. The inputs of a RETURN node
include a return value, the desired final heap state, the previous control node and
an exceptional return value (which will evaluate to null if the method does not
throw an exception). The return value will be invalid (also represented by null)
if the method does not throw an exception or returns void.

A.3.2.3 Overview of the IR elements

Each figure in the following sections illustrates the inputs and outputs of a par-
ticular node or a set of closely related nodes. The names of the nodes that are the
focus of the figure are written in all caps. The other nodes contain a description
of the function that these nodes have in the context. Values are represented using
round borders; control nodes are drawn with rectangular boxes. Value depen-
dencies use normal arrows (→) and control edges use double arrows (⇒). PHI
nodes are given with dotted arrows. Finally, END bindings (a new concept) are
given with squiggly arrows.

A “∗” on an arrow indicates that any number of edges are possible. The “∗”
is only shown for the final outbound edges (which have no target in the figure)
and in cases where an arbitrary number of arguments is possible.

The direction of the arrows does not (always) indicate the direction of the
references in the graph. The arrows indicate the direction of the control and data
flow (source to sink), whereas the references in the implementation generally point
in the inverse direction. The exception to this rule are the edges between a node
and its projections and a REGION and its respective PHIs. The implementation
uses references in both directions for those edges.

A.3.2.4 TYPE

The typename field gives the name of the type (i.e. “x10.lang.String”) and possi-
bly conveys other properties such as nullable and type parameters (Vector<T>).
The type info field is an object that contains information about methods, fields
and subtyping relationships of instances of the respective base type. The TYPE
IR element does not have any operational semantics by itself, it is merely used to

152



76 5401 23typename

%%KKKKKKKKKKKKKKKKK
76 5401 23typeinfo

yytttttttttttttttt

/. -,() *+TY PE

∗

��

Figure A.10: TYPE defines an X10 type (value or object, nullable). TYPES may
depend in their definition on other values in scope.
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Figure A.11: CONST defines a value.

refer to a particular type in the IR. TYPE nodes are used for object allocation,
casts and instanceof tests.

A.3.2.5 CONST

CONST is used to specify basic values such as integers and strings. Each CONST
instruction contains the value represented as a string (to be converted by the com-
piler into the appropriate binary representation) together with the name of the
respective primitive value type (for example, x10.lang.int). In our implemen-
tation the conversion is achieved by requiring that the native implementation of
the primitive value defines a constructor that takes a string as an argument and
produces the correct primitive value. The compiler simply uses this constructor
in order to initialize primitive values that it is unaware of.
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Figure A.12: instanceof
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Figure A.13: Tests if the argument is 0 (or NULL).

A.3.2.6 IS INSTANCEOF, IS DUMMY and IS NOT

The IS INSTANCEOF instruction takes an object and a type and returns true
(technically an x10.lang.boolean) if object is an instance of the given type.

IS DUMMY returns true if the argument (which should essentially always be
a pointer) is NULL. The name is used because NULL is often used as a special
dummy value (e.g. to indicate no exception).

IS NOT takes an argument which must be of type boolean and returns a
boolean that is true if the argument was false and vice versa.

A.3.2.7 IS AND and IS OR

IS AND takes two arguments which are guaranteed to be of type boolean and
returns a boolean that is true if and only if both arguments evaluate to true.

IS OR takes two arguments which are guaranteed to be of type boolean and
returns a boolean that is true if and only if either argument is true.
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Figure A.14: Boolean NOT operation.
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Figure A.15: Boolean AND operation.
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Figure A.16: Boolean OR operation.
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Figure A.17: REGION is essentially the place where control flow merges.

A.3.2.8 REGION

REGION has nothing to do with X10 regions. The term REGION was used by
Cliff Click [CP95] for nodes that represent control-flow merges. Since this work
builds on his design, his terminology is preserved. The use of REGION vs. region
should be sufficient to avoid confusion.

The IR uses PHI nodes to represent choices between values based on control-
flow [CFR91]. A REGION can have any number of PHIs. If the REGION has
n (ordered!) control-flow predecessors, each of the PHIs must have n (ordered)
input edges. A PHI must belong to one and only one REGION.

Evaluating a REGION requires the compiler to update all of the attached
PHI instructions in parallel (!) to the values that correspond to the respective
control predecessor. This is why the order of the control predecessors as well as
the values in the PHIs matters.

After evaluating the PHIs, control proceeds with the next control node that
follows the REGION node. While a REGION may have many control-in edges,
there must only be one control-out edge.

A.3.2.9 INVOKEVM

The INVOKEVM instruction is a general escape mechanism to make a call into
the virtual machine to do something special. It is parameterized with a string
argument that specifies the desired VM service.

The current X10 IR uses only one such service, namely object allocation. For
object allocation, the VM is expected to simply allocate an object of the specified
type. The desired type is specified as an argument to the INVOKEVM instruc-
tion. INVOKEVM’s allocation should not invoke a constructor and does not
initialize any fields (zeroing maybe required for the garbage collector). However,
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Figure A.18: The INVOKEVM instruction.
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Figure A.19: Cast.

the type and VTBL information for the object must be initialized.

INVOKEVM’s allocation should never fail with an exception. In contrast to
Java, where any allocation may fail with a catchable out of memory exception,
the default allocation mechanism in X10 IR says that a failing memory allocation
results in an immediate abort of the entire application.

Future extensions should provide alternative allocation services that provide
stack allocation and allocations with the possibility of catching out of memory
exceptions.
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Figure A.20: Branch.

A.3.2.10 CAST

Note that semantically, a CAST is essentially a NO-OP: the output is exactly
the input. CASTs are only used for the compiler to determine the static type of
an object. For example, consider the following code:

void m(String a) {
Object o = a;
m(a); // (1)
m(o); // (2)

}
void m(Object o) {
}

Here, the first call marked (1) must resolve to m(String) and the second
call marked (2) to m(Object). In order for the method overloading resolution
to properly resolve m(o) the compiler will insert a CAST to Object into the IR.
CASTs are always safe and a type checker should always be able to statically
check this.

A.3.2.11 IF

The IF instruction expects a boolean conditional as an input. It proceeds with
the control after the TRUE projection if the conditional evaluates to true, and
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Figure A.21: Method entry.
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Figure A.22: Method exit.

otherwise proceeds with the FALSE projection.

Remark. The XTC-X10 IR also contains an instruction SWITCH with the
usual semantics.

A.3.2.12 ENTER

The ENTER instruction projects special arguments for the starting heap, current
place (arg0) and the finish context (arg1), as well as normal arguments (possibly
including the receiver). Execution proceeds with the unique control successor
(next). There is exactly one ENTER instruction per method.

A.3.2.13 RETURN

The RETURN instruction must be reached from a single control edge. It anchors
all END nodes (from ASYNCs, discussed in more detail in Section A.3.2.19). It
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Figure A.23: GET. Reads a value from the heap (using an object as the base
address, plus an offset obtained from the particular field that is read).
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Figure A.24: PUT. Writes a value to the heap (using an object as the base
address, plus an offset obtained from the particular field that is read).

also takes the final heap, return value and the return exception value as inputs.
The method terminates normally if the return exception is a dummy (NULL)
value. There is exactly one RETURN instruction per method.

A.3.2.14 GET and PUT

Note that the selector that describes the specifics of the field for GET and PUT
nodes is not shown for brevity. The PUT node itself is treated as a heap node,
avoiding the need to project a new heap state explicitly. GET projects a new
heap state; the GET node itself is used to represent the value obtained from the
heap.
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Figure A.25: Anchoring non-terminating loops.

A.3.2.15 ANCHOR

The ANCHOR instruction always proceeds with the control after the ALWAYS
projection. Control never takes the path of the NEVER projection. ANCHORs
are needed to represent infinite loops (while(true);) since the all of the code
must be reachable by graph traversal from the RETURN instruction.

A.3.2.16 CALL

CALL essentially invokes the specified method with the specified arguments and
upon completion produces the return value and exception state of that was con-
sumed by the RETURN of the callee. The CALL is evaluated when the heap
needs to be advanced to the heap projected by the CALL instruction. CALL is
not a control instruction.

Note that the selector of the method and a boolean flag distinguishing virtual
from non-virtual calls are not shown for brevity. Also, the current place and the
receiver are shown only as some of the arguments.

A.3.2.17 FCALL

FCALL is very similar to CALL except that the callee is not a method in a
class but a function. Functions are created by a NEW instruction with a spe-
cial type (function type). Note that IBM’s X10 implementation does not have
function types; this is an XTC extension. Other than the different invocation
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Figure A.26: Method call.
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Figure A.27: Function call.
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Figure A.28: FINISH waits for all activities registered with the finish-context
(fctx) to complete.

mechanism (and the lack of a selector and the virtual/non-virtual distinctions),
FCALL behaves just like CALL.

A.3.2.18 FINISH

Each finish block starts with a FINISH-START instruction that merely creates
a fresh finish-context (fctx). This context is passed to the various ASYNC state-
ments in the scope of the finish block. The FINISH instruction itself must then
block until all of the asynchronous activities have completed. FINISH projects
an exception which is NULL if all asynchronous activities completed successfully.
Otherwise, an exception of type x10.lang.MultipleException is created which
internally captures the various exceptions thrown by all ASYNCs inside of the
FINISH.

Note that a finish block encloses any X10 execution, ensuring that a finish-
context is always available.
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Figure A.29: Async. Note that the “body” must eventually end with an END
node. The END node must be consumed by the RETURN node of the method.

A.3.2.19 ASYNC and END

ASYNC initiates running a parallel activity (body) at the specified place starting
with the projected heap (b-heap). The activity is registered with the (optional)
set of clocks. Specifically, each of the specified clocks may only advance into the
next phase if the newly spawned activity is ready to advance (by having called
resume, next or done on the clock). X10 guarantees that the clocks passed to
ASYNC are currently registered with the current activity and that the activity
has not yet declared quiescence in the current phase of the clock. This is cur-
rently assumed to be checked by a runtime check in clock.register(). In the
event that clock.register() fails, ASYNC should not spawn the new activities
but instead project the respective exception. Execution continues with the next
control and the heap-n projected by the ASYNC. The next control then gener-
ally has to check for the possibility of a non-null except being projected by the
ASYNC. In the absence of clock arguments, or based on flow information about
the clocks, the compiler may be able to eliminate that test.

ASYNC also takes a special boolean flag (not shown) that indicates if the
spawned activity must be added to the finish-context (fctx). This flag is false for
X10’s future constructs.1

1In other words, Vijay Saraswat is wrong saying that future is a defined construct, because
future could not be constructed from ordinary async statements due to the different finish
semantics. In my opinion future should be removed from the language, which would make
this flag obsolete.
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Figure A.30: END. The end of a parallel activity.

ENDs must be bound to the RETURN node (to anchor the graph). The
exception object consumed by the END must be communicated to the respective
FINISH that started the activity.2 Depending on the implementation, END may
also need to update the fctx at the termination of the activity such that FINISH
can eventually continue.

Remark. END currently does not have a link to the respective fctx, but this
could easily be changed.

A.3.2.20 FOR

Executing FOR begins with reaching the FOR control instruction from the prede-
cessor with a heap and a region. The FOR also has an iteration order (i.e.
forwards or backwards). Running FOR produces the FOR-ITERATOR, which
should be seen as the state of the for loop. After running FOR, the heap advances
to the s-heap to indicate the evaluation of the region. The REGION between FOR
and FOR-BODY is used to update variables modified in the loop. There can be
many PHIs, though only the PHI for the heap is shown here. The FOR-BODY
uses the FOR-ITERATOR to produce the FOR-POINT, the current index for the
iteration. FOR-BODY has two control projections, one for the normal loop body
(BODY) and one for exiting the loop (EXIT). A heap projection exists for each

2future constructs are implemented in a way that catches any exception and thereby guar-
anteed to always terminate normally.
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Figure A.31: For-loop.

of these control projections (e-heap and i-heap respectively). The control after
BODY either eventually reaches the REGION between FOR and FOR-BODY
(continue and fall-through case) or a REGION in the control after EXIT (for
break statements).

Note that it is easily possible to represent FOR using a combination of CALL,
IF and REGION instructions. FOR is preserved in this form in the IR mostly to
allow the compiler to easily recognize and optimize such loops.

A.3.2.21 ATOMIC

XTC-X10 translates both conditional and non-conditional atomic sections into
the same IR instruction, which as a result is probably the most complex con-
struct in the IR. The presentation is thus broken into three parts, ATOMIC,
CONDITIONAL-BLOCK and CEND-END.

An ATOMIC instruction has multiple CONDITIONAL-BLOCKs as successor
control nodes, as well as one EXIT control node. This EXIT control node is
chosen if the evaluation of the conditional expression in any of the conditional
blocks results in an exception. In that case, this exception is projected and control
continues with the e-heap after the EXIT control node.

Executing ATOMIC requires evaluating the CONDITIONAL-BLOCKs atom-
ically in random but fair order until either one of the conditions evaluates to true
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Figure A.32: Start of an ATOMIC section.

or results in an exception.

The CONDITIONAL-BLOCK projects a starting heap and control point.
The control must eventually reach the CEND instruction. CEND consumes the
final heap.3 CEND also consumes an exception and a conditional value. If the
exception is non-NULL, control continues with the exceptional EXIT from the
respective ATOMIC instruction. If the condition evaluates to true, control con-
tinues after CEND. If the condition evaluates to false, the next CONDITIONAL-
BLOCK is evaluated.

Note that while each conditional block must individually be executed atom-
ically (possibly including the atomic statement following the guard), the system
must allow other activities to execute atomic sections eventually. That is, it is
illegal to always simply acquire a global lock on entry to ATOMIC and only re-
linquish the lock after some conditional section allows exiting the atomic section.

The compiler should also optimize the case of unconditional atomic sections
where there exists only one CONDITIONAL-BLOCK with no code between
BODY and CEND and where cond is always true.

Control after CEND must eventually reach a unique END instruction. This
END instruction consumes the final heap and an exception. If the exception
is NULL, control continues without atomicity guarantees after the END. If the
exception is non-NULL, the exceptional EXIT of the respective ATOMIC in-

3Technically the conditional expression should not modify the actual heap, but this is cur-
rently not enforced. Either way, the heap is passed around to ensure that GET and CALL
instructions can have their usual structure.
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Figure A.33: Conditional block in an atomic section.

CEND

��{{vvvvvvvvvvvvvvv

76 5401 23heap

∗

��

BODY

��'& %$ ! "#· · ·

$$HHHHHHHHHHHHHHHH · · ·

��

76 5401 23except

zzuuuuuuuuuuuuuuuu

END

��

Figure A.34: Atomic statement between CEND and END.
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struction is taken.

A.3.3 Graph invariants

Any valid graph of IR elements must obey the following invariants:

• There must be exactly one FINISH node per FINISH-START.

• There must be at least one END node per ASYNC.

• There must be exactly one ENTER and one RETURN (per method).

• Any control node other than END and RETURN must have at least one
control node in its successor set.

• Any control node other than IF, ANCHOR, SWITCH, FOR, ASYNC and
ATOMIC must have at most one control node in its successor set. IF, AN-
CHOR, FOR and ASYNC must have exactly two control node successors.

• Any control node other than REGION must have at most one control node
in its predecessor set.

• Any control node other than ENTER must have at least one control node
in its predecessor set.

• A flow-sensitive data-flow analysis must be able to establish that any value
flowing into a CAST has a subtype of the type specified by the CAST.

• Execution as described in Section A.3.2.2 does not result in the use of
undefined values; in particular PHIs can only be used after control has
reached the respective REGION and execution will not require the same
HEAP to be used as the input to two different instructions

A.3.4 Compiling X10 to X10 IR

This section lists how X10 constructs are compiled to X10 IR. The section focuses
on constructs that lack an obvious IR counterpart or that require other special
considerations.

A.3.4.1 Clock

X10’s next construct is modeled using a function call on Clock. Clocks only
occur in the IR as possible inputs to ASYNCs.
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A.3.4.2 Future

X10’s futures are also mostly a runtime library construct and do not occur in
the IR as such; however, ASYNC nodes distinguish between futures and normal
asynchronous calls in that a boolean flag is set to indicate that the enclosing
FINISH does not need to wait for the future to terminate.

A.3.4.3 foreach and ateach

The compiler implements foreach and ateach using a combination of the code
corresponding to for and async. Note that we may want special nodes in the IR
for these more heavyweight instructions in the future in order to make detection
of the respective pattern easier for the optimizing compiler.

A.3.5 Array, region, distribution and point

Array, region, distribution and point are pure library constructs in this
design (except for dependent typing, as described in Section A.3.7). As far as
the runtime is concerned (after type checking), these classes live in x10.lang and
receive no special treatment in the IR itself.

While the IR lacks specific constructs for these types, this does not preclude
the VM from knowing details about these classes and their semantics and opti-
mizing accordingly.

A.3.6 Runtime and runtime library interactions

The X10 runtime requires certain properties from the implementation of certain
runtime classes in order to be able to execute certain IR constructs. The details
of these APIs may depend on the specific runtime and are thus not part of the
IR specification.

Specifically, for async, the implementation of Clock must provide an appro-
priate method for registering activities with the clock.

For for, the implementation of region must provide appropriate methods for
iterating over the points of the region.

Constant values (like int and String) are expected to provide appropriate
default constructors to enable the runtime the instantiation of these constants.
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A.3.7 Region types

Region types represent constraints on the possible set of values for a particular
base type. The IR represents these constraints using a restricted expression
language. In order to avoid confusion with the types of X10, we use the term kind
to describe the types of expressions in this constraint language. Section A.3.7.1
lists the kinds of expressions used in the constraint language. Section A.3.7.2
lists the various operations and gives the kinds of their inputs as well as the
kind of expression that they produce. Finally, Section A.3.7.3 lists what kinds of
expressions are used by the region types to constrain the values for a particular
base type in X10.

A.3.7.1 Kinds

The dependent type information captured by region types uses the following kinds
of expressions:

• int

• point

• region

• place

• object

• distribution

• array

• valuearray

A.3.7.2 Operations

The region type system uses the primitive LOCAL to represent values in the
X10 IR. The kind of a LOCAL corresponds to the base type of the respective
value. For example, for a method m(region r, region<:r> s) a LOCAL of
kind region referencing the IR node of r would be used to represent the first
argument in the region constraint imposed on the second argument s. Another
special primitive ICONST is used to represent constant integer expressions. The
kind of ICONSTs is always int.

In addition to these two fundamental constructors, the constraints can use
the following basic operations:
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• PointConstruction: int∗ → point

• RegionConstruction: point× point → region

• DistributionConstruction: region× place → distribution

• ValueArrayConstruction: region → valuearray

• ArrayConstruction: distribution → array

• ObjectAtLocation: place → object

• LocationOfObject: object → place

• DistributionOfArray: array → distribution

• RegionOfDistribution: distribution → region

• RegionOfValueArray: valuearray → region

• PointInRegion: region → point

• RankOfPoint: point → int

• RankOfRegion: region → int

• RegionOfRank: int → region

• DistributionOverRegion: region → distribution

• PointOfRank: int → point

• ZeroPoint: int → point

The basic operations are extended with an operational algebra. The current
algebra contains the following expressions:

• IntAdd: int× int → int

• IntSub: int× int → int

• IntMax: int× int → int

• IntMin: int× int → int

• IntMul: int× int → int

• PointAdd: point× point → point
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• PointSub: point× point → point

• PointMax: point× point → point

• PointMin: point× point → point

• PointMul: point× point → point

• PointProjection: point× int∗ → point

• RegionUnion: region× region → region

• RegionIntersection: region× region → region

• RegionMulRegion: region× region → region

• RegionMove: region× point → region

• RegionMulDistribution: region× distribution → distribution

• RegionProjection: region× int∗ → region

• DistributionUnion: distribution× distribution → distribution

• DistributionIntersection: distribution×distribution → distribution

• DistributionMove: distribution× point → distribution

• DistributionRestrict: distribution× place → region

• DistributionMul: distribution× region → distribution

The semantics of the constraints represented by these operations correspond
to the semantics of the region operations described in Section 3.6.

A.3.7.3 Constraints

This section describes the kinds of dependent constraints that the region type
system captures for the various base types.

int The dependent type information for an int captures a lower and an upper
bound (both of kind int).
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point The dependent type information for a point captures a lower and an
upper bound (both of kind point), the rank of the point (of kind int) and a
region which represents an upper bound on the set of points that the respective
value may belong to.

region The dependent type information for a region captures a lower and an
upper bound (both of kind region) that describe sets of points that the region
must contain (lower) and may contain (upper). The dependent type information
also describe the rank of the region (of kind int).

place The dependent type information for a place is a set of place expressions
that represent the same place.

Object The dependent type information for an Object is the set of place ex-
pressions that are equivalent to the location of the object.

ValueArray The dependent type information for a ValueArray is the same as
that for a region.

distribution The dependent type information for a distribution captures a
lower and an upper bound (both of kind distribution) that describe sets of
points that the associated region must contain (lower) and may contain (upper)
together with the respective places that these the region’s points must be mapped
to. The dependent type information also describes the rank of the underlying
region (of kind int).

Array The dependent type information for an Array is the same as that for a
distribution.

A.4 The Abstract Interpretation Framework

Since [CC77], abstract interpretation is known as a common approach to many
program analyses. In fact, it may be the most common idiom in the domain of
optimizing compilers and program verification. While the theoretical construct
of abstract interpretation is well understood, actual implementations of program
analyses still use hand-crafted implementations specific to the problem at hand.
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The goal of the abstract interpretation framework in XTC is to provide a gen-
eral framework for the implementation and execution of any kind of abstract
interpretation based analysis.

The quest for universal abstractions in building compilers is not new. The
idea of automatic parser (and lexer) generation [LMB92] from a grammar has
been widely adopted. A general optimizer that is useful for many languages and
target platforms (as outlined in [BD94]) is at the heart of the popular GNU com-
piler collection. Developing good abstractions for the intermediate representation
has also resulted in a wide spectrum of solutions, from bytecode [LY97, PBF03]
to graphs [CP95] and even XML [Yot04]. Other researchers have investigated
generalizations for specific categories of program analyses, such as call graph
construction [GC01]. The design of the XTC abstract interpretation framework
attacks various problems that arise when the idea of abstract interpretation is
turned into a general system for program analysis.

A large set of applications depends on abstract interpretation. The XTC
framework [Gro06] uses abstract interpretation for bytecode verification [LY97],
control-flow analysis [Shi91], and inference of confined types [GPV01]. Other
applications include data-flow analysis [RRL99], worst-case execution time anal-
ysis [BBP02, EES01] and shape analysis [SRW99]. An extensive list of known
applications can be found in [Cou01].

The key issues for providing a general abstract interpretation mechanism all
relate to various efficiency concerns. It is difficult to devise a mechanism that
scales to large abstract interpretation problems. The range of problems spans
generalizing the properties of abstract values, limiting memory consumption
and scheduling of transfer functions. Current abstract interpreters use hand-
optimized, domain specific heuristics to scale abstract interpretation to relatively
small problem sizes. The goal of the thesis is to produce better solutions that per-
form well for any abstract interpretation problem while also reducing the amount
of code the compiler-writer needs to write.

The rest of the section is structured as follows: after an introduction to ab-
stract interpretation, the core of the framework is described, followed by a dis-
cussion of useful extensions to the framework.

A.4.1 Abstract Interpretation

Abstract interpretation is a general theory for statically predicting program be-
havior that is used in optimizing compilers and software engineering tools [CC77,
CRC92]. The goal of abstract interpretation is to obtain information about all
possible states of a program by simulating its execution. The set of all possible
states is called the state-space. Since the state-space is generally too large to
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allow an exact simulation to terminate, abstract interpretation uses approxima-
tions. Considering that the state-space of a program can be represented using
sets (for example, sets of values for variables) one fundamental aspect of the the-
ory of abstract interpretation is the approximation of sets and set operations (see
Section A.4.2).

Another concern for abstract interpretation is showing that the result is sound
(that is, formally proving that the predicted program behavior is a safe approx-
imation of the actual behavior (see section A.4.3)). In the presence of loops in
the analyzed program, abstract interpretation must also approximate control-
flow. The computation of loop invariants is done using iteration. Thus, another
concern is making sure that the any such iteration terminates. This is achieved
using fixpoint theory and monotonicity properties of the abstract interpretation
function in a partially ordered set of bounded height (see Section A.4.4).

If the height of the partially ordered set is constant, the worst-case complexity
of the fixpoint iteration is cubic. A program of size n can have O(n) program
points. In the worst case, the analysis may perform O(n) statement evaluations
before increasing the abstract value representing the state at one program point.
These O(n2) operations may be needed O(n) times, until the abstract value for
each program point has reached its maximum. Hence, abstract interpretation is
often rather slow and is thus possibly impractical for larger programs, resulting
in the use of less precise alternatives of linear complexity for certain applica-
tions [BW94, PS94].

Note that the notion that fixpoint iteration is of cubic complexity in the size
of the program disregards the specifics of the abstract domain chosen for the par-
ticular analysis. As illustrated, the height of the poset representing the abstract
domain is another factor in the worst-case complexity. An abstract value poset
that “merely” models all possible types has a worst-case height of O(n), resulting
in a total worst-case performance of O(n4) for the abstract interpretation.

A.4.2 Abstract Domain

In order to make static predictions possible, the infinite number of states that
can occur in actual programs must be reduced. This is achieved by mapping the
domain of actual values in the program to a finite abstract domain. The map-
ping function from the concrete to the abstract domain is called the abstraction
function. Its inverse maps abstract values back to concrete values and is called
the concretization function. The abstract domain is usually a poset, which is a
special kind of poset.

Definition 1 (Poset) A partially ordered set (poset) is a pair 〈D,⊆〉 where D
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is a set and ⊆ is a reflexive, transitive and antisymmetric relation on D.

A function f : D → D is called monotone if for all d, d′ ∈ D, d ⊆ d′ implies
that f(d) ⊆ f(d′). A sequence d1, d2, . . . of elements in D is called a chain if
di ⊆ di+1. It is called strictly increasing if di 6= di+1. The height of the poset is
the length of the longest strictly increasing chain. The poset is of finite height if
it contains no infinite, strictly increasing chain.

For X ⊆ D, let
⋃

X be the least upper bound of all elements x ∈ D, that is,
x ⊆

⋃
X for all x ∈ X and

⋃
X ⊆ d for all d ∈ D for which x ⊆ d for all x ∈ X.

Furthermore let
⋂

X be the greatest lower bound of all elements x ∈ D, that is,⋂
X ⊆ x for all x ∈ X and d ⊆

⋂
X for all d ∈ D for which d ⊆ x for all x ∈ X.

A poset 〈D,⊆〉 is complete if for every X ⊆ D both
⋃

X and
⋂

X exist.

An abstract value is an element of a complete poset of finite height. From now
on the term poset will always refer to complete posets of finite height. Finite
sets form a poset with the canonical definition of the set operations ∪ and ∩
yielding the least upper and greatest lower bounds. A common construction for
abstract domains is the use of a product-poset (Lemma 7). Product posets are
typically used to capture the values of multiple variables in one abstract value.
For example, if a pair of variables is modeled by two posets, the corresponding
product-poset is a precise model of both variables expressed now as only one
abstract value. The construction generalizes to any (finite) number of variables.

Lemma 7 (Product-Poset) Given posets 〈P1,⊆1〉 and 〈P2,⊆2〉 the product-
poset 〈P,⊆〉 defined as

P := P1 × P2

(a1, a2) ⊆ (b1, b2) ⇔ (a1 ⊆1 b1) ∧ (a2 ⊆2 b2)

is again a poset.

The specific choice for the abstract domain depends on the application, i.e. the
information to be obtained about program behavior. The precision of the analysis
is largely determined by the properties modeled by the abstract domain, but
naturally a richer abstraction is usually more costly. As we will see, the previously
mentioned requirement for the abstract domain to be finite is a necessary (but
not sufficient) condition to ensure that the abstract interpretation will terminate.

The correctness of the results obtained using abstract interpretation relies on
the concretization function to yield a conservative estimate of the actual values
for any concrete execution. Proving the correctness of an abstract interpretation
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is generally done by showing that the abstract semantics used in the abstract
interpreter “correspond” to the concrete semantics of the target language. For
this, the correspondence between concrete and abstract domain is described as a
Galois connection:

Definition 2 (Galois connection) Let A and B be partially ordered sets under
the relations ⊆A and ⊆B respectively. Then the pair of functions (f, g) with
f : A → B and g : B → A is a Galois connection of A and B if and only if for
all a ∈ A and b ∈ B

f(a) ⊆B b ≡ a ⊆A g(b) (A.1)

f is called the lower adjoint and g is the upper adjoint.

The abstraction function, mapping from the concrete to the abstract domain,
corresponds to the lower adjoint. The upper adjoint is the concretization function,
mapping results from the abstract domain back to concrete values. Important
properties of Galois connections are that the lower adjoint uniquely defines the up-
per adjoint, that lower and upper adjoint are duals, and that for each supremum-
preserving monotone function between two partially ordered sets, there exists
a Galois connection for which that function is the lower adjoint. An extensive
introduction to Galois connections can be found in [Bac02].

A.4.3 Abstract Semantics

Given an abstract domain, an abstract interpreter can be obtained by writing for
each language construct an abstract evaluation rule that performs an equivalent
operation on abstract values. The abstract interpreter is called sound if for any
evaluation of the concrete program, each expression can only yield concrete values
that are included in the set of possibilities obtained by applying the concretization
function to the abstract values corresponding to the expression. More formally,
let γ be the concretization function and [[·]] the evaluation of a statement according
to the concrete semantics of the language. Let σ describe the abstract semantics
of the abstract interpreter in the form of a function that maps expressions in the
concrete language to the resulting abstract values in the abstract domain. Then
soundness of the abstract interpreter can be stated compactly as

[[e]] ∈ γ(σ(e)) for all expressions e. (A.2)

The soundness of an abstract interpreter can be proven easily by showing the
soundness of the given abstract semantics for each language construct. Suppose
the abstract semantics for some operation “◦” of the concrete language are defined
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as σ(e1 ◦ e2) = σ(e1) • σ(e2) where “•” is the corresponding operation in the
abstract domain. This definition is sound if for all abstract values a1 and a2

{n1 ◦ n2|(n1, n2) ∈ γ(a1)× γ(a2)} ⊆ γ(a1 • a2).

This realization can be used to derive an abstract interpreter from a concrete
interpreter by showing this correspondence for each operation. The (•-)functions
in the abstract interpreter that correspond to the concrete (◦-)operations are
called transfer functions.

Definition 3 (Transfer function) Let P be a poset. A transfer function is a
monotone function of the form f : P → P .

Given the (abstract) state of the program before the operation, a transfer
function computes the next (abstract) state of the program. This approach of
constructing an abstract interpreter is quite natural in that it only requires the
compiler writer to implement a set of transfer functions, all of which can be
derived as a straightforward abstraction from functions handling concrete state-
ments in an interpreter for the analyzed language [CHY95]. Note that the input
to (and the result of) the transfer functions is a poset that captures the entire
state of the application and not just the smaller set of values that this particular
operation is concerned with. The next section describes why transfer functions
must be monotone and how this is achieved.

A.4.4 Termination and Fixpoint Theory

In the presence of loops, the straightforward implementation of a sound abstract
interpreter from a concrete interpreter as described so far does not result in an
algorithm that terminates. In order to guarantee termination in the presence
of loops, the abstract interpretation must abstract control flow such that the
abstract execution of loops in the analyzed application is guaranteed to complete.
This is done by expressing the process as a fixpoint iteration.

Definition 4 (Fixpoint) An element d ∈ D is called a fixpoint of a function
f : D → D if f(d) = d. If D is a poset, a fixpoint d ∈ D is called the least
fixpoint if d ⊆ d′ for all fixpoints d′ ∈ D.

A fixpoint iteration of a monotone function f : D → D is the process of
computing the chain of values fi = f(fi−1) starting at some initial value f0. The
result of a fixpoint iteration is the minimum value f∞ for which fi ⊆ f∞ for all
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i. f∞ can be computed by fixpoint iteration for all monotone functions f if the
poset D is of finite height.

The abstract interpreter can be described as a finite set of functions f that
each take the abstract state of the application and compute the next state. Thus,
it is possible to express the result of abstract interpretation as the computation
of this common fixpoint. For a finite set F of functions of the form f : D → D,
an element d ∈ D is called a common fixpoint of F if d is a fixpoint of every
function in the set. The least common fixpoint can be computed according to
the following theorem:

Theorem A.4.1 Let µf be the least fixpoint of f . Let 〈x :: f(x)〉 describe a
monotone function that maps an element x of a poset to another poset element
f(x). Then

(µ〈x :: x� p.x〉, µ〈y :: q.y ⊗ y〉) = µ〈x, y :: (x� y, x⊗ y)〉 (A.3)

where p.x = µ〈v :: x⊗ v〉 and q.y = µ〈u :: u� y〉.

In other words, the mutually recursive fixpoint of the function 〈x, y :: (x �
y, x ⊗ y)〉 can be computed using the individual least fixpoints p.x and q.x. A
formal proof of this theorem can be found in [Bac02, Theorem 106]. Stated as
an algorithm, the theorem guarantees that by iteratively computing the fixpoints
p.x and q.y (that is, p.q.p.q.p.q.(. . .).⊥) until neither value changes, one can com-
pute the fixpoint µ〈x, y :: (x � y, x ⊗ y)〉. By repeated application the theorem
generalizes to the composition of any finite number of mutually recursive transfer
functions.

Definition 5 (Chaotic iteration) Let F be a finite set of monotone functions
over a poset. A chaotic iteration is any sequence of functions fi ∈ F .

A given element d0 ∈ D induces a sequence of values di = fi(di−1) ∈ D.
If the transfer functions commute, [CC79] guarantees that any chaotic fixpoint
iteration will always produce a least fixpoint within a finite number of iterations.
While any chaotic fixpoint iteration will eventually terminate with the global
fixpoint, there typically exist specific orderings that produce the global fixpoint
faster. Determining a good order of execution for the transfer functions is one of
the primary goals in the implementation (see Section A.4.6).

Given the finite height of the poset representing the program state, fixpoint
theory guarantees that a fixpoint iteration terminates if all transfer functions
f ∈ F are monotone. In the case of transfer functions from an abstract inter-
preter, monotonicity of f can be achieved by defining f(x) := x ∪ f ′(x) where
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class Engine {
Engine(EntailmentGraph eg);
void add(TransferFunction tf, AbstractValue arg);
void run();

}

Figure A.35: The Engine API (simplified).

a∪b is the computation of the least upper bound in the product-poset and f ′ is a
function that models the abstract semantics of the analyzed application without
monotonicity considerations. By applying the ∪ operation, the result is guar-
anteed to be monotonically increasing toward more conservative approximations
and therefore achieving monotonicity while preserving soundness. The global
fixpoint can then be computed by iterating over the (now monotone) transfer
functions until a fixpoint has been reached [Yi93].

Just as selecting the appropriate order of transfer functions is important for
performance, the monotonicity constraint also allows for optimizations. Some-
times it is possible to guarantee monotonicity without performing the ∪ operation
(which is potentially costly in terms of both precision and time) after every step.
Determining at which points in the iteration it is necessary to “merge” is another
important goal for the implementation.

A.4.5 API

For clients, the abstract interpretation framework presents a relatively simple
API. The client starts the abstract interpreter by calling add on Engine (Fig-
ure A.35) providing an initial TransferFunction (Figure A.36) and Abstract-

Value (Figure A.37). The abstract interpretation is then started with the run()

method of Engine. The transfer function implementation provides a function
that given an abstract value computes a (possibly empty) set of successor trans-
fer functions and abstract values, which it also adds to the Engine. The run

method terminates once the fixpoint has been reached: all transfer functions
have been evaluated with the most conservative abstract value in the abstract
domain that could be added for the respective transfer function.

Note that due to implementation limitations creating the Engine requires sup-
plying an entailment graph, which is be discussed in more detail in Section A.4.7.
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interface TransferFunction {
void run(AbstractValue arg);

}

Figure A.36: The TransferFunction interface (slightly simplified).

interface AbstractValue {
boolean includes(AbstractValue v);
AbstractValue merge(AbstractValue e);

}

Figure A.37: The AbstractValue interface (slightly simplified).

A.4.6 Implementation

The major concern for the implementation is to minimize the amount of state
that needs to be kept for the fixpoint iteration in addition to minimizing the
number of transfer function evaluations. Minimizing the amount of state improves
performance in many ways, from reduced pressure on the memory management
subsystem to fewer branches for versioned abstract values. Previous designs for
abstract interpretation have not focused on this aspect, instead computing the
global fixpoint. As discussed in section A.4.1, the system described in this section
decomposes the common (global) fixpoint into the smaller inputs to the individual
transfer functions. Consequently, it is not necessary to have the entire global
fixpoint represented in memory at any given time. The analysis is assumed to
process (or record) the necessary information while the fixpoint iteration is still
ongoing.

Since abstract interpretation is at the heart a fixpoint iteration, any random
(chaotic) execution order for transfer functions is guaranteed to yield correct re-
sults. Still, most such chaotic orders are not going to result in a minimal number
of transfer function evaluations. The number of evaluations can be systemat-
ically improved by carefully selecting the evaluation order in accordance with
data-dependencies between the transfer functions. The information about which
transfer function may change the abstract value inputs of which other transfer
functions can be captured in an entailment graph [CHY95]. That information
can then be used to optimize the evaluation order.

Using Tarjan’s algorithm [Tar72], the entailment graph can be split into
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strongly connected components (SCCs). The SCCs can then be totally or-
dered such that transfer functions never depend on inputs created (or modified)
by transfer functions in an SCC of greater value in the total ordering. The total
ordering of the SCCs gives a natural ordering of the transfer functions that mini-
mizes the number of evaluations (disregarding cycles within the SCCs). An SCC
that contains a transfer function that has not yet been evaluated with the latest
available abstract value input is called active. Given a transfer function evalu-
ation order that always evaluates transfer functions belonging to the SCC with
the minimal ordering, all abstract values belonging to transfer functions in an
SCC that becomes inactive can be freed since the ordering guarantees that those
transfer functions will not be evaluated in the future. This limits the amount of
state which must be kept by the fixpoint iteration to abstract values of transfer
functions in the currently active SCC and to at most one abstract value for each
added transfer function in other SCCs.

A.4.6.1 Breaking Cycles

In the absence of cycles in the entailment graph, the approach described so far
minimizes the number of transfer function evaluations and the amount of state
that needs to be kept. In the presence of cycles, at least one abstract value must
be kept for a transfer function in every cycle in order to guarantee the eventual
termination of the fixpoint iteration. The reason for this is that for a cycle of
length n, the abstract value must be changed every n evaluations; otherwise
the ⊆ test performed by add holds. Since the change is required to be strictly
monotonically increasing in a poset of finite height, the iteration will eventually
terminate.

The goal of minimizing the amount of state that needs to be kept could be
reached by selecting a minimal set of transfer functions in the entailment graph to
break all cycles. For the selected transfer functions, the fixpoint iterations would
have to keep the “last” abstract value around in order to ensure termination. The
problem with this selection is that it both requires both a rather costly process of
finding all cycles and conflicts with the goal of minimizing the number of transfer
function evaluations. This is because the number of transfer function evaluations
would be minimized if every transfer function in the SCC was selected. Otherwise,
it is possible that n− 1 redundant transfer function evaluations could occur in a
cycle of length n (because it can take up to n−1 steps until the ⊆ test succeeds).

Consequently, it often makes sense to use a heuristic to strike a balance be-
tween the amount of state that is kept and the number of transfer function
evaluations. An exception to this rule are large SCCs with a significant number
of cycles where the amount of state that might need to be kept around becomes
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more critical than the execution time of transfer functions and the selection al-
gorithm. In either case, the selection algorithm must guarantee that at least
one transfer function is selected in every cycle. In the case of the heuristic, the
process should be inexpensive (i.e., linear in the size of the SCC) and reasonably
reduce the number of transfer functions selected. Without prior knowledge about
the relative cost of transfer function evaluations to keeping additional state, it is
not possible to determine the optimal trade-off, leaving the cost of the heuristic
itself as the only criteria that always matters.

The heuristic used by XTC proceeds by first selecting nodes (transfer func-
tions) that directly refer to themselves (since this is the only way to eliminate
these cycles). Then nodes X of the form A → X → C where A 6= X 6= C
are removed from the entailment graph by reducing the cycle to the smaller
graph A → C. Furthermore, nodes X of the forms A → X → {B, C} and
{A, B} → X → C are reduced to A → {B, C} and {A, B} → C respectively.
After this, a remaining node of maximum degree is selected. Note that each time
a node is selected the adjacent edges are removed, allowing for more applications
of the graph reduction rules. The selection process is iterated until no nodes
remain.

A.4.6.2 Intra-SCC Ordering of Transfer Functions

The heuristics described so far only order the SCCs of the entailment graph and
describe where to keep state in order to break cycles. This is insufficient for a
general abstract interpretation abstraction where SCCs can become rather large
and a simple chaotic fixpoint iteration per SCC does not scale. For example, given
an entailment graph like the one shown in Figure A.38, a chaotic fixpoint iteration
may take an exponential number of evaluations. Since such cycles actually occur
in practice for intraprocedural analyses, the abstract interpretation runtime must
also determine an appropriate ordering for the transfer functions within an SCC.

Figure A.38: Example of an entailment graph with a loop where the order of
evaluation of the transfer functions within the same SCC matters.

The key idea for the algorithm is to split the SCC into subgraphs at the
transfer functions selected to break the cycles. The remaining subgraphs can then
be totally ordered. The merge points themselves are all assigned the “maximum”
ordering value within the SCC. The resulting fixpoint iteration alternates between
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running the shortest possible sequence of transfer functions that are not selected
such that only selected transfer functions are pending, and running one of the
selected transfer functions. The resulting worst-case complexity of the fixpoint
iteration is O(n · h) where n is the number of nodes in the SCC and h is the
maximum height of the abstract domain. Figure A.39 shows a possible ordering
for the example that could be obtained using this algorithm.
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Figure A.39: Example for an ordering on the SCC that will guarantee linear
execution time. The selected merge point is marked with an X. Note that this
is just one possible selection and ordering and not the only possibility.

A.4.7 Obtaining the Entailment Graph

Until now, nothing has been said about how the abstract interpretation runtime
obtains the entailment graph which is used to optimize the evaluation order of
the transfer functions and to decide at which points state needs to be kept. An
entailment graph is correct if it captures which transfer functions may add which
other transfer functions. By definition, one extreme but correct choice for the
entailment graph would be a clique. The result of using a clique would be an
abstract interpreter that must keep state for every transfer function (and thus
explicitly compute the global fixpoint) and which runs transfer functions in a
chaotic order – the clique cannot help guide the ordering. The other extreme is
the minimal entailment graph, which is the minimal graph that is correct with
respect to the actual interpretation of the transfer functions for the particular
order implied by the minimal entailment graph. Clearly, neither extreme is de-
sirable since the clique does not allow optimization of state or transfer function
evaluations and the minimal entailment graph cannot be obtained efficiently (in
part due to its recursive definition, but primarily because it requires a precise
evaluation of the actual transfer functions for its construction).

The current framework requires the client to explicitly supply a correct entail-
ment graph. This can always be done as a straightforward simplification of the
transfer function implementation that abstracts away the abstract values. The
resulting entailment graph construction is equivalent to the data-flow insensitive
construction of a control-flow graph.

In addition to the entailment graph, users of the framework must implement
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the abstract values (possibly re-using existing implementations provided by the
framework) and the actual transfer functions. Given those three implementations
and an initial pair of transfer function and starting state, the main Engine of the
abstract interpretation framework can be run, resulting in the computation of
the fixpoint. Various flags in the Engine can be used to supervise the abstract
interpretation process. When activated, these instrumentations slow down the
abstract interpreter, but they can help detect problems such as non-monotone
definitions of the abstract domain and mismatches between the entailment graph
and the transfer functions.

A.4.8 Future Work

The fact that the entailment graph must be provided by hand at the moment
is a major drawback in the sense that the implementation that computes the
entailment graph duplicates logic that is also present in the transfer functions
themselves. It would thus be desirable to extend the framework with introspective
capabilities that can deduce the entailment graph automatically from the transfer
functions. This would further reduce the amount of code that a programmer needs
to write and also eliminate a significant source of defects.

Note however, that the existing framework provides reasonably general im-
plementations for entailment graphs for the Java and X10 IRs that can be easily
re-used for analyses that essentially follow the ordinary intraprocedural control
flow of methods.

A.5 License for XTC-X10

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and dis-
tribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software–to make sure the
software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your
programs, too.
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When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the software,
or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The ”Program”, below, refers to any such program
or work, and a ”work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Pro-
gram or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in
the term ”modification”.) Each licensee is addressed as ”you”.
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Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most ordi-
nary way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Pro-
gram itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
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to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the exe-
cutable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating sys-
tem on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
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as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Program
or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it
and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any partic-
ular circumstance, the balance of the section is intended to apply and the section
as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder
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who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permit-
ted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and ”any later version”, you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for permis-
sion. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our deci-
sion will be guided by the two goals of preserving the free status of all derivatives
of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
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OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OP-
ERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the ”copyright” line and a pointer to
where the full notice is found.

¡one line to give the program’s name and a brief idea of what it does.¿ Copy-
right (C) ¡year¿ ¡name of author¿

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision
comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This
is free software, and you are welcome to redistribute it under certain conditions;
type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appro-
priate parts of the General Public License. Of course, the commands you use
may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items–whatever suits your program.
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You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ”copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomo-
vision’ (which makes passes at compilers) written by James Hacker.

¡signature of Ty Coon¿, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead of
this License.
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APPENDIX B

ArrayBench Benchmarks

This chapter gives the source code for some of the more interesting ArrayBench
benchmarks. The source code for all ArrayBench benchmarks is available at
http://grothoff.org/christian/xtc/x10/. We also give the X10 version of
the example programs from Section 3.3.

B.1 Example Programs

Note that in order to see the example programs without region types, the reader
should simply ignore the dependent type annotations given between “<” and
“>”.1

B.1.1 init

void init(Array<int> a) {

for (p : a.dist.reg) {

finish async(a.dist[p]) {

a[p] = 1;

}

}

}

B.1.2 partialinit

void partialinit(place h, Array<int> a) {

finish async(h) {

for (p : a.dist \% h) {

a[p] = 1;

}

}

1The type parameter “int” for Array is not part of the region type annotations.
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}

B.1.3 copy

void copy(distribution d, Array<int;d:d> a, Array<int;d:d> b) {

finish ateach (h : distribution.unique()) {

for (p : a.dist \% here) {

a[p] = b[p];

}

}

}

B.1.4 expand

Array<int> expand(Array<int> a, region<;a.dist.reg> x) {

. b = new Array<int>(distribution.blocked(x), 0);

finish ateach (h : distribution.unique()) {

for (p : a.dist.reg & b.dist \% here) {

b[p] = future(a.dist[p]) { a[p] }.force();

}

}

return b;

}

B.1.5 shiftleft

void shiftleft(Array<int#1> a) {

. inner = (a.dist.reg + 1p) & a.dist.reg;

for (p : inner) {

finish async(a.dist[p]) {

a[p] = future(a.dist[p-1p]) { a[p-1p] }.force();

}

}

}

B.2 Crypt

void transcode(int id,

region R,
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Array<byte;(R*here):(R*here)#1> text1,

Array<byte;(R*here):(R*here)#1> text2,

Array<int;([0:51]*here):([0:51]*here)#1> key) {

int tslice = text1.dist.reg.size() / 8;

int ttslice = (tslice + place.count()-1) / place.count();

int slice = ttslice*8;

int ilow = id*slice;

var int iupper = (id+1)*slice;

if (iupper > text1.dist.reg.size())

iupper = text1.dist.reg.size();

var int i1 = ilow;

var int i2 = ilow;

for (p[i8] : [ilow/8:iupper/8-1]) {

var int ik = 0;

var int r = 8;

var int x1 = getAt(R, text1, i1++) & 0xff;

x1 |= (getAt(R, text1, i1++) & 0xff) << 8;

var int x2 = getAt(R, text1, i1++) & 0xff;

x2 |= (getAt(R, text1, i1++) & 0xff) << 8;

var int x3 = getAt(R, text1, i1++) & 0xff;

x3 |= (getAt(R, text1, i1++) & 0xff) << 8;

var int x4 = getAt(R, text1, i1++) & 0xff;

x4 |= (getAt(R, text1, i1++) & 0xff) << 8;

do {

x1 = new int(new long(x1) * kgetAt(key, ik++)

% 0x10001L & 0xffffL);

x2 = x2 + igetAt(key, ik++) & 0xffff;

x3 = x3 + igetAt(key, ik++) & 0xffff;

x4 = new int(new long(x4) * kgetAt(key, ik++)

% 0x10001L & 0xffffL);

var int t2 = x1 ^ x3;

t2 = new int(new long(t2) * kgetAt(key, ik++)

% 0x10001L & 0xffffL);

var int t1 = t2 + (x2 ^ x4) & 0xffff;

t1 = new int(new long(t1) * kgetAt(key, ik++)

% 0x10001L & 0xffffL);

t2 = t1 + t2 & 0xffff;

x1 ^= t1;

x4 ^= t2;

t2 ^= x2;

x2 = x3 ^ t1;
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x3 = t2;

} while(--r != 0); // Repeats seven more rounds.

x1 = new int(new long(x1) * kgetAt(key, ik++)

% 0x10001L & 0xffffL);

x3 = x3 + igetAt(key, ik++) & 0xffff;

x2 = x2 + igetAt(key, ik++) & 0xffff;

x4 = new int(new long(x4) * kgetAt(key, ik++)

% 0x10001L & 0xffffL);

setAt(R, text2, i2++, x1);

setAt(R, text2, i2++, x1 >>> 8);

setAt(R, text2, i2++, x3);

setAt(R, text2, i2++, x3 >>> 8);

setAt(R, text2, i2++, x2);

setAt(R, text2, i2++, x2 >>> 8);

setAt(R, text2, i2++, x4);

setAt(R, text2, i2++, x4 >>> 8);

}

void setAt(region R,

Array<byte;(R*here)> text2,

int idx,

int val) {

text2[(point<:R>) new point(idx)] = new byte(val);

}

long kgetAt(Array<int;([0:51]*here):([0:51]*here)#1> key,

int idx) {

return new long(key[(point<:([0:51])>) new point(idx)]);

}

int igetAt(Array<int;([0:51]*here):([0:51]*here)#1> key,

int idx) {

return key[(point<:([0:51])>) new point(idx)];

}

static int getAt(region R,

Array<byte;(R*here)> text1,

int idx) {

return new int(text1[(point<:R>) new point(idx)]);

}
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public class IdeaContext {

final ValueArray<short;([0:7]):([0:7])#1> userkey;

final Array<int;([0:51]*here):([0:51]*here)#1> Z;

final Array<int;([0:51]*here):([0:51]*here)#1> DK;

IdeaContext() {

Z = new Array<int>([0:51], 0);

DK = new Array<int>([0:51], 0);

Random rndnum = new Random(136506717L);

userkey = new ValueArray<short>([0:7],

function short(point p) {

return new short(rndnum.nextInt());

});

calcEncryptKey();

calcDecryptKey();

}

void calcEncryptKey() {

for (p : [0:7])

Z[p] = new int(userkey[p]) & 0xffff;

for (p[i] : [8:51]) {

int j = i % 8;

if (j < 6) {

Z[p] = ((Z[p - 7p]>>>9) | (Z[p - 6p]<<7)) & 0xFFFF;

continue;

}

if (j == 6) {

Z[p] = ((Z[p - 7p]>>>9)

| (Z[(point<:([0:51])>) (p - 14p)]<<7)) & 0xFFFF;

continue;

}

assert j == 7;

Z[p] = ((Z[(point<:([0:51])>) (p - 15p)]>>>9)

| (Z[(point<:([0:51])>) (p - 14p)]<<7)) & 0xFFFF;

}

}

void calcDecryptKey() {
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var int t1 = IdeaContext.inv(Z[0p]);

var int t2 = - Z[1p] & 0xffff;

var int t3 = - Z[2p] & 0xffff;

DK[51p] = IdeaContext.inv(Z[3p]);

DK[50p] = t3;

DK[49p] = t2;

DK[48p] = t1;

var int j = 47;

var int k = 4;

for (p : [0:6]) {

t1 = gZ(k++);

sDK(j--, gZ(k++));

sDK(j--, t1);

t1 = IdeaContext.inv(gZ(k++));

t2 = -gZ(k++) & 0xffff;

t3 = -gZ(k++) & 0xffff;

sDK(j--, IdeaContext.inv(gZ(k++)));

sDK(j--, t2);

sDK(j--, t3);

sDK(j--, t1);

}

t1 = gZ(k++);

sDK(j--, gZ(k++));

sDK(j--, t1);

t1 = IdeaContext.inv(gZ(k++));

t2 = -gZ(k++) & 0xffff;

t3 = -gZ(k++) & 0xffff;

sDK(j--, IdeaContext.inv(gZ(k++)));

sDK(j--, t3);

sDK(j--, t2);

sDK(j--, t1);

}

private void sDK(int idx, int val) {

DK[(point<:([0:51])>) new point(idx)] = val;

}

private int gZ(int idx) {

return Z[(point<:([0:51])>) new point(idx)];

}
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private static int inv(int x) {

if (x <= 1)

return x;

var int t1 = 0x10001 / x;

var int y = 0x10001 % x;

if (y == 1)

return (1 - t1) & 0xFFFF;

var int t0 = 1;

var int xu = x;

do {

var int q = xu / y;

xu = xu % y;

t0 += q * t1;

if (xu == 1)

return t0;

q = y / xu;

y = y % xu;

t1 += q * t0;

} while (y != 1);

return (1 - t1) & 0xFFFF;

}

}

B.3 Crypt-2

void transcode(int id,

region<#1> R,

Array<byte;(R*here):(R*here)#1> text1,

Array<byte;(R*here):(R*here)#1> text2,

Array<int;([0:51]*here):([0:51]*here)#1> key) {

int tslice = text1.dist.reg.size() / 8;

int ttslice = (tslice + place.count()-1) / place.count();

int slice = ttslice*8;

int ilow = id*slice;

var int iupper = (id+1)*slice;

if (iupper > text1.dist.reg.size())

iupper = text1.dist.reg.size();

. rk = [0:51];

. ir = [ilow:iupper-1] & R;

. i1 = ir.iterator();
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. i2 = ir.iterator();

for (p[i8] : [ilow/8:iupper/8-1]) {

. ik = rk.iterator();

var int x1 = new int(text1[i1.next()]) & 0xff;

x1 |= (new int(text1[i1.next()]) & 0xff) << 8;

var int x2 = new int(text1[i1.next()]) & 0xff;

x2 |= (new int(text1[i1.next()]) & 0xff) << 8;

var int x3 = new int(text1[i1.next()]) & 0xff;

x3 |= (new int(text1[i1.next()]) & 0xff) << 8;

var int x4 = new int(text1[i1.next()]) & 0xff;

x4 |= (new int(text1[i1.next()]) & 0xff) << 8;

for (r : [0:7]) {

x1 = new int(new long(x1) * new long(key[ik.next()])

% 0x10001L & 0xffffL);

x2 = x2 + key[ik.next()] & 0xffff;

x3 = x3 + key[ik.next()] & 0xffff;

x4 = new int(new long(x4) * new long(key[ik.next()])

% 0x10001L & 0xffffL);

var int t2 = x1 ^ x3;

t2 = new int(new long(t2) * new long(key[ik.next()])

% 0x10001L & 0xffffL);

var int t1 = t2 + (x2 ^ x4) & 0xffff;

t1 = new int(new long(t1) * new long(key[ik.next()])

% 0x10001L & 0xffffL);

t2 = t1 + t2 & 0xffff;

x1 ^= t1;

x4 ^= t2;

t2 ^= x2;

x2 = x3 ^ t1;

x3 = t2;

}

x1 = new int(new long(x1) * new long(key[ik.next()])

% 0x10001L & 0xffffL);

x3 = x3 + key[ik.next()] & 0xffff;

x2 = x2 + key[ik.next()] & 0xffff;

x4 = new int(new long(x4) * new long(key[ik.next()])

% 0x10001L & 0xffffL);

text2[i2.next()] = new byte(x1);

text2[i2.next()] = new byte(x1 >>> 8);

text2[i2.next()] = new byte(x3);

text2[i2.next()] = new byte(x3 >>> 8);

201



text2[i2.next()] = new byte(x2);

text2[i2.next()] = new byte(x2 >>> 8);

text2[i2.next()] = new byte(x4);

text2[i2.next()] = new byte(x4 >>> 8);

}

}

public class IdeaContext {

final ValueArray<short;([0:7]):([0:7])#1> userkey;

final Array<int;([0:51]*here):([0:51]*here)#1> Z;

final Array<int;([0:51]*here):([0:51]*here)#1> DK;

IdeaContext() {

Z = new Array<int>([0:51], 0);

DK = new Array<int>([0:51], 0);

Random rndnum = new Random(136506717L);

userkey = new ValueArray<short>([0:7],

function short(point p) {

return new short(rndnum.nextInt());

});

calcEncryptKey();

calcDecryptKey();

}

private void calcEncryptKey() {

for (p : [0:7])

Z[p] = new int(userkey[p]) & 0xffff;

for (p[i] : [8:51]) {

int j = i % 8;

if (j < 6) {

Z[p] = ((Z[p - 7p]>>>9) | (Z[p - 6p]<<7)) & 0xFFFF;

continue;

}

if (j == 6) {

Z[p] = ((Z[p - 7p]>>>9)

| (Z[(point<:([0:51])>) (p - 14p)]<<7)) & 0xFFFF;

continue;

}
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assert j == 7;

Z[p] = ((Z[(point<:([0:51])>) (p - 15p)]>>>9)

| (Z[(point<:([0:51])>) (p - 14p)]<<7)) & 0xFFFF;

}

}

private void calcDecryptKey() {

. r = [0:51];

. k = r.iterator();

. j = r.reverse_iterator();

var int t1 = IdeaContext.inv(Z[k.next()]);

var int t2 = - Z[k.next()] & 0xffff;

var int t3 = - Z[k.next()] & 0xffff;

DK[j.next()] = IdeaContext.inv(Z[k.next()]);

DK[j.next()] = t3;

DK[j.next()] = t2;

DK[j.next()] = t1;

for (p : [0:6]) {

t1 = Z[k.next()];

DK[j.next()] = Z[k.next()];

DK[j.next()] = t1;

t1 = IdeaContext.inv(Z[k.next()]);

t2 = -Z[k.next()] & 0xffff;

t3 = -Z[k.next()] & 0xffff;

DK[j.next()] = IdeaContext.inv(Z[k.next()]);

DK[j.next()] = t2;

DK[j.next()] = t3;

DK[j.next()] = t1;

}

t1 = Z[k.next()];

DK[j.next()] = Z[k.next()];

DK[j.next()] = t1;

t1 = IdeaContext.inv(Z[k.next()]);

t2 = -Z[k.next()] & 0xffff;

t3 = -Z[k.next()] & 0xffff;

DK[j.next()] = IdeaContext.inv(Z[k.next()]);

DK[j.next()] = t3;

DK[j.next()] = t2;

DK[j.next()] = t1;

}
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private static int inv(int x) {

if (x <= 1)

return x;

var int t1 = 0x10001 / x;

var int y = 0x10001 % x;

if (y == 1)

return (1 - t1) & 0xFFFF;

var int t0 = 1;

var int xu = x;

do {

var int q = xu / y;

xu = xu % y;

t0 += q * t1;

if (xu == 1)

return t0;

q = y / xu;

y = y % xu;

t1 += q * t0;

} while (y != 1);

return (1 - t1) & 0xFFFF;

}

}

B.4 DSOR

void sor(distribution<#1> dist,

region<#1> seq,

double omega,

Array<double;(dist * seq)#2> G,

int num_iterations) {

. iseq = (seq + 1p) & (seq - 1p) & seq;

. idis = (dist.reg + 1p) & (dist.reg - 1p) & dist.reg;

double omega_over_four = omega * 0.25d;

double one_minus_omega = double.ONE - omega;

for (iter[off] : [1:num_iterations*2]) {

int om2 = off % 2;

finish for (dp[i] : idis) async (dist[dp]) {

if (i % 2 == om2) {

for (sp : iseq) {

. ij = dp * sp;
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G[ij] = omega_over_four * (G[dp * (sp + 1p)] +

G[dp * (sp - 1p)] +

rget(G, (dp + 1p) * sp) +

rget(G, (dp - 1p) * sp))

+ one_minus_omega * G[ij];

}

}

}

}

}

double rget(Array<double> G,

point<:G.dist.reg> pt) {

return future (G.dist[pt]) { G[pt] }.force();

}
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